
Polyspace® Bug Finder™
User’s Guide

R2023a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Polyspace® Bug Finder™ User’s Guide
© COPYRIGHT 2013–2023 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
September 2013 Online only New for Version 1.0 (Release 2013b)
March 2014 Online Only Revised for Version 1.1 (Release 2014a)
October 2014 Online Only Revised for Version 1.2 (Release 2014b)
March 2015 Online Only Revised for Version 1.3 (Release 2015a)
September 2015 Online Only Revised for Version 2.0 (Release 2015b)
October 2015 Online Only Rereleased for Version 1.3.1 (Release 2015aSP1)
March 2016 Online Only Revised for Version 2.1 (Release 2016a)
September 2016 Online Only Revised for Version 2.2 (Release 2016b)
March 2017 Online Only Revised for Version 2.3 (Release 2017a)
September 2017 Online Only Revised for Version 2.4 (Release 2017b)
March 2018 Online Only Revised for Version 2.5 (Release 2018a)
September 2018 Online Only Revised for Version 2.6 (Release 2018b)
March 2019 Online Only Revised for Version 3.0 (Release 2019a)
September 2019 Online Only Revised for Version 3.1 (Release 2019b)
March 2020 Online Only Revised for Version 3.2 (Release 2020a)
September 2020 Online Only Revised for Version 3.3 (Release 2020b)
March 2021 Online Only Revised for Version 3.4 (Release 2021a)
September 2021 Online Only Revised for Polyspace Bug Finder Version 3.5,

Polyspace Bug Finder Server Version 3.5, and
Polyspace Bug Finder Access Version 3.1 (Release
2021b)

March 2022 Online Only Revised for Polyspace Bug Finder Version 3.6,
Polyspace Bug Finder Server Version 3.6, and
Polyspace Access Version 4.0 (Release 2022a)

September 2022 Online Only Revised for Polyspace Bug Finder Version 3.7,
Polyspace Bug Finder Server Version 3.7, and
Polyspace Access Version 4.1 (Release 2022b)

March 2023 Online Only Revised for Polyspace Bug Finder Version 3.8,
Polyspace Bug Finder Server Version 3.8, and
Polyspace Access Version 4.2 (Release 2023a)

Introduction
1

About This User's Guide . 1-2

Configure Analysis on Desktop

Set Up Polyspace Projects on Desktop
2

Add Source Files for Analysis in Polyspace Desktop User Interface
. 2-2

Polyspace Project and Source File Paths . 2-2
Add Sources from Build Command . 2-3
Add Sources Manually . 2-5
Add Source Files Based on AUTOSAR Design Specifications 2-6

Contents of Polyspace Project and Results Folders 2-7
File Organization . 2-7
Files in the Results Folder . 2-7

Create Polyspace Projects from Visual Studio Build 2-9
Create Polyspace Project from Build in Visual Studio Developer

Command Prompt . 2-9
Create Polyspace Project from Build in Visual Studio IDE 2-10

Create Project in Polyspace Desktop User Interface Using
Configuration Template . 2-13

Why Use Templates . 2-13
Use Predefined Template . 2-13
Create Your Own Template . 2-13
Sharing Project Templates . 2-15

Update Project in Polyspace Desktop User Interface 2-17
Change Folder Path . 2-17
Refresh Source List . 2-18
Refresh Project Created from Build Command 2-18
Add Source and Include Folders . 2-18
Manage Include File Sequence . 2-18

v

Contents

Organize Layout of Polyspace Desktop User Interface 2-20
Create Your Own Layout . 2-20
Save and Reset Layout . 2-21

Customize Polyspace Desktop User Interface 2-22
Possible Customizations . 2-22
Storage of Polyspace User Interface Customizations 2-24

Upload Results to Polyspace Access . 2-25
Upload Results from Polyspace Desktop Client 2-25
Upload Results at Command Line . 2-26
Results Upload Compatibility and Permissions 2-26

Run Polyspace Analysis on Desktop
3

Run Analysis in Polyspace Desktop User Interface 3-2
Arrange Layout of Windows for Project Setup 3-2
Set Product and Result Location . 3-3
Start and Monitor Analysis . 3-4
Fix Compilation Errors . 3-4
Open Results . 3-4

Storage of Temporary Files During Polyspace Analysis 3-6

Run Polyspace Analysis with Windows or Linux Scripts
4

Run Polyspace Analysis from Command Line 4-2
Specify Sources and Analysis Options Directly 4-2
Specify Sources and Analysis Options in Text File 4-2
Create Options File from Build System . 4-3

Modularize Polyspace Analysis by Using Build Command 4-5
Build Source Code . 4-5
Create One Polyspace Options File for Full Build 4-7
Create Options File for Specific Binary in Build Command 4-8
Create One Options File Per Binary Created in Build Command 4-8

Select Files for Polyspace Analysis Using Pattern Matching 4-11
When to Specify File Selection Patterns . 4-11
Supported Patterns for File Selection . 4-12

Configure Polyspace Analysis Options in User Interface and Generate
Scripts . 4-15

Prerequisites . 4-16
Generate Scripts from Configuration . 4-16
Run Analysis with Generated Scripts . 4-17

vi Contents

Run Polyspace Analysis with MATLAB Scripts
5

Integrate Polyspace with MATLAB and Simulink 5-2
Same Release of Polyspace and MATLAB . 5-2
MATLAB Release Earlier Than Polyspace . 5-3
Check Integration Between MATLAB and Polyspace 5-4

Get Started with Polyspace Analysis by Using MATLAB 5-5
Prerequisites . 5-5
Run Polyspace Analysis by Using MATLAB . 5-5
Frequently Used MATLAB Functions . 5-6

Run Polyspace Analysis by Using MATLAB Scripts 5-9
Prerequisites . 5-9
Specify Multiple Source Files . 5-9
Check for MISRA C:2012 Violations . 5-10
Check for Specific Defects or Coding Rule Violations 5-10
Find Files That Do Not Compile . 5-11
Run Analysis on Server . 5-11

Compare Results from Different Polyspace Runs by Using MATLAB
Scripts . 5-13

Review Only New Results Compared to Last Run 5-13
Review New Results and Unreviewed Results from Last Run 5-14

Generate MATLAB Scripts from Polyspace User Interface 5-16
Prerequisites . 5-16
Create Scripts from Polyspace Projects . 5-16

Troubleshoot Polyspace Analysis from MATLAB 5-18
Prerequisites . 5-18
Capture Polyspace Analysis Errors in Error Log 5-18

Run Polyspace Analysis in Simulink
6

Run Polyspace Analysis on Code Generated with Embedded Coder
. 6-2

Prerequisites . 6-2
Generate and Analyze Code . 6-2
Review Analysis Results . 6-4
Annotate Blocks to Justify Issues . 6-5

Address Polyspace Results by Annotating Simulink Blocks 6-6
Annotate Blocks Through Polyspace User Interface 6-6
Annotate Blocks in Simulink Editor . 6-8

Changes in Polyspace Analysis Workflows in Simulink in R2019b . . 6-9
Code Verification Workflow in a Nutshell . 6-9
Locate Pre-R2019b Menu Items in Simulink Toolstrip 6-9

vii

Run Polyspace on Code Generated by Using Previous Releases of
Simulink . 6-12

Prerequisite . 6-12
Run a Cross-Release Polyspace Analysis . 6-12
Review Results . 6-13

Run Polyspace Analysis on Code Generated from Simulink Model
. 6-15

Prerequisites . 6-15
Open Simulink Model for Polyspace Analysis 6-15
Check for Run-Time Errors in Generated Code 6-16
Review Analysis Results . 6-17
Trace and Fix Issues in the Model . 6-17
Check for Coding Rule Violations . 6-22
Annotate Blocks to Justify Results . 6-23

Fix Model Design Issues Found as Run-time Errors and Coding Rule
Violations in Generated Code . 6-25

Prerequisites . 6-25
Open Model . 6-25
Detect and Fix Run-Time Errors . 6-25
Detect and Fix Coding Rule Violations . 6-27

Run Polyspace Analysis on Generated Code by Using Packaged
Options Files . 6-29

Generate and Package Polyspace Options Files 6-29
Run Polyspace Analysis by Using the Packaged Options Files 6-31

Run Polyspace Analysis on Custom Code in Simulink Models 6-32
Prerequisite . 6-32
Analyze Custom Code . 6-32
Review Analysis Results . 6-33

Run Polyspace Analysis on S-Function Code 6-35
Prerequisites . 6-35
S-Function Analysis Workflow . 6-35
Compile S-Functions to Be Compatible with Polyspace 6-35
Example S-Function Analysis . 6-35

Run Polyspace Analysis on Custom Code in C Caller Blocks and
Stateflow Charts . 6-37

Prerequisites . 6-37
C/C++ Function Called Once in Model . 6-37
C/C++ Function Called Multiple Times in Model 6-40

Run Polyspace Analysis on Custom Code in C Function Block 6-45
Prerequisites . 6-45
Open Model for Running Polyspace Analysis on Custom Code in C

Function Block . 6-45
Run Polyspace Analysis . 6-46
Identify Issues in C Code . 6-47
Fix Identified Issues . 6-49

Recommended Model Configuration Parameters for Polyspace
Analysis . 6-51

viii Contents

Configure Polyspace Options in Simulink . 6-53
Configure Options . 6-53
Share and Reuse Configuration . 6-55

How Polyspace Analysis of Generated Code Works 6-56

Default Polyspace Options for Code Generated with Embedded Coder
. 6-57

Default Options . 6-57
Constraint Specification . 6-57
Recommended Polyspace options for Verifying Generated Code . . . 6-58
Hardware Mapping Between Simulink and Polyspace 6-58

External Constraints on Polyspace Analysis of Generated Code . . . 6-59
Extract External Constraints from Model . 6-59
Storage Classes Supported for Constraint Extraction From Simulink

Model . 6-60
Specify Custom External Constraints . 6-60

Run Polyspace Analysis on Code Generated with TargetLink 6-62
Configure and Run Analysis . 6-62
Review Analysis Results . 6-63

Default Polyspace Options for Code Generated with TargetLink . . . 6-64
TargetLink Support . 6-64
Default Options . 6-64
Lookup Tables . 6-64
Data Range Specification . 6-65
Code Generation Options . 6-65

Troubleshoot Navigation from Code to Model 6-66
Links from Code to Model Do Not Appear . 6-66
Links from Code to Model Do Not Work . 6-66
Your Model Already Uses Highlighting . 6-67

Polyspace Support of MATLAB and Simulink from Different Releases
. 6-68

Complete Integration . 6-70
Cross-Release Integration . 6-70
Partial Integration . 6-71
Navigate Back to Model . 6-71

Run Polyspace Analysis in MATLAB Coder
7

Run Polyspace on C/C++ Code Generated from MATLAB Code 7-2
Prerequisites . 7-2
Run Polyspace Analysis . 7-2
Review Analysis Results . 7-4
Run Analysis for Specific Design Range . 7-5

ix

Configure Advanced Polyspace Options in MATLAB Coder App 7-7
Configure Options . 7-7
Share and Reuse Configuration . 7-8

Configure Analysis on Servers

Run Polyspace Analysis on Servers
8

Run Polyspace Bug Finder on Server and Upload Results to
Polyspace Access Web Interface . 8-2

Prerequisites . 8-2
Check Polyspace Installation . 8-3
Run Bug Finder on Sample Files . 8-3
Sample Scripts for Bug Finder Analysis on Servers 8-5
Specify Sources and Options in Separate Files from Launching Scripts

. 8-5
Complete Workflow . 8-6

Send Email Notifications with Polyspace Bug Finder Server Results
. 8-8

Creating E-mail Notifications . 8-8
Prerequisites . 8-9
Export Results for E-mail Attachments . 8-10
Assign Owners and Export Assigned Results 8-10

Offload Polyspace Analysis from Continuous Integration Server to
Another Server . 8-12

Install Products . 8-12
Configure and Start Job Scheduler Services on Head Node and Worker

Node . 8-14
Offload Analysis from Client Node . 8-15

Sample Scripts for Polyspace Analysis with Jenkins 8-17
Extending Sample Scripts to Your Development Process 8-17
Prerequisites . 8-18
Set Up Polyspace Plugin in Jenkins . 8-19
Script to Run Bug Finder, Upload Results and Send Common
Notification . 8-22

Script to Run Bug Finder, Upload Results and Send Personalized
Notification . 8-24

Sample Jenkins Pipeline Scripts for Polyspace Analysis 8-31
Prerequisites . 8-31
Run Polyspace Analysis in Stages in a Pipeline Script 8-31

Integrate Polyspace Server Products with MATLAB 8-33
Integrate Polyspace Server Products with MATLAB 8-33
Check Integration Between MATLAB and Polyspace 8-33
Run Polyspace Server Products with MATLAB Scripts 8-34

x Contents

Configure Job Submissions from Desktop to Server

Offload Polyspace Analysis to Remote Servers from
Desktop

9
Send Polyspace Analysis from Desktop to Remote Servers 9-2

Client-Server Workflow for Running Analysis 9-2
Prerequisites . 9-3
Offload Analysis in Polyspace User Interface 9-3

Send Polyspace Analysis from Desktop to Remote Servers Using
Scripts . 9-5

Client-Server Workflow for Running Analysis 9-5
Prerequisites . 9-6
Run Remote Analysis . 9-6
Manage Remote Analysis . 9-7
Sample Scripts for Remote Analysis . 9-9

Configure Analysis in IDEs

Run Polyspace Analysis in IDE Plugins
10

Run Polyspace Analysis on Eclipse Projects 10-2
Configure and Run Analysis . 10-3
Review Analysis Results . 10-5

Specify Polyspace Compiler Options Through Eclipse Project 10-7
Eclipse Refers Directly to Your Compilation Toolchain 10-7
Eclipse Uses Your Compilation Toolchain Through Build Command

. 10-8

Configure Polyspace as You Code
11

Configure Polyspace as You Code Extension in Visual Studio 11-2
General Settings . 11-2
Polyspace Properties for Project . 11-3

Configure Polyspace as You Code Extension in Visual Studio Code
. 11-8

Analysis Engine . 11-8

xi

Analysis Behavior On Save . 11-9
Analysis Setup . 11-9
Baseline . 11-14
Justification Catalog . 11-15
Other Settings . 11-16
Configure Polyspace as You Code for Remote Development 11-17

Configure Polyspace as You Code Plugin in Eclipse 11-19
Polyspace as You Code Node . 11-19
Analysis Node . 11-20
Baseline Node . 11-25

Generate Build Options for Polyspace as You Code Analysis in Visual
Studio . 11-27
Configure Polyspace as You Code to Extract Build Configuration . . 11-27
Specify Analysis Options Manually . 11-29
Import Analysis Options from Polyspace Desktop Project 11-30

Generate Build Options for Polyspace as You Code Analysis in Visual
Studio Code . 11-32
Configure Polyspace as You Code to Extract Build Configuration . . 11-32
Specify Analysis Options Manually . 11-35
Import Analysis Options from Polyspace Desktop Project 11-35

Generate Build Options for Polyspace as You Code Analysis in Eclipse
. 11-37
Configure Polyspace as You Code to Extract Build Configuration . . 11-37
Specify Analysis Options Manually . 11-39
Import Analysis Options from Polyspace Desktop Project 11-39

Generate Build Options for Polyspace as You Code Analysis at the
Command Line . 11-41

Use polyspace-configure to Generate Build Options File 11-41
Specify Analysis Options Manually . 11-42
Import Analysis Options from Polyspace Desktop Project 11-43

Baseline Polyspace as You Code Results in Visual Studio 11-44
What Baselined Results Look Like . 11-44
Baselining Steps . 11-45

Baseline Polyspace as You Code Results in Visual Studio Code . . 11-48
What Baselined Results Look Like . 11-48
Baselining Steps . 11-49

Baseline Polyspace as You Code Results in Eclipse 11-53
What Baselined Results Look Like . 11-53
Baselining Steps . 11-54

Baseline Polyspace as You Code Results on Command Line 11-56
What Baselined Results Look Like . 11-56
Baselining Steps . 11-57
Step 1: Identify Project to Use as Baseline 11-57
Step 2: Download Baseline . 11-58
Step 3: Use Baseline . 11-58

xii Contents

Configure Checkers for Polyspace as You Code in Eclipse 11-60
Select Checkers and Coding Rules . 11-60
Modify Checker Behavior . 11-62

Configure Checkers for Polyspace as You Code in Visual Studio . . 11-63
Select Checkers and Coding Rules . 11-63
Modify Checker Behavior . 11-65

Configure Checkers for Polyspace as You Code in Visual Studio Code
. 11-66
Configure Checkers in Checkers File . 11-66
Modify Checkers Behavior . 11-68

Configure Checkers for Polyspace as You Code at the Command Line
. 11-70
Configure Checkers and Coding Rules Directly at the Command Line

. 11-70
Configure Checkers in Checkers file . 11-71
Modify Checkers Behavior . 11-73

Analysis Scope of Polyspace as You Code . 11-75
Results Involve Current File Only . 11-75
Headers Included in Current File Not Analyzed 11-75

Checkers Deactivated in Polyspace as You Code Analysis 11-78
Checkers and Coding Rule Deactivated in Polyspace as You Code

. 11-78
Checkers with Reduced Scope in Polyspace as You Code 11-80

Troubleshoot Failed Analysis or Unexpected Results in Polyspace as
You Code . 11-81

Issue . 11-81
Possible Solutions . 11-81

Configuration Workflows Common to All Platforms

Configure Polyspace Analysis
12

Specify Polyspace Analysis Options . 12-2
Polyspace User Interface . 12-2
Windows or Linux Scripts . 12-2
MATLAB Scripts . 12-3
Eclipse and Eclipse-based IDEs . 12-3
Simulink . 12-3
MATLAB Coder App . 12-3

Options Files for Polyspace Analysis . 12-5
What are Options Files . 12-5

xiii

Specifying Options Files . 12-5
Specifying Multiple Options Files . 12-6

Configure Target and Compiler Options
13

Specify Target Environment and Compiler Behavior 13-2
Extract Options from Build Command . 13-2
Specify Options Explicitly . 13-3

C/C++ Language Standard Used in Polyspace Analysis 13-5
Supported Language Standards . 13-5
Default Language Standard . 13-5

C11 Language Elements Supported in Polyspace 13-8

C++11 Language Elements Supported in Polyspace 13-10

C++14 Language Elements Supported in Polyspace 13-13

C++17 Language Elements Supported in Polyspace 13-16

Provide Standard Library Headers for Polyspace Analysis 13-20

Create Polyspace Analysis Configuration from Build Command
(Makefile) . 13-22

Requirements for Project Creation from Build Systems 13-24
Compiler Requirements . 13-24
Build Command Requirements . 13-25

Supported Keil or IAR Language Extensions 13-27
Special Function Register Data Type . 13-27
Keywords Removed During Preprocessing 13-28

Remove or Replace Keywords Before Compilation 13-29
Remove Unrecognized Keywords . 13-29
Remove Unrecognized Function Attributes 13-31

Gather Compilation Options Efficiently . 13-32

Configure Inputs and Stubbing Options
14

Specify External Constraints for Polyspace Analysis 14-2
Create Constraint Template . 14-2
Create Constraint Template from Code Prover Analysis Results . . . 14-3
Update Existing Template . 14-4
Specify Constraints in Code . 14-5

xiv Contents

External Constraints for Polyspace Analysis 14-6
Effect of External Constraints . 14-6
Constraint Specification . 14-7
Constraint Specification Limitations . 14-11

Constrain Global Variable Range for Polyspace Analysis 14-12
User Interface (Desktop Products Only) . 14-12
Command Line . 14-13

Constrain Function Inputs for Polyspace Analysis 14-14
User Interface (Desktop Products Only) . 14-14
Command Line . 14-15

XML File Format for Polyspace Analysis Constraints 14-17
Syntax Description — XML Elements . 14-17
Valid Modes and Default Values . 14-21

Configure Multitasking Analysis
15

Analyze Multitasking Programs in Polyspace 15-2
Configure Analysis . 15-3
Review Analysis Results . 15-4
Differences Between Bug Finder and Code Prover 15-5

Auto-Detection of Thread Creation and Critical Section in Polyspace
. 15-7

Multitasking Routines that Polyspace Can Detect 15-7
Example of Automatic Thread Detection . 15-8
Naming Convention for Automatically Detected Threads 15-11
Limitations of Automatic Thread Detection 15-12

Configuring Polyspace Multitasking Analysis Manually 15-17
Specify Options for Multitasking Analysis 15-17
Adapt Code for Code Prover Multitasking Analysis 15-17

Protections for Shared Variables in Multitasking Code 15-21
Detect Unprotected Access . 15-21
Protect Using Critical Sections . 15-22
Protect Using Temporally Exclusive Tasks 15-23
Protect Using Priorities . 15-23
Protect By Disabling Interrupts . 15-24

Define Atomic Operations in Multitasking Code 15-25
Nonatomic Operations . 15-25
What Polyspace Considers as Nonatomic 15-25
Define Specific Operations as Atomic . 15-26

Define Task Priorities for Data Race Detection in Polyspace 15-28
Emulating Task Priorities . 15-28
Examples of Task Priorities . 15-28
Further Explorations . 15-29

xv

Effect of Task Priorities in Code Prover . 15-29

Define Critical Sections with Functions That Take Arguments . . . 15-31
Polyspace Assumption on Functions Defining Critical Sections . . . 15-31
Adapt Polyspace Analysis to Lock and Unlock Functions with

Arguments . 15-31

Configure Coding Rules Checking and Code Metrics
Computation

16
Check for and Review Coding Standard Violations 16-2

Configure Coding Rules Checking . 16-2
Review Coding Rule Violations . 16-6
Generate Reports . 16-7

Avoid Violations of MISRA C:2012 Rules 8.x 16-8

Reduce Software Complexity by Using Polyspace Checkers 16-11
Configure Thresholds for Software Complexity Checkers 16-11
Identify and Reduce Software Complexity 16-12

Software Quality Objective Subsets (C:2004) 16-15
Rules in SQO-Subset1 . 16-15
Rules in SQO-Subset2 . 16-16

Software Quality Objective Subsets (AC AGC) 16-19
Rules in SQO-Subset1 . 16-19
Rules in SQO-Subset2 . 16-20

Software Quality Objective Subsets (C:2012) 16-23
Guidelines in SQO-Subset1 . 16-23
Guidelines in SQO-Subset2 . 16-24

Software Quality Objective Subsets (C++) 16-27
SQO Subset 1 – Direct Impact on Selectivity 16-27
SQO Subset 2 – Indirect Impact on Selectivity 16-28

Coding Rule Subsets Checked Early in Analysis 16-33
MISRA C:2004 and MISRA AC AGC Rules 16-33
MISRA C:2012 Rules . 16-40

Create Custom Coding Rules . 16-48
Specify Naming Convention . 16-48
Check for Violations of Defined Custom Coding Rule 16-50

Compute Code Complexity Metrics Using Polyspace 16-51
Impose Limits on Metrics (Desktop Products Only) 16-51
Impose Limits on Metrics (Server and Access products) 16-53

xvi Contents

HIS Code Complexity Metrics . 16-54
Project . 16-54
File . 16-54
Function . 16-54

Migrate Code Prover Workflows for Checking Coding Standards and
Code Metrics to Bug Finder . 16-55

Changes in Workflow . 16-55

Polyspace Coverage of Coding Standards
17

Polyspace Support for Coding Standards . 17-2
Summary of Polyspace Support . 17-2
AUTOSAR C++14 . 17-2
MISRA C++:2008 . 17-4
MISRA C:2012 . 17-4
CERT C . 17-7
Other . 17-8

MISRA C:2004 and MISRA AC AGC Coding Rules 17-9
Supported MISRA C:2004 and MISRA AC AGC Rules 17-9
Troubleshooting . 17-9
List of Supported Coding Rules . 17-9
Unsupported MISRA C:2004 and MISRA AC AGC Rules 17-41

Required or Mandatory MISRA C:2012 Rules Supported by Polyspace
Bug Finder . 17-43

Mandatory Rules . 17-43
Required Rules . 17-44

Decidable MISRA C:2012 Rules Supported by Polyspace Bug Finder
. 17-54

Undecidable MISRA C:2012 Rules and Directives Supported by
Polyspace Bug Finder . 17-64

Undecidable Rules . 17-64
Undecidable Directives . 17-67

Polyspace Support for MISRA C: 2012 Amendments 17-69
MISRA C:2012 Technical Corrigendum 1 17-69
MISRA C: 2012 Amendment 1 (AMD1) . 17-69
MISRA C:2012 Amendment 2 (AMD2) . 17-71

Essential Types in MISRA C:2012 Rules 10.x 17-72
Categories of Essential Types . 17-72
How MISRA C:2012 Uses Essential Types 17-72

Unsupported MISRA C:2012 Guidelines . 17-74

Required and Statically Enforceable CERT C Rules Supported by
Polyspace Bug Finder . 17-75

xvii

Required MISRA C++:2008 Coding Rules Supported by Polyspace
Bug Finder . 17-83

Supported Rules . 17-83
Unsupported Rules . 17-99

JSF AV C++ Coding Rules . 17-100
Supported JSF C++ Coding Rules . 17-100
Unsupported JSF++ Rules . 17-118

Required AUTOSAR C++14 Coding Rules Supported by Polyspace
Bug Finder . 17-125

Supported Rules . 17-125
Unsupported Rules . 17-153

Statically Enforceable AUTOSAR C++14 Rules Supported by
Polyspace Bug Finder . 17-156

Automated Rules . 17-156
Partially Automated Rules . 17-182

Configure Bug Finder Checkers
18

Choose Specific Bug Finder Defect Checkers 18-2
User Interface (Desktop Products Only) . 18-2
Command Line . 18-2

Modify Default Behavior of Bug Finder Checkers 18-3
Defect Checkers and Coding Rules Modified by Analysis Options . . 18-3

Modify Bug Finder Checkers Through Code Behavior Specifications
. 18-12

XML Format . 18-12
Datalog Format . 18-16

Flag Deprecated or Unsafe Functions, Keywords, or Macros Using
Bug Finder Checkers . 18-21

Identify Need for Extending Checker . 18-21
Extend Checker . 18-22
Checkers That Can Be Extended . 18-22

Extend Bug Finder Checkers for Standard Library Functions to
Custom Libraries . 18-24

Identify Need for Extending Checker . 18-24
Extend Checker . 18-24
Checkers That Can Be Extended . 18-25
Limitations . 18-25

Extend Bug Finder Checkers to Find Defects from Specific System
Input Values . 18-26

Identify Need for Extending Checker . 18-26
Extend Checker . 18-26
Checkers That Can Be Extended . 18-27

xviii Contents

Extend Concurrency Defect Checkers to Unsupported Multithreading
Environments . 18-30

Identify Need for Extending Checker . 18-30
Extend Checker . 18-31
Checkers That Can Be Extended . 18-31
Limitations . 18-32

Extend Checkers for Initialization to Check Function Arguments
Passed by Pointers . 18-33

Identify Need for Existing Checker . 18-33
Extend Checker . 18-33
Checkers That Can Be Extended . 18-34

Extend Data Race Checkers to Atomic Operations 18-35
Identify Need for Extending Checker . 18-35
Extend Checker . 18-35
Checkers That Can Be Extended . 18-36

Prepare Checkers Configuration for Polyspace Bug Finder Analysis
. 18-38

Identify Checkers to Enable . 18-38
Create Checkers Configuration Files . 18-40

Bug Finder Defect Groups . 18-43
C++ Exceptions . 18-43
Concurrency . 18-43
Cryptography . 18-44
Data flow . 18-44
Dynamic Memory . 18-45
Good Practice . 18-45
Numerical . 18-45
Object Oriented . 18-45
Performance . 18-46
Programming . 18-46
Resource Management . 18-47
Static Memory . 18-47
Security . 18-47
Tainted data . 18-47

Classification of Defects by Impact . 18-49
High Impact Defects . 18-49
Medium Impact Defects . 18-51
Low Impact Defects . 18-56

Sources of Tainting in a Polyspace Analysis 18-61
Sources of Tainted Data . 18-61
Impact of Tainted Data Defects . 18-61

Polyspace Bug Finder Defects Checkers Enabled by Default 18-65

Polyspace Bug Finder Defects Checkers Enabled by Default for
Generated Code . 18-70

Bug Finder Results Found in Fast Analysis Mode 18-72
Polyspace Bug Finder Defects . 18-72

xix

MISRA C:2004 and MISRA AC AGC Rules 18-75
MISRA C:2012 Rules . 18-81
MISRA C++ 2008 Rules . 18-87

Extend CWE Coding Standard Coverage Using Polyspace Defect
Checkers . 18-97

Find CWE IDs from Polyspace Results . 18-97
Mapping Between CWE Identifiers and Polyspace Results 18-97

Configure File Sets for Bug Finder Analysis
19

Classify Project Files Into File Sets for Precise Control of Bug Finder
Analysis . 19-2
Classification File Structure Based on Analysis Requirements 19-2
Classification File Usage . 19-3
Parts of Classification File . 19-4

Configure Comment Import from Previous Results
20

Import Review Information from Previous Polyspace Analysis 20-2
Automatic Import from Last Analysis . 20-2
Import from Another Analysis Result . 20-2
Import Algorithm . 20-3
View Imported Review Information That Does Not Apply 20-4

Import Existing MISRA C: 2004 Justifications to MISRA C: 2012
Results . 20-5

Mapping Multiple MISRA C: 2004 Annotations to the Same MISRA C:
2012 Result . 20-6

Review Results in Polyspace User Interface

Interpret Polyspace Bug Finder Results
21

Interpret Bug Finder Results in Polyspace Desktop User Interface
. 21-2

Interpret Result Details Message . 21-3
Find Root Cause of Result . 21-3

Investigate the Cause of Empty Results List 21-7

xx Contents

Dashboard in Polyspace Desktop User Interface 21-9
Code Covered by Analysis . 21-9
Defect Distribution by Impact . 21-10
Defect Distribution by Category or File . 21-10
Coding Rule Violations by Rule or File . 21-11
Other Dashboard Features . 21-12

Concurrency Modeling in Polyspace Desktop User Interface 21-13

Results List in Polyspace Desktop User Interface 21-15

Source Code in Polyspace Desktop User Interface 21-17
Examine Source Code . 21-17
Expand Macros . 21-18
Manage Multiple Files in Source Pane . 21-20
View Code Block . 21-21

Result Details in Polyspace Desktop User Interface 21-22

Call Hierarchy in Polyspace Desktop User Interface 21-24
Actions Supported on Call Hierarchy Pane 21-25
Limitations of Call Hierarchy Display in Bug Finder 21-25

Understanding Changes in Polyspace Results After Product Upgrade
. 21-26

Changes in Polyspace Code Prover Results 21-26
Changes in Polyspace Bug Finder Results 21-28

Fix or Comment Polyspace Results
22

Address Results in Polyspace User Interface Through Bug Fixes or
Justifications . 22-2

Add Review Information to Results File . 22-2
Comment or Annotate in Code . 22-3

Manage Results
23

Filter and Group Results in Polyspace Desktop User Interface 23-2
Filter Results . 23-3
Group Results . 23-7

xxi

Generate Reports from Polyspace Results
24

Generate Reports from Polyspace Results . 24-2
Generate Reports from User Interface . 24-2
Generate Reports from Command Line . 24-3

Export Polyspace Analysis Results . 24-5
Export Results to Text File . 24-5
Export Results to MATLAB Table . 24-5
Export Results to JSON Format . 24-6
View Exported Results . 24-6

Export Polyspace Analysis Results to Excel by Using MATLAB Scripts
. 24-9

Report Result Summary and Details in One Worksheet 24-9
Control Formatting of Excel Report . 24-10

Visualize Bug Finder Analysis Results in MATLAB 24-11
Export Results to MATLAB Table . 24-11
Generate Graphs from Results and Include in Report 24-11

Customize Existing Bug Finder Report Template 24-15
Prerequisites . 24-15
View Components of Template . 24-15
Change Components of Template . 24-16

Generate Report Containing MISRA C:2012 Violations, Code Metrics,
and Runtime Check Results . 24-20

Prerequisite . 24-20
Obtain Code Metrics and Coding Rules Results by Using Bug Finder

. 24-20
Obtain Run Time Check and Stack Usage Results by Using Code

Prover . 24-21
Generate a Combined Report . 24-22

Review Results on Web Browser

Interpret Polyspace Bug Finder Results
25

Interpret Bug Finder Results in Polyspace Access Web Interface
. 25-2

Interpret Result Details Message . 25-3
Find Root Cause of Result . 25-3

Investigate the Cause of Empty Results List 25-7

Dashboard in Polyspace Access Web Interface 25-9

xxii Contents

Code Metrics Dashboard in Polyspace Access Web Interface 25-11

Quality Objectives Dashboard in Polyspace Access 25-14
Monitor Code Quality Against Software Quality Objectives 25-14
Customize Software Quality Objectives . 25-16

Results List in Polyspace Access Web Interface 25-19

Source Code in Polyspace Access Web Interface 25-21
Tooltips . 25-21
Examine Source Code . 25-22
Expand Macros . 25-23
View Code Block . 25-24
Navigate from Code to Model . 25-24

Result Details in Polyspace Access Web Interface 25-26

Call Hierarchy in Polyspace Access Web Interface 25-28

Configuration Settings in Polyspace Access Web Interface 25-30

Review History in Polyspace Access Web Interface 25-33

Create Bug Tracking Tool Tickets from the Polyspace Access Web
Interface . 25-35

Create a Ticket . 25-35
Manage Existing Tickets . 25-36

Fix or Comment Polyspace Results on Web Browser
26

Address Results in Polyspace Access Through Bug Fixes or
Justifications . 26-2

Add Review Information in Result Details pane 26-2
Comment or Annotate in Code . 26-4

Import Review Information from Existing Polyspace Access Projects
. 26-5

Import Review Information from Source Project to Target Project in
Polyspace Access . 26-5

View and Select Imported Reviews . 26-6
Confirm Imported Review Information . 26-6
Import Review Information at the Command-Line 26-7

xxiii

Manage Results
27

Manage Permissions and View Project Trends in Polyspace Access
Web Interface . 27-2

Create a Project Folder . 27-2
Manage Project Permissions . 27-3
View Project Trends . 27-6

Filter and Sort Results in Polyspace Access Web Interface 27-8
Filter Results . 27-9

Create Custom Filter Groups in Polyspace Access Web Interface
. 27-11

Manage Software Quality Objectives in Polyspace Access 27-13
Manage SQOs in the User Interface . 27-13
Manage SQOs at the Command Line . 27-14

Add Labels to Project Runs in Polyspace Access 27-16
Manage Labels in the User Interface . 27-16
Manage Labels at the Command Line . 27-17

Compare Results in Polyspace Access Project to Previous Runs and
View Trends . 27-19

Comparison Mode in the Polyspace Access Interface 27-19
Comparison Mode at the Command Line . 27-21

Export Results from Polyspace Access Web Server
28

Open or Export Results from Polyspace Access 28-2
Open Polyspace Access Results in a Desktop Interface 28-2
Export Polyspace Access Results to a TSV File 28-2

Generate Report and Variables List from Polyspace Access 28-4

Review Results in IDEs

Review Results in Polyspace as You Code
29

Run Polyspace as You Code in Visual Studio and Review Results
. 29-2
Confirm Installation of Extension . 29-2

xxiv Contents

Run Analysis on Save . 29-2
Run Analysis on Demand . 29-2
Review Results . 29-3
Justify Results Using Code Annotations . 29-4
View Help . 29-4
Configure Checkers and Other Settings . 29-5

Run Polyspace as You Code in Visual Studio Code and Review Results
. 29-6

Check Installation and Start Extension . 29-6
View Extension Information in Status Bar . 29-6
Open Additional Polyspace Views . 29-7
Run Analysis . 29-9
Review Results . 29-10
View Context-Sensitive Help for Result . 29-13
Configure Checkers and Other Settings . 29-13

Run Polyspace as You Code in Eclipse and Review Results 29-15
Check Installation and Start Plugin . 29-15
Open Polyspace as You Code Perspective 29-15
Run Analysis . 29-18
Review Results . 29-18
Justify Results Using Code Annotations . 29-19
View Context-Sensitive Help for Result . 29-19
Configure Checkers and Other Settings . 29-19

Run Polyspace as You Code from Command Line and Export Results
. 29-21

Add Install Folder to Path . 29-21
Run Analysis and See Results on Console 29-21
Store Results in Specific Folder . 29-21
Export Results to JSON Format (SARIF Output) 29-22
Specify Analysis Options by Using Options Files 29-22
Create Options File by Analyzing Build . 29-22

Integrate Polyspace as You Code in IDEs and Editors Without Plugins
. 29-24

Overview of Approach . 29-24
Integration Steps . 29-24
Further Exploration . 29-26

Use a Justification Catalog to Autocomplete Annotations in Polyspace
as You Code plugins . 29-27

Create and Edit Justification Catalog . 29-27

xxv

Review Workflows Common to All Platforms

Hide Known or Acceptable Results Using Code
Annotations

30
Annotate Code and Hide Known or Acceptable Results 30-2

Code Annotation Syntax . 30-2
Syntax Examples . 30-6
Code Annotation Warnings . 30-9
Ignoring Code Annotations . 30-9

Short Names of Bug Finder Defect Groups and Defect Checkers
. 30-11

Bug Finder Defect Groups Short Names . 30-11
Bug Finder Defect Checkers Short Names 30-11

Short Names of Code Complexity Metrics . 30-24
Project Metrics . 30-24
File Metrics . 30-24
Function Metrics . 30-24

Annotate Code for Known or Acceptable Results (Not Recommended)
. 30-26

Add Annotations from the Polyspace Interface 30-26
Add Annotations Manually . 30-27

Define Custom Annotation Format . 30-30
Define Annotation Syntax Format . 30-32
Map Your Annotation to the Polyspace Annotation Syntax 30-35
Define Multiple Custom Annotation Syntaxes 30-36

Annotation Description Full XML Template 30-38
Example . 30-41

Advanced Review Workflows
31

Evaluate Polyspace Bug Finder Results Against Bug Finder Quality
Objectives . 31-2

Comparing Analysis Results Against Quality Objectives 31-5

Justify Coding Rule Violations Using Code Prover Checks 31-7
Rules About Data Type Conversions . 31-7
Rules About Pointer Arithmetic . 31-9

Polyspace Results in Lines Containing Macros 31-12
Macros in Source Lines Can Be Expanded in Place 31-12

xxvi Contents

Results in Function-Like Macros Shown Only Once 31-12

Migrate Results from Polyspace Metrics to Polyspace Access . . . 31-14
Requirements for Migration . 31-15
Migration of Results . 31-16
Differences in SQO Between Polyspace Metrics and Polyspace Access

. 31-17

Troubleshooting

Troubleshooting in Polyspace Bug Finder
32

Fix License Error –4,0 When Running Polyspace 32-3
Issue . 32-3
Possible Cause: Another Polyspace Instance Running 32-3
Possible Cause: Prior Polyspace Run in Simulink or MATLAB Coder

. 32-3

View Error Information When Analysis Stops 32-4
View Error Information in User Interface . 32-4
View Error Information in Log File . 32-4

Contact Technical Support About Issues with Running Polyspace
. 32-6

Provide System Information . 32-6
Provide Information About the Issue . 32-7
Provide Polyspace Analysis Statistics File (Optional) 32-8

Resolve Error: No Compilation Unit Detected in Your Build 32-9
Issue . 32-9
Possible Solutions . 32-9

Create Polyspace Projects from Build Systems That Use Unsupported
Compilers . 32-11

Issue . 32-11
Cause . 32-11
Solution . 32-11

Fix Slow Build Process When Polyspace Traces Build 32-17
Issue . 32-17
Cause . 32-17
Solution . 32-17

Check if Polyspace Supports Build Scripts 32-18
Issue . 32-18
Possible Cause . 32-18
Solution . 32-18

xxvii

Troubleshoot Project Creation from MinGW Build 32-19
Issue . 32-19
Cause . 32-19
Solution . 32-19

Troubleshoot Project Creation from Visual Studio Build 32-20

Fix Error: Polyspace Cannot Find Server . 32-21
Message . 32-21
Possible Cause . 32-21
Solution . 32-21

Fix Error: Job Manager Cannot Write to Database 32-22
Message . 32-22
Possible Cause . 32-22
Workaround . 32-22

Fix Polyspace Compilation Errors About Undefined Identifiers . . 32-23
Issue . 32-23
Possible Cause: Missing Files . 32-23
Possible Cause: Unrecognized Keyword . 32-23
Possible Cause: Declaration Embedded in #ifdef Statements 32-24
Possible Cause: Project Created from Non-Debug Build 32-24

Fix Polyspace Compilation Errors About Unknown Function
Prototype . 32-26

Issue . 32-26
Cause . 32-26
Solution . 32-26

Fix Polyspace Compilation Errors Related to #error Directive . . . 32-27
Issue . 32-27
Cause . 32-27
Solution . 32-27

Fix Polyspace Compilation Errors About Large Objects 32-28
Issue . 32-28
Cause . 32-28
Solution . 32-28

Fix Polyspace Compilation Errors Related to Generic Compiler . . 32-30
Issue . 32-30
Cause . 32-30
Solution . 32-30

Fix Polyspace Compilation Errors Related to GNU Compiler 32-31
Issue . 32-31
Cause . 32-31
Solution . 32-31

Fix Polyspace Compilation Errors Related to Visual Compilers . . 32-32
Import Folder . 32-32
pragma Pack . 32-32
C++/CLI . 32-33

xxviii Contents

Fix Polyspace Compilation Errors Related to Keil or IAR Compiler
. 32-34

Missing Identifiers . 32-34

Fix Polyspace Compilation Errors Related to Diab Compiler 32-35
Issue . 32-35
Cause . 32-35
Solution . 32-35

Fix Polyspace Compilation Errors Related to Green Hills Compiler
. 32-37

Issue . 32-37
Cause . 32-37
Solution . 32-37

Fix Polyspace Compilation Errors Related to TASKING Compiler
. 32-39

Issue . 32-39
Cause . 32-39
Solution . 32-39

Fix Polyspace Compilation Errors Related to Texas Instruments
Compilers . 32-41

Issue . 32-41
Possible Solutions . 32-41

Fix Errors from Use of Polyspace Header Files 32-42
Issue . 32-42
Possible Solutions . 32-42

Fix Polyspace Compilation Errors About Namespace std Without
Prefix . 32-44

Issue . 32-44
Cause . 32-44
Solution . 32-44

Fix Polyspace Compilation Warnings Related to Assertion or Memory
Allocation Functions . 32-45

Issue . 32-45
Cause . 32-45
Solution . 32-45

Fix Polyspace Compilation Errors About In-Class Initialization (C++)
. 32-46

Update Eclipse Java Version for Polyspace Plug-in 32-47
Issue . 32-47
Cause . 32-47
Solution . 32-47

Fix MATLAB Crashes Referring to Polyspace in matlabroot 32-48
Issue . 32-48
Possible Solutions . 32-48

xxix

Diagnose Why Coding Standard Violations Do Not Appear as
Expected . 32-49

Issue . 32-49
Possible Solutions . 32-49

Check Why a Bug Finder Defect Does Not Appear as Expected . . 32-52
Issue . 32-52
Possible Solutions . 32-52

Fix Insufficient Memory Errors During Polyspace Report Generation
. 32-55

Issue . 32-55
Possible Solutions . 32-55

Fix Errors or Slow Polyspace Runs from Disk Defragmentation and
Anti-virus Software . 32-58

Issue . 32-58
Possible Cause . 32-58
Solution . 32-58

Fix SQLite I/O Errors on Running Polyspace 32-60
Issue . 32-60
Possible Solutions . 32-60

Fix Polyspace Errors Related to Temporary Files 32-61
No Access Rights . 32-61
No Space Left on Device . 32-61
Cannot Open Temporary File . 32-61

Fix Errors Applying Custom Annotation Format for Polyspace Results
. 32-63

Issue . 32-63
Possible Solutions . 32-63

Fix Issues When when Integrating Polyspace with MATLAB and
Simulink . 32-65

Issue . 32-65
Possible Solutions . 32-65

Check Why Polyspace Functions are Unavailable in MATLAB 32-67
Issue . 32-67
Possible Solution . 32-67

Troubleshoot Java Incompatibility in Polyspace Plugin for Eclipse
. 32-68

Issue . 32-68
Possible Solutions . 32-68

xxx Contents

Troubleshooting Polyspace Access
33

Polyspace Access ETL and Web Server services do not start 33-2
Issue . 33-2
Possible Cause: Hyper-V Network Configuration Cannot Resolve Local

Host Names . 33-2

Contact Technical Support About Polyspace Access Issues 33-5

xxxi

Introduction

1

About This User's Guide
This User's Guide covers all Polyspace Bug Finder products:

• Polyspace Bug Finder
• Polyspace Bug Finder Server™
• Polyspace Access™

Depending on how you set up a Bug Finder run, you might be running an analysis from one of these
locations:

• Desktop: If you are running an analysis and reviewing the results on your desktop, you use
Polyspace Bug Finder. For desktop-specific workflows, see “Configure Analysis on Desktop” or
“Review Results in Polyspace User Interface”.

• Server: If you are running an analysis on a server, or reviewing the results from a server run on a
web browser, you use:

• Polyspace Bug Finder Server to run the analysis.
• Polyspace Access to host the analysis results (for review on a web browser).

For server-specific workflows, see “Configure Analysis on Servers” or “Review Results on Web
Browser”.

• IDE: If you are running an analysis on the current file in your Integration Development
Environment (IDE), you use Polyspace as You Code. Polyspace as You Code is a feature available
with Polyspace Access. For IDE-specific workflows, see “Configure Analysis in IDEs” or “Review
Results in IDEs”.

The Bug Finder analysis engine underlies all Bug Finder products. Chapters that do not mention a
particular platform typically describe the underlying Bug Finder analysis engine and apply to all
three platforms.

1 Introduction

1-2

Configure Analysis on Desktop

3

Set Up Polyspace Projects on Desktop

• “Add Source Files for Analysis in Polyspace Desktop User Interface” on page 2-2
• “Contents of Polyspace Project and Results Folders” on page 2-7
• “Create Polyspace Projects from Visual Studio Build” on page 2-9
• “Create Project in Polyspace Desktop User Interface Using Configuration Template” on page 2-13
• “Update Project in Polyspace Desktop User Interface” on page 2-17
• “Organize Layout of Polyspace Desktop User Interface” on page 2-20
• “Customize Polyspace Desktop User Interface” on page 2-22
• “Upload Results to Polyspace Access” on page 2-25

2

Add Source Files for Analysis in Polyspace Desktop User
Interface

This topic shows how to create a project in the user interface of the Polyspace desktop products.

• If using the Polyspace Server products, see “Set Up Bug Finder Analysis on Servers During
Continuous Integration”.

• If using Polyspace as You Code, see “Set Up Polyspace Analysis in IDEs”.

To begin a Polyspace analysis, you must specify the path to your source files and headers.

You can specify your source paths explicitly or extract them from a build command (makefile) after
executing the command. If you use a build command for building your source code or build your
source code in an IDE (using an underlying build command), try extracting from the build command
first. If Polyspace cannot trace your build command, manually add the paths to your source and
include folders. You specify the target and compiler options later. See “Target and Compiler”.

Provide the source paths in a Polyspace project. The source files are displayed on the Project
Browser pane.

A corresponding .psprj file is created in the location where you saved the project. When you create
a project, choose the default location for saving it or enter a new location. To change the default
location, select Tools > Preferences and use the options on the Project and Results Folder tab.

Polyspace Project and Source File Paths
A Polyspace project points to source files using their absolute paths. However, each time you reopen a
project in the Polyspace user interface, the absolute paths to the sources are recomputed relative to
the current location of the project.

For instance, suppose that a project is stored in:

2 Set Up Polyspace Projects on Desktop

2-2

//networkLocation/polyspaceProjects/

Suppose that the project points to the source file path:

//networkLocation/src/file.c

If you move the project to

//usr/local/polyspaceProjects/

and open the project in the user interface, it now points to the source file path:

//usr/local/src/file.c

(Note that if you open the project file in a text editor, it continues to show the old path. You have to
run an analysis using the newly moved project for the new paths to be hardcoded in the project and
show up even in a text editor.)

Because source file paths are recomputed relative to a project path, you can commit a Polyspace
project to a version control system along with your source files. When you check out the project from
your version control system and open a local copy of the project, all source file paths are recomputed
based on the new location of the project. The project now points to a local copy of the source files.

Add Sources from Build Command
Select File > New Project. Select Create from build command.

After providing a project name and location, on the next window, enter this information:

• The build command, exactly as you run it on your code.
• The folder from which you run your build command.

 Add Source Files for Analysis in Polyspace Desktop User Interface

2-3

When you click Run, Polyspace runs the build command and extracts the information for creating a
Polyspace project, specifically, source paths and compiler information.

If you build your source code within an IDE such as Visual Studio®, in the field for specifying the
build command, enter the path to your executable, for instance, C:\Program Files
(x86)\Microsoft Visual Studio 10.0\Common7\IDE\VCExpress.exe. When you click Run,
Polyspace opens your IDE. In your IDE, perform a complete build of your code. When you close your
IDE, Polyspace extracts your source paths and compiler information. See also “Create Polyspace
Projects from Visual Studio Build” on page 2-9.

When you create a project from your build command, the Project Browser pane displays your source
folders but not the include folders. In case you want to verify that your include folders were
extracted, open the project file (with extension .psprj) in a text editor.

You can use additional options to modify the default project creation from build command. For
instance, to create a Polyspace project despite build errors, in the Add advanced configure options
field, enter the option -allow-build-error. To look up allowed options, see polyspace-
configure.

2 Set Up Polyspace Projects on Desktop

2-4

Add Sources Manually
Select File > New Project.

After providing a project name and location, on the next window, enter or navigate to the root folder
containing your source files. After selecting the Add recursively box, click Add Source Folders. All
files in the folder and subfolders are added to your project. To exclude specific files or folders from
analysis, right-click the files or folders and select Exclude Files.

On the next window, add include folders. The analysis looks for include files relative to the include
folder paths that you specify. For instance, if your code contains the preprocessor directive
#include<../mylib.h> and you include the folder:

C:\My_Project\MySourceFiles\Includes

the folder C:\My_Project\MySourceFiles must contain a file mylib.h.

For Standard Library headers such as stdio.h, if you know the path to the headers from your
compiler, specify them explicitly. Otherwise, the analysis uses Polyspace implementation of the

 Add Source Files for Analysis in Polyspace Desktop User Interface

2-5

Standard Library headers, which in some special cases, might not match your compiler
implementation. See also “Provide Standard Library Headers for Polyspace Analysis” on page 13-20.

Your project file with source and include folders are displayed in the Project Browser pane. Later, if
you add files to one of these folders, you can update your project. Right-click the folder that you want
to update, or the entire Project Source Files folder, and select Refresh Source Folder.

You can also right-click to exclude files or add more folders to the project. The files that you add the
first time are copied to the first module in your project. If you add new files later, you must explicitly
right-click them and add them to a module.

Add Source Files Based on AUTOSAR Design Specifications
If your code implements AUTOSAR software components, you can provide the top level folder
containing your AUTOSAR design specifications and folders containing the source code
implementation of those specifications.

1 Select File > New. In the Project-Properties window, select Create from AUTOSAR
specification.

2 Specify the top level folder containing your ARXML files and all the folders containing source
files.

For details, see “Run Polyspace on AUTOSAR Code” (Polyspace Code Prover).

See Also

More About
• “Run Analysis in Polyspace Desktop User Interface” on page 3-2
• “Create Polyspace Projects from Visual Studio Build” on page 2-9
• “Provide Standard Library Headers for Polyspace Analysis” on page 13-20

2 Set Up Polyspace Projects on Desktop

2-6

Contents of Polyspace Project and Results Folders
This topic applies only to the Polyspace desktop products..

A Polyspace analysis generates files that contain information about configuration options and analysis
results.

If you run the analysis from the Polyspace user interface, you can group results into modules in a
single project. The project, module and results can correspond to physical folder locations. If you run
the analysis from the command line, you can only specify the path to a results folder (using the option
-results-dir). You have to group related results using appropriate conventions for creating
folders.

File Organization
The organization of Polyspace files in the physical folder location follows the hierarchy displayed in
the Polyspace user interface: project > module > results. The project folder contains a subfolder for
each module. In each module folder, there is one or more result subfolder, named Result_#.

The number of result folders depends on whether you overwrite or retain previous results for each
new run. To use a different folder naming convention or different storage location for results, select
Tools > Preferences and use the options on the Project and Results Folder tab.

The project folder has the project file with extension .psprj. If you open a project from a previous
release in the user interface, the project is upgraded for the new release. A backup of the old project
file is saved with the extension .bak.psprj.

Files in the Results Folder
Some of the files and folders in the results folder are described below. The contents of the results
folder are the same irrespective of whether you run the analysis from the user interface or command
line.

• Polyspace_release_project_name_date-time.log — A log file associated with each
analysis.

• ps_results.psbf — An encrypted file containing your Polyspace results. Open this file in the
Polyspace environment to view your results.

• ps_sources.db — A non-encrypted database file listing source files and macros.
• drs-template.xml — A template generated when you use constraint specification.
• ps_comments.db — An encrypted database file containing your comments and justifications.
• comments_bak — A subfolder used to import comments between results.
• .status and .settings — Two folders that store files required to relaunch the analysis.
• Polyspace-Doc — When you generate a report, by default, your report is saved in this folder

with the name ProjectName_ReportType. For example, a developer report in PDF format would
be, myProject_Developer.pdf.

Note that by default, the results folder is cleaned up and repopulated at each run. To avoid accidental
removal of files during the cleanup, instead of using an existing folder that contains other files,
specify a dedicated folder for the Polyspace results.

 Contents of Polyspace Project and Results Folders

2-7

See Also
-results-dir

2 Set Up Polyspace Projects on Desktop

2-8

Create Polyspace Projects from Visual Studio Build
In this section...
“Create Polyspace Project from Build in Visual Studio Developer Command Prompt” on page 2-9
“Create Polyspace Project from Build in Visual Studio IDE” on page 2-10

This topic shows how to create a Polyspace project for use with the Polyspace desktop products. If
using the Polyspace as You Code plugin for single-file analysis in Visual Studio, see “Run Polyspace as
You Code in Visual Studio and Review Results”.

If you develop in the Visual Studio IDE, you can trace the commands running underneath your Visual
Studio build and create a Polyspace project. This method of creating a project automatically adds
source files and compilation options from the Visual Studio project to the Polyspace project.

Note that to accurately reflect your Visual Studio project, you must run a complete build of your
project and not an incremental build. An incremental build only rebuilds sources that changed since
the previous build and might lead to incomplete Polyspace projects.

You can create a Polyspace project by tracing a Visual Studio build at the command line or within an
IDE. Although the latter approach might be simpler, building within an IDE introduces additional
complications when tracing the build. Therefore, calling the build command directly at the command
line is the recommended approach.

Create Polyspace Project from Build in Visual Studio Developer
Command Prompt
To create a Polyspace project, you simply have to prepend polyspace-configure to your regular
build command. For instance, suppose you have a Visual Studio project TestProject.vcxproj. To
create a Polyspace project:

1 Open the Visual Studio developer command prompt. For instance, in Windows®, start typing
Developer Command Prompt for VS 2017.

This command prompt is similar to a regular command prompt but with all Visual Studio
environment variables appropriately set up.

2 Perform a full build of your Visual Studio project: at the command prompt:

msbuild TestProject.vcxproj /t:Rebuild

This step is optional. Ensuring that the build completes successfully by itself allows you to create
a Polyspace project from an error-free build.

3 Run the complete build command from the previous step but prepended with the polyspace-
configure command:

polyspace-configure msbuild TestProject.vcxproj /t:Rebuild

For the above command to work, add the path polyspaceroot\polyspace\bin to the Path
environment variable in Windows. Here, polyspaceroot is the Polyspace installation folder, for
instance, C:\Program Files\Polyspace\R2023a.

Instead of a project, you can also run polyspace-configure on the full build of a solution.
However, a solution consists of multiple projects, each of which might generate a separate

 Create Polyspace Projects from Visual Studio Build

2-9

executable. In this situation, polyspace-configure generates a project that mixes source files
contributing to separate executables. To avoid the issue:

• If all projects in the solution generate a single process, for instance, when the solution generates
an executable for a GUI app and a DLL containing the engine for the app, you can run
polyspace-configure on the full build of the solution. In all other cases, run polyspace-
configure on specific projects in the solution.

For instance, if a solution ExampleProject contains two projects AProject and
AnotherProject, you can run polyspace-configure from the folder containing the solution
as follows:

polyspace-configure -prog AProject ^
 msbuild ExampleProject/AProject.vcxproj /t:Rebuild
polyspace-configure -prog AnotherProject ^
 msbuild ExampleProject/AnotherProject.vcxproj /t:Rebuild

These commands generate two Polyspace projects, AProject.psprj and
AnotherProject.psprj.

• Instead of creating a Polyspace project to run analysis, you can run the analysis using options
files. See also “Options Files for Polyspace Analysis” on page 12-5. If you take the options file
approach to run Polyspace, you can first run polyspace-configure on a Visual Studio solution
to generate one options file per project in the solution.

For instance, if a solution ExampleProject contains two projects AProject and
AnotherProject, you can run polyspace-configure as follows:

polyspace-configure -module -output-options-path . ^
 msbuild ExampleProject.sln /t:Rebuild

This command generates two options files, AProject_exe.psopts and
AnotherProject_exe.psopts. You can continue the analysis using these options files.

Create Polyspace Project from Build in Visual Studio IDE
To create a Polyspace project, you can also open the Visual Studio IDE from within Polyspace and
perform a full build within the IDE.

1 In the Polyspace interface, select File > New Project.
2 In the Project – Properties window, under Project Configuration, select Create from build

command and click Next.

2 Set Up Polyspace Projects on Desktop

2-10

3 In the field Specify command used for building your source files, enter the full path to the
Visual Studio executable. For instance, "C:\Program Files (x86)\Microsoft Visual
Studio 10.0\Common7\IDE\devenv.exe".

4 In the field Specify working directory for running build command, enter a folder to which

you have write access, for instance, C:\temp\Polyspace. Click .

This action opens the Visual Studio environment.
5 In the Visual Studio environment, create and build a Visual Studio project.

If you already have a Visual Studio project, open the existing project and build a clean solution.
For instance, to build a clean solution in Visual Studio 2012, select BUILD > Rebuild Solution.

 Create Polyspace Projects from Visual Studio Build

2-11

6 After the project builds, close Visual Studio.

Polyspace traces your Visual Studio build and creates a Polyspace project.

The Polyspace project contains the source files from your Visual Studio build and the relevant
Target & Compiler options.

7 If you update your Visual Studio project, to update the corresponding Polyspace project, on the
Project Browser, right-click the project name and select Update Project.

See Also
polyspace-configure

More About
• “Troubleshoot Project Creation from Visual Studio Build” on page 32-20

2 Set Up Polyspace Projects on Desktop

2-12

Create Project in Polyspace Desktop User Interface Using
Configuration Template

This topic shows how to export and reuse a configuration in the user interface of the Polyspace
desktop products.

• If using the Polyspace Server products, see “Set Up Bug Finder Analysis on Servers During
Continuous Integration”.

• If using Polyspace as You Code, see “Set Up Polyspace Analysis in IDEs”.

A configuration template is a predefined set of analysis options for a specific compilation
environment.

Why Use Templates
Use templates to simplify your project setup. For instance, after you configure a project for a specific
compilation environment, you can create a template out of the configuration. Using the template, you
can reuse the configuration for projects that have the same compilation environment.

When creating a new project, you can do one of the following:

• Use an existing template to automatically set analysis options for your compiler.

Polyspace software provides predefined templates for common compilers such as IAR, Kiel,
Visual and VxWorks. For additional templates, see Polyspace Compiler Templates.

• Set analysis options manually. You can then save your options as a template and reuse them later.
You can also share the template with other users and enforce consistent usage of Polyspace Bug
Finder in your organization.

Use Predefined Template
1 Select File > New Project.
2 On the Project – Properties dialog box, after specifying the project name and location, under

Project configuration, select Use template.
3 On the next screen, select the template that corresponds to your compiler. For further details on

a template, select the template and view the Description column on the right.

If your compiler does not appear in the list of predefined templates, select Baseline_C or
Baseline_C++.

4 On the next screen, add your source files and include folders.

Create Your Own Template
This example shows how to save a configuration from an existing project and create a new project
using the saved configuration.

• To create a template from a project that is open on the Project Browser pane:

1 Right-click the project configuration that you want to use, and then select Save As Template.

 Create Project in Polyspace Desktop User Interface Using Configuration Template

2-13

https://www.mathworks.com/matlabcentral/fileexchange/35927-polyspace-compiler-templates

2 Enter a description for the template, then click Proceed. Save your template file.

Suppose you create a Code Prover configuration template that runs Code Prover analysis to a
precision level of 1 and a verification level of 1. See:

• Precision level (-O0 | -O1 | -O2 | -O3) (Polyspace Code Prover)
• Verification level (-to) (Polyspace Code Prover)

You can enter this description for the template.

• When you create a new project, to use a saved template:

1
Select .

2 Navigate to the template that you saved earlier, and then click Open. The new template
appears in the Custom templates folder on the Templates browser. Select the template for
use.

2 Set Up Polyspace Projects on Desktop

2-14

Sharing Project Templates
A configuration template stores all options set on the Configuration pane in the Polyspace desktop
user interface. If you share the template, another user who uses the template can benefit from those
options.

Note however that options that refer to specific files point to their absolute paths. If a shared
template sets one of those options, the corresponding file must also be shared. Preferably, the shared
file must be in the same location as when the template was created, otherwise end-users have to
modify the template to point to a new location. If you set one of those options in a configuration
template that is meant to be shared with other users, make sure that the corresponding file is in a
location accessible to the end-users. Some common options that refer to specific files are:

 Create Project in Polyspace Desktop User Interface Using Configuration Template

2-15

• Command/script to apply to preprocessed files (-post-preprocessing-command)
and Command/script to apply after the end of the code verification (-post-
analysis-command)

• Set checkers by file (-checkers-selection-file) and -checkers-activation-
file

• Constraint setup (-data-range-specifications)
• Command-line-only options such as -options-file and -code-behavior-specifications.

In the Polyspace user interface, you enter these options in the Other field.

See Also

More About
• “Specify Polyspace Analysis Options” on page 12-2
• “Complete List of Polyspace Bug Finder Analysis Engine Options”

2 Set Up Polyspace Projects on Desktop

2-16

Update Project in Polyspace Desktop User Interface
This topic shows how to update a project in the user interface of the Polyspace desktop products.

• If using the Polyspace Server products, see “Set Up Bug Finder Analysis on Servers During
Continuous Integration”.

• If using Polyspace as You Code, see “Set Up Polyspace Analysis in IDEs”.

To analyze your C/C++ source files with Bug Finder or Code Prover in the Polyspace user interface,
you create a Polyspace project. During development, you can simply update this project and rerun the
analysis for updated results. This topic describes the updates that you can make.

To begin updates, right-click your project on the Project Browser pane. You see a different set of
options depending on the node that you right-click.

Change Folder Path
If you have moved the source folder that you added to your project, modify the path in your Polyspace
project. You can also modify the folder path to point to a different version of the code in your version
control system.

 Update Project in Polyspace Desktop User Interface

2-17

In the Project Browser, right-click the top sources folder and select Modify Path.Change the
path to the new location.

To resync the files under this source folder, right-click your source folder and select Refresh Source
Folder.

Refresh Source List
If you made changes to files in a folder already added to the project, you do not need to re-add the
folder to your project. Refreshing your source file list looks for new files, removed files, and moved
files.

Right-click your source folder and select Refresh Source Folder. The files in your Polyspace project
refresh to match your file system.

Refresh Project Created from Build Command
If you created your project automatically from your build system, to update the project later by
rerunning your build command, right-click the project folder and select Update Project.

You see the information that you entered when creating the original project. Click Run to retrace
your build command and recreate the Polyspace project.

Add Source and Include Folders
If you want to change which files or folders are active in your project without removing them from

your project tree, right-click the file or folder and select Exclude Files. The file appears with an
symbol in your project indicating it is not considered for analysis. You can reinclude the files for
analysis by right-clicking and selecting Include Files.

If you want to add additional source folders or include folders, right-click your project or the Source
or Include folder in your project. Select Add Source Folder or Add Include Folder.

Before running an analysis, you must copy the source files to a module. Select the source files that
you want to copy. To select multiple files together, press the Ctrl key while selecting the files. Right-
click your selection. Select Copy to > Module_n. n is the module number.

Manage Include File Sequence
You can change the order of include folders to manage the sequence in which include files are
compiled.

When multiple include files by the same name exist in different folders, you might want to change the
order of include folders instead of reorganizing the contents of your folders. For a particular include
file name, the software includes the file in the first include folder under Project_Name > Include.

In the following figure, Folder_1 and Folder_2 contain the same include file include.h. If your
source code includes this header file, during compilation, Folder_2/include.h is included in
preference to Folder_1/include.h.

2 Set Up Polyspace Projects on Desktop

2-18

To change the order of include folders, in your project, expand the Include folder. Select the include

folder or folders that you want to move. To move the folder, click either or .

See Also

Related Examples
• “Add Source Files for Analysis in Polyspace Desktop User Interface” on page 2-2

 Update Project in Polyspace Desktop User Interface

2-19

Organize Layout of Polyspace Desktop User Interface
The Polyspace user interface has two default layouts of panes.

The default layout for project setup has the following arrangement of panes:

Project Browser Configuration
Output Summary

The default layout for results review has the following arrangement of panes:

Results List Result Details
Dashboard

You can create and save your own layout of panes. If the current layout of the user interface does not
meet your requirements, you can use a saved layout.

You can also change to one of the default layouts of the Polyspace user interface. Select Window >
Reset Layout > Project Setup or Window > Reset Layout > Results Review.

Create Your Own Layout
To create your own layout, you can close some of the panes, open some panes that are not visible by
default, and move existing panes to new locations.

To open a closed pane, select Window > Show/Hide View > pane_name.

To move a pane to another location:

1 Float the pane in one of three ways:

• Click and drag the blue bar on the top of the pane to float all tabs in that pane.

For instance, if Project Browser and Results List are tabbed on the same pane, this action
floats the pane together with its tabs.

• Click and drag the tab at the bottom of the pane to float only that tab.

For instance, if Project Browser and Results List are tabbed on the same pane, dragging
out Project Browser creates a pane with only Project Browser on it and floats this new
pane.

• Click on the top right of the pane to float all tabs in that pane.
2 Drag the pane to another location until it snaps into a new position.

If you want to place the pane in its original location, click in the upper-right corner of the
floating pane.

For instance, you can create your own layout for reviewing results.

2 Set Up Polyspace Projects on Desktop

2-20

Save and Reset Layout
After you have created your own layout, you can save it. You can change from another layout to this
saved layout.

• To save your layout, select Window > Save Current Layout As. Enter a name for this layout.
• To use a saved layout, select Window > Reset Layout > layout_name.
• To remove a saved layout from the Reset Layout list, select Window > Remove Custom Layout

> layout_name.

See Also

More About
• “Customize Polyspace Desktop User Interface” on page 2-22

 Organize Layout of Polyspace Desktop User Interface

2-21

Customize Polyspace Desktop User Interface
In this section...
“Possible Customizations” on page 2-22
“Storage of Polyspace User Interface Customizations” on page 2-24

You can customize various aspects of the Polyspace user interface, for instance, default project
storage locations or default font size of source code. Select Tools > Preferences.

Possible Customizations
Change Default Font Size

To change the default font size in the Polyspace user interface, select the Miscellaneous tab.

• To increase the font size of labels on the user interface, select a value for GUI font size.

For example, to increase the default size by 1 point, select +1.
• To increase the font size of the code on the Source pane and the Code Editor pane, select a value

for Source code font size.

2 Set Up Polyspace Projects on Desktop

2-22

When you restart Polyspace, you see the increased font size.

Specify External Text Editor

You can change the default text editor for opening source files from the Polyspace interface. By
default, if you open your source file from the user interface, it opens on a Code Editor tab. If you
prefer editing your source files in an external editor, you can change this default behavior.

To change the text editor, select the Editors tab. From the Text editor drop-down list, select
External. In the Text editor field, specify the path to your text editor. For example:

C:\Program Files\Windows NT\Accessories\wordpad.exe

To make sure that your source code opens at the correct line and column in your text editor, specify
command-line arguments for the editor using Polyspace macros, $FILE, $LINE and $COLUMN. Once
you specify the arguments, when you right-click a check on the Results List pane and select Open
Editor, your source code opens at the location of the check.

Polyspace has already specified the command-line arguments for these editors: Emacs, Notepad++
(Windows only), UltraEdit, VisualStudio, WordPad (Windows only) or gVim. If you are using one
of these editors, select it from the Arguments drop-down list. If you are using another text editor,
select Custom from the drop-down list, and enter the command-line options in the field provided.

For console-based text editors, you must create a terminal. For example, to specify vi:

1 In the Text Editor field, enter /usr/bin/xterm.
2 From the Arguments drop-down list, select Custom.
3 In the field to the right, enter -e /usr/bin/vi $FILE.

To revert back to the built-in editor, on the Editors tab, from the Text editor drop-down list, select
Built In.

Create Naming Convention for Results Folder

By default, results are stored in a subfolder of the project folder. When you run an analysis, you can
overwrite the results of the previous run or create a new results folder.

You can customize the results folder on the Project and Results Folder tab in these ways:

• If you create a new results folder for each run, you can define a naming convention for the folder.
To specify a results folder naming convention, in the section Results folder configuration, use
the options under Formatting options to create a naming convention for results folders.

 Customize Polyspace Desktop User Interface

2-23

For instance, the results folder naming convention below uses the module name and date and time
of analysis. So, a Bug Finder result folder using this convention has a name such as
BF_Result_module_2_01_01_2020_22_30.

• You can store results separately from projects. In the section Results folder configuration, you
can specify a root folder for storing results and store per-project results in subfolders of the root
folder:

• Specify the root folder for Parent results folder location.
• Select the option Add a subfolder using the project name.

Create Custom Review Status

When reviewing Polyspace results, you can assign a status such as To fix or Justified. See
“Address Results in Polyspace User Interface Through Bug Fixes or Justifications” on page 22-2.

You can also create and assign custom statuses. To create a new status:

1 Select the Review Statuses tab.
2 Enter the status in the Add a new status field and click Add.

Optionally, to specify that Polyspace should consider results with this review status justified,
select the checkbox next to the Add button. See also “Address Results in Polyspace User
Interface Through Bug Fixes or Justifications” on page 22-2.

Storage of Polyspace User Interface Customizations
The software stores the settings that you specify through the Polyspace Preferences in the following
file:

• Windows: $Drive\Users\$User\AppData\Roaming\MathWorks \MATLAB\$Release
\Polyspace\polyspace.prf

• Linux®: /home/$User/.matlab/$Release/Polyspace/polyspace.prf

Here, $Drive is the drive where the operating system files are located such as C:, $User is the
username and $Release is the release number.

The following file stores the location of all installed Polyspace products across various releases:

• Windows: $Drive\Users\$User\AppData\Roaming\MathWorks\MATLAB
\polyspace_shared\polyspace_products.prf

• Linux : /home/$User/.matlab/polyspace_shared/polyspace_products.prf

2 Set Up Polyspace Projects on Desktop

2-24

Upload Results to Polyspace Access
Polyspace Access offers a centralized database where you can store Polyspace analysis results for
sharing and collaborative reviews. After you upload results, open the Polyspace Access user interface
to view statistics about the quality of your code and to triage and review individual results.

Polyspace assigns a unique run ID to each analysis run that you upload and increments the run ID
with each upload to any project. If you use an automation tool such as Jenkins to upload results, the
Polyspace Access run ID is not related to the tool job ID.

Note You can upload up to 2GB of results per upload to Polyspace Access.

Upload Results from Polyspace Desktop Client
Before you upload results, you must configure the Polyspace desktop client to communicate with
Polyspace Access. See “Register Polyspace Desktop User Interface”.

To upload analysis results to the Polyspace Access database from the Polyspace desktop client, select
a set of results in the Project Browser pane or open the results in the Results List pane. Go to
Access > Upload Results and follow the prompts. If you get a login request, use your Polyspace
Access login credentials.

You can also upload results to Polyspace Access by selecting a result in the Project Browser pane
and using the context menu.

 Upload Results to Polyspace Access

2-25

After you upload results to Polyspace Access, if you open a local copy of the results in the desktop
interface, you cannot make changes to the Status, Severity, or comment fields. To make changes to
the Status, Severity, or comment fields, open the results from Polyspace Access by going to Access
> Open Results.

Once you save the changes you make to these fields in the desktop interface, the changes are
reflected in the Polyspace Access web interface. To create custom statuses, see “Add Custom Status
in Polyspace Access Project” on page 26-3.

Upload Results at Command Line
You can upload results from the command line only if they are generated with Polyspace Bug Finder
Server or Polyspace Code Prover™ Server.

To upload analysis results to Polyspace Access from the DOS or UNIX command line, use the
polyspace-access binary. See polyspace-access.

In the command, specify the path of the folder under which the .psbf, .pscp, or .rte results file is
stored. For instance, to upload Polyspace Bug Finder results stored in the file BF_results
\ps_results.psbf, use this command:
polyspace-access %login% -upload BF_results\ps_results.psbf

The command uploads the results to the public folder of the Polyspace Access database and outputs
information about the upload including an ACCESS URL. You can use the URL to view the uploaded
results in the Polyspace Access interface. To upload results to a different folder, use the -parent-
project option.

Here, %login% is a variable that stores the login credentials and other connection information. To
configure this variable, see “Encrypt Password and Store Login Options in a Variable”.

For faster uploads, store your analysis results in a dedicated results folder by using option -
results-dir when you run the analysis. If you store results in a folder that contains a large number
of files unrelated to Polyspace analysis results, for example the root folder of your repository,
Polyspace Access takes longer to upload the results.

Results Upload Compatibility and Permissions
Results Compatibility

You cannot upload analysis results to a Polyspace Access version that is older than the version of the
Polyspace product that generated the results. For instance, you cannot upload results generated with
a Polyspace product version R2019b to a Polyspace Access version R2019a.

If you upload results generated with a Polyspace product version R2018b or earlier, you cannot view
these results in the Polyspace Access REVIEW perspective. To review R2018b or earlier results that
you uploaded to Polyspace Access, see “Open Polyspace Access Results in a Desktop Interface” on
page 28-2.

You can upload results to an existing Polyspace Access project only if those results were generated by
the same type of analysis. For instance, you cannot upload results of a Bug Finder analysis to a
project that contains Code Prover results.

2 Set Up Polyspace Projects on Desktop

2-26

User Permissions for Uploaded Results

You are the project Owner for all the results that you upload. The project Owner or an
Administrator must add other users as Contributor to grant them permission to see those results,
unless you upload the results to a folder that other users already have permission to see.

Results that you upload to the public folder are visible to all Polyspace Access users. For more
information, see “Manage Project Permissions” on page 27-3.

See Also
polyspace-access

More About
• “Register Polyspace Desktop User Interface”

 Upload Results to Polyspace Access

2-27

Run Polyspace Analysis on Desktop

3

Run Analysis in Polyspace Desktop User Interface
This topic shows how to run an analysis in the user interface of the Polyspace desktop products.

• If using the Polyspace Server products, see “Set Up Bug Finder Analysis on Servers During
Continuous Integration”.

• If using Polyspace as You Code, see “Set Up Polyspace Analysis in IDEs”.

This topic describes how to run an analysis in the Polyspace user interface, monitor progress, fix
compilation issues, and open analysis results as available.

After you specify your source files and compiler on page 2-2, start the Polyspace analysis. During
analysis, Polyspace first compiles your code, and then checks for bugs (Bug Finder) or proves code
correctness (Code Prover). If you encounter compilation errors, read the error message and diagnose
the root cause of the error. To resolve the errors, you often have to set some Polyspace configuration
options and rerun the analysis.

Arrange Layout of Windows for Project Setup
To set up a convenient distribution of windows, in the Polyspace user interface, select Window >
Reset Layout > Project Setup.

3 Run Polyspace Analysis on Desktop

3-2

Set Product and Result Location
To switch products or create a separate folder for each run, select options from the drop-down list
beside the Run button. For instance, to avoid overwriting previous results each time that you run Bug
Finder and keep existing results, select Create new Bug Finder result folder.

The results are stored in subfolders Module_1, Module_2, and so on in the project folder. To find the
physical location of the project folder, right-click a project on the Project Browser pane and select
Open Folder with File Manager.

To use a different folder naming convention or a different storage location for results, select Tools >
Preferences and use the options on the Project and Results Folder tab. See also “Create Naming
Convention for Results Folder” on page 2-23.

 Run Analysis in Polyspace Desktop User Interface

3-3

Start and Monitor Analysis
If your project has multiple modules, select the module that you want to analyze. To start the analysis,
select Run Bug Finder or Run Code Prover. Monitor progress on the Output Summary pane.

• Bug Finder: You can see some results after partial analysis because certain defect checkers do not
need cross-functional information and can show results as soon as a function is analyzed. If results
are available while the analysis is still running, you see this icon beside the Run Bug Finder
button:

The icon indicates the number of results available. To open the results, click the icon. Once the
analysis is over, the Running label in the icon changes to Completed. To reload the full set of
results, click the icon again.

• Code Prover: You can see results only after the analysis is complete. Code Prover is more likely to
report compilation errors because it does a more rigorous analysis and must follow stricter rules
for compilation. The progress bar distinguishes between the various phases of analysis starting
from compilation.

Fix Compilation Errors
If compilation errors occur, the analysis continues on the remaining files that do compile. The
Dashboard pane shows that some files did not compile and links to the Output Summary pane for
details. The Output Summary pane shows compilation errors with a icon.

For further diagnosis, select the error message for more details. Identify the line in your code
responsible for the compilation error. You can use the error message details to understand why the
line compiled with your compiler and what additional information Polyspace requires to emulate your
compiler. See if you can work around the error by using a Polyspace option. For more information, see
“Troubleshoot Compilation Errors”.

For more precise run-time error checking in Code Prover, it is recommended that you fix all
compilation errors. Use the option Stop analysis if a file does not compile (-stop-if-
compile-error).

Open Results
After analysis, the results open automatically. To open results that you have closed, double-click the
result node on the Project Browser pane.

3 Run Polyspace Analysis on Desktop

3-4

The Bug Finder (Code Prover) results are stored in a .psbf (.pscp) file in the results folder. For
instance, if you save your project in C:\Projects\, a .psbf file for the Bug Finder analysis results
on the first module Module_1 is stored in C:\Projects\Module_1\BF_Result. See also “Contents
of Polyspace Project and Results Folders” on page 2-7.

See Also

More About
• “Run Polyspace Analysis from Command Line” on page 4-2
• “Run Polyspace Analysis by Using MATLAB Scripts” on page 5-9
• “Review Polyspace Bug Finder Results in Polyspace User Interface”
• “Upload Results to Polyspace Access” on page 2-25

 Run Analysis in Polyspace Desktop User Interface

3-5

Storage of Temporary Files During Polyspace Analysis
Polyspace produces some temporary files when performing an analysis. If your analysis runs slow or
you encounter errors such as running out of disk space, check your temporary file location. For more
information on possible errors, see:

• “Fix Polyspace Errors Related to Temporary Files” on page 32-61
• “Reduce Memory Usage and Time Taken by Polyspace Analysis” (Polyspace Code Prover)

To determine where to store temporary files, Polyspace looks for these environment variables in the
following order:

• RTE_TMP_DIR: Define this environment variable only if you want to store Polyspace temporary
files in a folder different from the standard temporary folders (defined by TMPDIR and such). You
can see the current standard temporary folder by using the MATLAB® function tempdir.

Note This path must be an absolute path to an existing folder on which the current user has
access rights (for reading and writing).

• TMPDIR
• TMP
• TEMP

If one of these variables is defined, Polyspace uses that path for storing temporary files. If these
environment variables are not defined, Polyspace stores temporary files in:

• /tmp on Linux and Mac
• Folder specified with the USERPROFILE environment variable, folder returned from

GetWindowsDirectoryW Windows API, or Temp directory on Windows

3 Run Polyspace Analysis on Desktop

3-6

Run Polyspace Analysis with Windows or
Linux Scripts

• “Run Polyspace Analysis from Command Line” on page 4-2
• “Modularize Polyspace Analysis by Using Build Command” on page 4-5
• “Select Files for Polyspace Analysis Using Pattern Matching” on page 4-11
• “Configure Polyspace Analysis Options in User Interface and Generate Scripts” on page 4-15

4

Run Polyspace Analysis from Command Line
To run an analysis from a DOS or UNIX® command window, use the command polyspace-bug-
finder or polyspace-code-prover followed by other options you wish to use. See also:

• polyspace-bug-finder
• polyspace-code-prover

To save typing the full path to the commands, add the path polyspaceroot\polyspace\bin to the
Path environment variable on your operating system. Here, polyspaceroot is the Polyspace
installation folder, for instance, C:\Program Files\Polyspace\R2023a. See also “Installation
Folder”.

Specify Sources and Analysis Options Directly
At the Windows, Linux or Mac OS X command-line, append sources and analysis options to the
polyspace-bug-finder or polyspace-code-prover command.

For instance:

• To specify sources, use the -sources option followed by a comma-separated list of sources.

polyspace-bug-finder -sources C:\mySource\myFile1.c,C:\mySource\myFile2.c

If your current folder contains a sources subfolder with the source files, you can omit the -
sources flag. The analysis considers files in sources and all subfolders under sources.

• To specify the target processor, use the -target option. For instance, to specify the m68k
processor for your source file file.c, use the command:

polyspace-bug-finder -sources "file.c" -lang c -target m68k
• To check for violation of MISRA C™ rules, use the -misra2 option. For instance, to check for only

the required MISRA C rules on your source file file.c, use the command:

polyspace-bug-finder -sources "file.c" -misra2 required-rules
• To specify a results folder, use the option -results-dir.

Note that by default, the results folder is cleaned up and repopulated at each run. To avoid
accidental removal of files during the cleanup, instead of using an existing folder that contains
other files, specify a dedicated folder for the Polyspace results.

For the full list of analysis options, see:

• “Complete List of Polyspace Bug Finder Analysis Engine Options”
• “Complete List of Polyspace Code Prover Analysis Options” (Polyspace Code Prover)

For the full list of options, enter the following at the command line:

polyspace-bug-finder -help

Specify Sources and Analysis Options in Text File
Instead of specifying the options directly, you can save the options in a text file and use the text file
each time you run the analysis.

4 Run Polyspace Analysis with Windows or Linux Scripts

4-2

1 Create an options file called listofoptions.txt with your options. For example:

#These are the options for MyCodeProverProject
-lang c
-prog MyCodeProverProject
-author jsmith
-sources "mymain.c,funAlgebra.c,funGeometry.c"
-target x86_64
-compiler generic
-dos
-misra2 required-rules
-do-not-generate-results-for all-headers
-main-generator
-results-dir C:\Polyspace\MyCodeProverProject

2 Run Polyspace using options in the file listofoptions.txt.

polyspace-code-prover -options-file listofoptions.txt

See also -options-file.

Create Options File from Build System
If you use a build command (makefile) to build your source code, you can collect the sources and
compiler options from your build command. Trace your build command to generate a text file with the
required Polyspace options.

1 Create a list of Polyspace options using the configuration tool.

polyspace-configure -output-options-file \
 myOptions buildCommand

where buildCommand is the command you use to build your source code, for instance make -B.

See also polyspace-configure.
2 Run Polyspace using the options read from your build.

polyspace-bug-finder -options-file myOptions \
 -results-dir myResults

In addition to the options collected from your build command, you might want to add further
options, for instance, to specify the defect checkers. You can append these options to the options
file, add them directly at the command line or add them through a second options file (using
another -options-file flag).

3 Open the results in the Polyspace user interface.

polyspace-bug-finder myResults

See Also
polyspace-configure | polyspace-bug-finder | polyspace-code-prover

More About
• “Configure Polyspace Analysis Options in User Interface and Generate Scripts” on page 4-15

 Run Polyspace Analysis from Command Line

4-3

• “Modularize Polyspace Analysis by Using Build Command” on page 4-5

External Websites
• Set up Continuous Code Verification with Jenkins

4 Run Polyspace Analysis with Windows or Linux Scripts

4-4

https://www.mathworks.com/matlabcentral/answers/279990-how-do-i-use-polyspace-bug-finder-with-jenkins

Modularize Polyspace Analysis by Using Build Command
To configure the Polyspace analysis, you can reuse the compilation options in your build command
such as make. First, you trace your build command with polyspace-configure (or
polyspaceConfigure in MATLAB) and create a Polyspace options file. You later specify this options
file for the subsequent Polyspace analysis.

If your build command creates several binaries, by default polyspace-configure groups the
source files for all binaries into one Polyspace options file. If binaries that use the same source files or
functions are compiled with different options, you lose this distinction in the subsequent Polyspace
analysis. The presence of the same function multiple times can lead to link errors during the
Polyspace analysis and sometimes to incorrect results.

This topic shows how to create a separate Polyspace options file for each binary created in your
makefile. Suppose that a makefile creates four binaries: two executable (target cmd1 and cmd2) and
two shared libraries (target liba and libb). You can create a separate Polyspace options file for
each of these binaries.

To try this example, use the files in polyspaceroot\help\toolbox\bugfinder\examples
\multiple_modules. Here, polyspaceroot is the Polyspace installation folder, for instance,
C:\Program Files\Polyspace\R2023a or C:\Program Files\Polyspace Server\R2023a.

Build Source Code
Inspect the makefile. The makefile creates four binaries:

 Modularize Polyspace Analysis by Using Build Command

4-5

CC := gcc

LIBA_SOURCES := $(wildcard src/liba/*.c)
LIBB_SOURCES := $(wildcard src/libb/*.c)
CMD1_SOURCES := $(wildcard src/cmd1/*.c)
CMD2_SOURCES := $(wildcard src/cmd2/*.c)
LIBA_OBJ := $(notdir $(LIBA_SOURCES:.c=.o))
LIBB_OBJ := $(notdir $(LIBB_SOURCES:.c=.o))
CMD1_OBJ := $(notdir $(CMD1_SOURCES:.c=.o))
CMD2_OBJ := $(notdir $(CMD2_SOURCES:.c=.o))
LIBB_SOBJ := libb.so
LIBA_SOBJ := liba.so

all: cmd1 cmd2

cmd1: liba libb
 $(CC) -o $@ $(CMD1_SOURCES) $(LIBA_SOBJ) $(LIBB_SOBJ)

cmd2: libb
 $(CC) -c $(CMD2_SOURCES)
 $(CC) -o $@ $(CMD2_OBJ) $(LIBB_SOBJ)

liba: libb
 $(CC) -fPIC -c $(LIBA_SOURCES)
 $(CC) -shared -o $(LIBA_SOBJ) $(LIBA_OBJ) $(LIBB_SOBJ)

libb:
 $(CC) -fPIC -c $(LIBB_SOURCES)
 $(CC) -shared -o $(LIBB_SOBJ) $(LIBB_OBJ)

.PHONY: clean
clean:
 rm *.o *.so

The binaries created have the dependencies shown in this figure. For instance, creation of the object
cmd1.o depends on all .c files in the folder cmd1 and the shared objects liba.so and libb.so.

4 Run Polyspace Analysis with Windows or Linux Scripts

4-6

Build your source code by using the makefile. Use the -B flag to ensure full build.

make -B

Make sure that the build runs to completion.

Create One Polyspace Options File for Full Build
Trace the build command by using polyspace-configure. Use the option -output-options-
file to create a Polyspace options file psoptions from the build command.

polyspace-configure -output-options-file psoptions make -B

Run Bug Finder or Code Prover by using the previously created options file: Save the analysis results
in a results subfolder.

polyspace-bug-finder -options-file psoptions -results-dir results

You see this link error (warning in Bug Finder):

Procedure 'main' multiply defined.

 Modularize Polyspace Analysis by Using Build Command

4-7

The error occurs because the files cmd1/cmd1_main.c and cmd2/cmd2_main.c both have a main
function. When you run your build command, the two files are used in separate targets in the
makefile. However, polyspace-configure by default creates one options file for the full build. The
Polyspace options file contains both source files resulting in conflicting definitions of the main
function.

To verify the cause of the error, open the Polyspace options file psoptions. You see these lines that
include the files with conflicting definitions of the main function.

-sources src/cmd1/cmd1_main.c
-sources src/cmd2/cmd2_main.c

Create Options File for Specific Binary in Build Command
To avoid the link error, build the source code for a specific binary when tracing your build command
by using polyspace-configure.

For instance, build your source code for the binary cmd1.o. Specify the makefile target cmd1 for
make, which creates this binary.

polyspace-configure -output-options-file psoptions -allow-overwrite make -B cmd1

Run Bug Finder or Code Prover by using the previously created options file.

polyspace-bug-finder -options-file psoptions -results-dir results

The link error does not occur and the analysis runs to completion. You can open the Polyspace options
file psoptions and see that only the source files in the cmd1 subfolder and the files involved in
creating the shared objects are included with the -sources option. The source files in the cmd2
subfolder, which are not involved in creating the binary cmd1.o, are not included in the Polyspace
options file.

Special Considerations for Libraries (Code Prover only)

If you trace the creation of a shared object from libraries, the source files extracted do not contain a
main function. In the subsequent Code Prover analysis, you can see an error because of the missing
main.

Use the Polyspace option Verify module or library (-main-generator) to generate a main
function. Specify the option in the options file that was created or directly at the command line. See
“Verify C Application Without main Function” (Polyspace Code Prover).

In C++, use these additional options for classes:

• Class (-class-analyzer)
• Functions to call within the specified classes (-class-analyzer-calls)

Create One Options File Per Binary Created in Build Command
To create an options file for a specific binary created in the build command, you must know the
details of your build command. If you are not familiar with the internal details of the build command,
you can create a separate Polyspace options file for every binary created in the build command. The
approach works for binaries that are executables, shared (dynamic) libraries and static libraries.

4 Run Polyspace Analysis with Windows or Linux Scripts

4-8

This approach works only if you use these compilers:

• GNU C or GNU C++
• Microsoft Visual C++

Trace the build command by using polyspace-configure.To create a separate options file for each
binary, use the option -module with polyspace-configure.

polyspace-configure -module -output-options-path optionsFilesFolder make -B

The command creates options files in the folder optionsFilesFolder. In the preceding example,
the command creates four options files for the four binaries:

• cmd1.psopts
• cmd2.psopts
• liba_so.psopts
• libb_so.psopts

You can run Polyspace on the code implementation of a specific binary by using the corresponding
options file. For instance, you can run Code Prover on the code implementation of the binary created
from the makefile target cmd1 by using this command:

polyspace-bug-finder -options-file optionsFilesFolder\cmd1.psopts -results-dir results

For this approach, you do not need to know the details of your build command. However, when you
create a separate options file for each binary in this way, each options file contains source files
directly involved in the binary and not through shared objects. For instance, the options file
cmd1.psopts in this example specifies only the source files in the cmd1 subfolder and not the source
files involved in creating the shared objects liba.so and libb.so. The subsequent analysis by
using this options file cannot access functions from the shared objects and uses function stubs
instead. In the Code Prover analysis, if you see too many orange checks due to the stubbing, use the
approach stated in the section “Create Options File for Specific Binary in Build Command” on page 4-
8.

Special Considerations for Libraries (Code Prover only)

If you trace the creation of a shared object from libraries, the source files extracted do not contain a
main function. In the subsequent Code Prover analysis, you can see an error because of the missing
main.

Use the Polyspace option Verify module or library (-main-generator) to generate a main
function. Specify the option in the options file that was created or directly at the command line. See
“Verify C Application Without main Function” (Polyspace Code Prover).

In C++, use these additional options for classes:

• Class (-class-analyzer)
• Functions to call within the specified classes (-class-analyzer-calls)

See Also
polyspace-configure | polyspace-bug-finder | polyspace-bug-finder-server

 Modularize Polyspace Analysis by Using Build Command

4-9

More About
• “Run Polyspace Analysis from Command Line” on page 4-2
• “Create Polyspace Analysis Configuration from Build Command (Makefile)” on page 13-22

4 Run Polyspace Analysis with Windows or Linux Scripts

4-10

Select Files for Polyspace Analysis Using Pattern Matching
When you run static analysis using Polyspace products, the analysis covers all files specified in your
Polyspace project (or specified using -sources at the command line). Sometimes, you might want to
see results only in a subset of these files, or might want a different analysis behavior to apply to a
subset of files. You can specify a subset of files using file selection patterns. The file selection patterns
(glob patterns) use wildcards such as ? or * to cover multiple files.

When to Specify File Selection Patterns
You can select a subset of files when creating a Polyspace project or options file from your build
command, or when running static analysis using Polyspace Bug Finder.

Select Files When Setting Up Polyspace Analysis from Build Command

When you create projects by using polyspace-configure, you can include or exclude source files
whose paths match the pattern that you pass to the options -include-sources or -exclude-
sources. You can specify these two options multiple times and combine them at the command line.

This folder structure applies to these examples.

To try these examples, use the demo files in polyspaceroot\help\toolbox\bugfinder
\examples\sources-select. polyspaceroot is the Polyspace installation folder.

Run this command:

polyspace-configure -allow-overwrite -include-sources "glob_pattern" \
-print-excluded-sources -print-included-sources make -B

glob_pattern is the glob pattern that you use to match the paths of the files you want to include or
exclude from your project. To ensure the shell does not expand the glob patterns you pass to
polyspace-configure, enclose them in double quotes.

Select Files When Running Bug Finder Analysis

When analyzing C/C++ code with Polyspace Bug Finder, you can define file sets in your project that
need specific treatment during analysis. For instance, you might want to skip the definitions of
function bodies in third-party libraries or force analysis of all functions in files that you own. You can
enumerate file sets with specific behaviors in a classification XML file and fine-tune the Bug Finder
analysis using this classification file.

 Select Files for Polyspace Analysis Using Pattern Matching

4-11

In the classification XML file, you can specify file patterns inside a file-pattern element (child of
fileset > files-in-set or fileset > files-not-in-set element). For instance, the
following patterns select .hpp files in subfolders of myproject/inc but excludes files ending with -
generated.

<fileset name="Application implementation and header files">
 <files-in-set>
 <file-pattern>myproject/inc/**/*.hpp</file-pattern>
 </files-in-set>
 <files-not-in-set>
 <file-pattern>myproject/inc/**/*-generated.hpp</file-pattern>
 </files-not-in-set>
 <behaviors>
 <!-- Specific behaviors for this file set -->
 </behaviors>
</fileset>

To specify a classification file during static analysis, use the analysis option -classification. For
instance, you can run Bug Finder using this command:

polyspace-bug-finder -options-file myOptions.txt -classification myClassification.xml

For more information, see:

• -classification
• “Classify Project Files Into File Sets for Precise Control of Bug Finder Analysis” on page 19-2

Supported Patterns for File Selection
In the table, the examples assume that sources is a top-level folder.

Glob Pattern Syntax Example
No special characters, slashes ('/'), or backslashes
('\').

Pattern matches corresponding files, but not
folders.

-include-sources "main.c" matches:

/sources/app/main.c

Pattern contains '*' or '?' special characters.

'*' matches zero or more characters in file or
folder name.

'?' matches one character in file or folder name.

The matches do not include path separators.

-include-sources "b?.c" matches:

/sources/lib/b/b1.c

/sources/lib/b/b2.c

-include-sources "app/*.c" matches:

/sources/app/main.c
Pattern starts with:

• A slash '/' (UNIX).
• Drive letter, for example C:\ (Windows).

Pattern matches absolute path only.

-include-sources "/a" does not match
anything.

-include-sources "/sources/app"
matches:

/sources/app/main.c

4 Run Polyspace Analysis with Windows or Linux Scripts

4-12

Glob Pattern Syntax Example
Pattern ends with:

• A slash (UNIX).
• A backslash (Windows).
• A double asterisk ('**')

Pattern matches all files under specified folder.

'**' is ignored if it is at the start of the pattern.

-include-sources "a/" matches

/sources/lib/a/a1.c

/sources/lib/a/a2.c

Pattern contains:

• '/**/' (UNIX).
• '**\' (Windows).

Pattern matches zero or more folders in the
specified path.

-include-sources "lib/**/?1.c" matches:

/sources/lib/a/a1.c

/sources/lib/b/b1.c

Pattern starts with '.' or '..'.

Pattern matches paths relative to the path where
you run the command.

If you start polyspace-configure from /
sources/lib/a,

-include-sources "../lib/**/b?.c"
matches:

/sources/lib/b/b1.c

/sources/lib/b/b2.c
Pattern is a UNC path on Windows . If your files are on server myServer:

\\myServer\sources\lib\b** matches:

\\myServer\sources\lib\b\b1.c

\\myServer\sources\lib\b\b2.c

polyspace-configure does not support these glob patterns:

• Absolute paths relative to the current drive on Windows.

For instance, \foo\bar.
• Relative paths to the current folder.

For instance, C:foo\bar.
• Extended length paths in Windows.

For instance, \\?\foo.
• Paths that contain '.' or '..' except at the start of the pattern.

For instance, /foo/bar/../a?.c.
• The '*' character by itself.

 Select Files for Polyspace Analysis Using Pattern Matching

4-13

See Also
-classification | polyspace-configure

More About
• “Classify Project Files Into File Sets for Precise Control of Bug Finder Analysis” on page 19-2

4 Run Polyspace Analysis with Windows or Linux Scripts

4-14

Configure Polyspace Analysis Options in User Interface and
Generate Scripts

In this section...
“Prerequisites” on page 4-16
“Generate Scripts from Configuration” on page 4-16
“Run Analysis with Generated Scripts” on page 4-17

If you have an installation of the desktop products, Polyspace Bug Finder and/or Polyspace Code
Prover, you can configure your project in the user interface of the desktop products. You can then
generate a script or an options file from the configuration defined in the user interface and use the
script or options file for automated runs with the desktop or server products.

Unless you create a Polyspace project from existing specifications such as a build command, when
setting up the project, you might have to perform a few trial runs first. In these trial runs, if you run
into compilation errors or unchecked code, you might have to modify your analysis configuration. It is
easier performing this initial setup in the user interface of the desktop products. The user interface
provides various features such as:

 Configure Polyspace Analysis Options in User Interface and Generate Scripts

4-15

• Auto-generation of XML file for constraint specification.
• Context-sensitive help for options.

Prerequisites
You must have at least one license of Polyspace Bug Finder and/or Polyspace Code Prover to open the
Polyspace user interface and configure the options.

After generating the scripts, you can run the analysis using either the desktop products (Polyspace
Bug Finder and Polyspace Code Prover) or the server products (Polyspace Bug Finder Server and/or
Polyspace Code Prover Server).

Generate Scripts from Configuration
This example shows how to generate a script from a Bug Finder configuration. The same steps apply
to a Code Prover configuration.

1 Add source files to a new project in the Polyspace user interface.

Navigate to polyspaceroot\polyspace\bin, where polyspaceroot is the Polyspace
installation folder, for instance, C:\Program Files\Polyspace\R2023a. Open the Polyspace
user interface using the polyspace executable and create a new project.

See “Add Source Files for Analysis in Polyspace Desktop User Interface” on page 2-2.
2 Specify the analysis options on the Configuration pane in the Polyspace project. To open this

pane, in the project browser, click the configuration node in your Polyspace project.

See “Specify Polyspace Analysis Options” on page 12-2.
3 Run the analysis. Based on compilation errors and analysis results, modify options as needed.

See “Run Analysis in Polyspace Desktop User Interface” on page 3-2.
4 Once your analysis options are set, generate a script from the project (.psprj file).

To generate a script from the demo project, Bug_Finder_Example:

a Load the project. Select Help > Examples > Bug_Finder_Example.psprj. A copy of this
project is loaded in the Examples folder in your default workspace. To find the project
location, place your cursor on the project name in the Project Browser pane.

b Navigate to the project location and enter:

polyspace -generate-launching-script-for Bug_Finder_Example.psprj -bug-finder

To generate Code Prover scripts, use the same command without the -bug-finder option.

If a project has more than one module (with more than one configuration in each module),
the options from the currently active configuration in the currently active module will be
extracted in the script.

These files are generated for scripting the analysis:

• source_command.txt: Lists source files. This file can be provided as argument to the -
sources-list-file option.

4 Run Polyspace Analysis with Windows or Linux Scripts

4-16

• options_command.txt: Lists analysis options. This file can be provided as argument to the -
options-file option.

• launchingCommand.bat or launchingCommand.sh, depending on your operating system. The
file uses the polyspace-bug-finder or polyspace-code-prover executable to run the
analysis. The analysis runs on the source files listed in source_command.txt and uses the
options listed in options_command.txt.

Run Analysis with Generated Scripts
After configuring your analysis and generating scripts, you can use the generated files to automate
the subsequent analysis. You can automate the subsequent analysis using either the desktop or server
products.

To automate a Bug Finder analysis with the desktop product, Polyspace Bug Finder:

1 Generate scripts as mentioned in the previous section.
2 Execute the script launchingCommand.bat or launchingCommand.sh at periodic intervals or

based on predefined triggers.

To automate a Bug Finder analysis with the server product, Polyspace Bug Finder Server:

1 After specifying options in the user interface and before generating scripts, move the Polyspace
project (.psprj file) to the server where the server product is running.

2 Generate scripts as mentioned in the previous section.

The scripts refer to the server product executable instead of the desktop products.
3 Execute the script launchingCommand.bat or launchingCommand.sh at periodic intervals or

based on predefined triggers.

Alternatively, you can modify the script generated for the desktop product so that the server product
is executed. The script refers to the path to a desktop product executable, for instance:

"C:\Program Files\Polyspace\R2023a\polyspace\bin\polyspace-code-prover.exe"

Replace this with the path to a server product executable, for instance:

"C:\Program Files\Polyspace Server\R2023a\polyspace\bin\
 polyspace-code-prover-server.exe"

Sometimes, you might want to override some of the options in the options file. For instance, the
option to specify a results folder is hardcoded in the script. You can remove this option or override it
when launching the scripts:

launchingCommand -results-dir newResultsFolder

where newResultsFolder is the new results folder. This folder can even be dynamically generated
for each run.

If you override multiple options in options_command.txt, you can save the overrides in a second
options file. Modify the script launchingCommand.bat or launchingCommand.sh so that both
options files are used. The script uses the option -options-file to use an options file, for instance:

-options-file options_command.txt

 Configure Polyspace Analysis Options in User Interface and Generate Scripts

4-17

If you place your option overrides in a second options file overrides.txt, modify the script to
append a second -options-file option:

-options-file options_command.txt -options-file overrides.txt

See Also
-generate-launching-script-for

Related Examples
• “Run Polyspace Analysis from Command Line” on page 4-2
• “Run Polyspace Bug Finder on Server and Upload Results to Web Interface”

4 Run Polyspace Analysis with Windows or Linux Scripts

4-18

Run Polyspace Analysis with MATLAB
Scripts

• “Integrate Polyspace with MATLAB and Simulink” on page 5-2
• “Get Started with Polyspace Analysis by Using MATLAB” on page 5-5
• “Run Polyspace Analysis by Using MATLAB Scripts” on page 5-9
• “Compare Results from Different Polyspace Runs by Using MATLAB Scripts” on page 5-13
• “Generate MATLAB Scripts from Polyspace User Interface” on page 5-16
• “Troubleshoot Polyspace Analysis from MATLAB” on page 5-18

5

Integrate Polyspace with MATLAB and Simulink
Polyspace Bug Finder and Polyspace Code Prover are standalone products. Install these Polyspace
products by using the MathWorks® installer. See “Install Polyspace with Other MathWorks Products”.

Polyspace products are installed in a different root folder from other MathWorks products. For
instance, in Windows:

• The default MATLAB root folder is C:\Program Files\MATLAB\R2023a.
• The default Polyspace root folder is C:\Program Files\Polyspace\R2023a.

To run Polyspace from MATLAB, Simulink, or MATLAB Coder™, perform a post-installation procedure
to integrate Polyspace with MATLAB and Simulink.

The integration process and supported MATLAB releases might be different for previous Polyspace
releases. Check the documentation of your release if you have Polyspace from an older release.

Same Release of Polyspace and MATLAB
If Polyspace and MATLAB are both from the same release, you can do the following after integrating
Polyspace and MATLAB:

• Run a Polyspace analysis on C/C++ code generated from a model or included as custom code in a
model from the Simulink Editor. You can also run these analyses using a MATLAB script. See “Bug
Finder Analysis in Simulink”.

• If you have Embedded Coder®, run a Polyspace analysis on C/C++ code that is generated from
MATLAB code by using the MATLAB Coder App. See “Bug Finder Analysis in MATLAB Coder”.

• Run a Polyspace analysis on hand-written C/C++ code by using MATLAB scripts. See “Bug Finder
Analysis with MATLAB Scripts”.

Note that the MATLAB-Polyspace integration does not make the Polyspace documentation available
within the MATLAB Help Browser. You can continue to access the Polyspace documentation online.

Prerequisite

Before you integrate Polyspace with MATLAB or Simulink from the same release, determine if your
MATLAB or Simulink is already integrated with Polyspace. See “Check Integration Between MATLAB
and Polyspace” on page 5-4.

Integrate Polyspace with MATLAB or Simulink

1 Open MATLAB with administrator or root privileges. For instance, in Windows, to open MATLAB
with administrator privilege, right-click the MATLAB executable and select Run as
administrator.

2 At the MATLAB command prompt, enter the following:

polyspacesetup('install');

If you installed Polyspace in the default folder C:\Program Files\Polyspace\R2023a, the
command integrates Polyspace with MATLAB. If a Polyspace installation is not detected at the
default location, you are prompted for the installation location. Alternatively, use:

polyspacesetup('install','polyspaceFolder',Folder)

5 Run Polyspace Analysis with MATLAB Scripts

5-2

where Folder is the Polyspace installation folder. If you are prompted that the workspace will be
cleared and that all open models closed, click Yes. The process might take a few minutes to
complete. To avoid interactive prompts, enter:

polyspacesetup('install', 'polyspaceFolder', Folder, 'silent', true);
3 Restart MATLAB.

You can also perform the integration by using a script. See “Integrate Polyspace Noninteractively
with MATLAB at Command Line by Using -batch”.

Unlink and Relink MATLAB and Polyspace

You can integrate MATLAB with only one instance of Polyspace. To integrate with a different instance
of Polyspace, uninstall the current integration. At the MATLAB command prompt, enter:

polyspacesetup('uninstall')

This step uninstalls only the integration between MATLAB and Polyspace. To uninstall an instance of
Polyspace, use the MathWorks installer.

MATLAB Release Earlier Than Polyspace
You can also integrate Polyspace with MATLAB or Simulink from an earlier release. This cross-release
integration offers limited functionalities compared to the same-release integration. In a cross-release
workflow:

• You can run a Polyspace analysis of generated C/C++ code in the MATLAB Command Window.
• You cannot analyze custom code included in models or handwritten code.
• You cannot start Polyspace analyses from the Simulink Editor or MATLAB Coder App.

See “Polyspace Support of MATLAB and Simulink from Different Releases” on page 6-68.

Prerequisite

To perform a cross-release integration, these conditions must be true:

• The MATLAB or Simulink release supports cross-release integration with a Polyspace release. See
“Polyspace Support of MATLAB and Simulink from Different Releases” on page 6-68.

• MATLAB or Simulink is not already integrated with Polyspace.To determine if Polyspace is already
integrated, see “Check Integration Between MATLAB and Polyspace” on page 5-4.

Integrate Polyspace with Cross-Release MATLAB or Simulink

1 Open MATLAB.
2 At the MATLAB command prompt, enter:

polyspacesetup('install', 'polyspaceFolder', Folder)

where FOLDER is the Polyspace installation folder. If you are prompted that the workspace will be
cleared and that all open models closed, click Yes. The process might take a few minutes to
complete. To avoid interactive prompts, enter:

polyspacesetup('install', 'polyspaceFolder', Folder, 'silent', true);

 Integrate Polyspace with MATLAB and Simulink

5-3

3 Restart MATLAB. This integration process does not integrate the Polyspace documentation with
the MATLAB Help Browser.

In addition to using a command line prompt, you can also perform the integration by using a script.
See “Integrate Polyspace Noninteractively with MATLAB at Command Line by Using -batch”.

You can integrate MATLAB with only one instance of Polyspace. To integrate with a different instance
of Polyspace, uninstall the current integration. At the MATLAB command prompt, enter:

polyspacesetup('uninstall')

This step uninstalls only the integration between MATLAB and Polyspace. To uninstall an instance of
Polyspace, use the MathWorks installer.

Check Integration Between MATLAB and Polyspace
To determine if MATLAB is already linked to Polyspace, open MATLAB and enter:

ver

If Polyspace is integrated with MATLAB, you see the Polyspace products in the list of installed
products.

The integration of MATLAB and Polyspace adds Polyspace installation subfolders to the MATLAB
search path. To see the added paths, enter:

polyspacesetup('showpolyspacefolders')

See Also
polyspacesetup

More About
• “Polyspace Support of MATLAB and Simulink from Different Releases” on page 6-68
• “Bug Finder Analysis with MATLAB Scripts”
• “Bug Finder Analysis in Simulink”
• “Bug Finder Analysis in MATLAB Coder”
• “Fix Issues When when Integrating Polyspace with MATLAB and Simulink” on page 32-65

5 Run Polyspace Analysis with MATLAB Scripts

5-4

Get Started with Polyspace Analysis by Using MATLAB
This tutorial shows how to analyze handwritten C/C++ code by running a Polyspace analysis from the
MATLAB Command Window or the MATLAB Editor. To analyze code generated from a Simulink
model, see “Run Polyspace Analysis on Code Generated from Simulink Model” on page 6-15.

Prerequisites
Integrate Polyspace with MATLAB before you run a Polyspace analysis from the MATLAB Command
Window. See “Integrate Polyspace with MATLAB and Simulink” on page 5-2.

Run Polyspace Analysis by Using MATLAB
You analyze handwritten C code by configuring and then starting a Polyspace analysis from the
MATLAB Command Window or the MATLAB Editor.

To perform a Polyspace analysis, create a polyspace.Project object, specify the source files and
the analysis options, and then start the analysis by using this object. To create a
polyspace.Project object, use the function polyspace.Project.

psPrj = polyspace.Project;

In this tutorial, the handwritten code in the file numerical.c is analyzed. The file numerical.c is
part of your Polyspace software. This source file and the header files required to analyze it can be
found in the folder polyspaceroot\polyspace\examples\cxx\Bug_Finder_Example
\sources. Here, polyspaceroot is the location of the Polyspace installation folder in your
development environment. Create the paths to these source and header files by using the function
fullfile.

% Create the Path to source and header files
sourceFile = fullfile(polyspaceroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c');
includeFolder = fullfile(polyspaceroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources');

Associate the source and header files with the psPrj object.

% Associate the source and header files
psPrj.Configuration.Sources = {sourceFile};
psPrj.Configuration.EnvironmentSettings.IncludeFolders = {includeFolder};

Configure the Polyspace analysis options. For instance, you can specify the compiler for the Polyspace
analysis and check for violation of specific coding rules. You can also specify a folder where you store
the generated results. For instance, store the results in the folder 'results' in the current working
directory.

% Specify target compiler
psPrj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
% Enable Mchecking for MISRA C violation
psPrj.Configuration.CodingRulesCodeMetrics.EnableMisraC3 = true;
psPrj.Configuration.CodingRulesCodeMetrics.MisraC3Subset = 'mandatory';
% Specify results folder
psPrj.Configuration.ResultsDir = fullfile(pwd,'results');

 Get Started with Polyspace Analysis by Using MATLAB

5-5

The variable pwd contains the path of the current working directory. For details on configurable
Polyspace analysis options, see polyspace.Project.Configuration Properties.

Start the Polyspace analysis by using the function run.

% start BugFinder analysis
bfStatus = run(psPrj, 'bugFinder');

The progress of the Polyspace analysis appears in the MATLAB Command Window. When the analysis
is successful, bfStatus is set to 0.

The Polyspace analysis result consists of a list of Bug Finder defects. To view a summary of the Bug
Finder defects in a MATLAB table, use the function getSummary. For more details about obtaining
summary of different kinds of results, see getSummary.

% Obtain list of Bug Finder defects
resObj = psPrj.Results;
bfSummary = getSummary(resObj, 'defects');

The Bug Finder defects are listed in the 9x4 table bfSummary.

Frequently Used MATLAB Functions
This table lists some MATLAB functions that you can use for automating a Polyspace analysis from
the MATLAB Editor or Command Window.

Function Application
fopen Opens a file for binary read access. For instance, use this function to

read an error log file.
fclose Closes a file that was opened by using fopen. For instance, use this

function to close an error log file after reading it.
open Opens a file outside MATLAB in an appropriate application. For

instance, use this function to open psprj files in the Polyspace UI.

5 Run Polyspace Analysis with MATLAB Scripts

5-6

Function Application
exist Checks for the existence of an entity. For instance, use this function to

check if a particular folder or file already exists.
delete Deletes a file or an object. For instance, use this function to delete

older results or unnecessary options objects.
questdlg Creates a configurable dialog box. Use this function to change

different settings of a Polyspace analysis in a script. For instance, you
can choose to enable different coding rules based on the output of this
function.

clear Clears the workspace by deleting all objects. You can this function at
the beginning of the Polyspace analysis.

clc Clears all text from the MATLAB Command Window.
fullfile Builds full file names from its parts. For instance, use this function to

construct the full paths to source files.
char Converts an array to a character array. For instance, use this function

to construct the input arguments to functions that take character
arrays.

string Converts a variable into string arrays. For instance, use this function
to construct input arguments for functions that take strings.

dir Lists the content of the current working folder. For instance, use this
function to find specific files or folders in the current folder.

system Executes operating system commands and returns their outputs. For
instance, use this function to execute a command-line script without
exiting MATLAB.

disp Displays the value of the input variable. For instance, use this function
for debugging code, similar to how printf() is used in C code.

visdiff Compares two files or folder. For instance, use this function to
compare results from different Polyspace analysis to see the
difference.

ismember Determines if the elements in one array are also present in another
array. For instance, use this function to check if a checker or coding
rule is enabled in a Polyspace analysis, or to filter results to find a
specific check.

any Determines if any array elements are nonzero. For instance, use this
function to check for new results.

nnz Returns the number of nonzero matrix elements. For instance, use
this function to check for new results.

fieldnames Reads a structure, a Java object, or a Microsoft COM object and
returns the field names. For instance, use this function to read and
manipulate tables.

See Also
polyspace.Project | polyspaceBugFinder | run

 Get Started with Polyspace Analysis by Using MATLAB

5-7

Related Examples
• “Run Polyspace Analysis by Using MATLAB Scripts” on page 5-9
• “Visualize Bug Finder Analysis Results in MATLAB” on page 24-11
• “Troubleshoot Polyspace Analysis from MATLAB” on page 5-18
• “Generate MATLAB Scripts from Polyspace User Interface” on page 5-16

5 Run Polyspace Analysis with MATLAB Scripts

5-8

Run Polyspace Analysis by Using MATLAB Scripts
You can automate the analysis of your C/C++ code by using MATLAB scripts. In your script, you
specify your source files and analysis options such as compiler, run an analysis, and read the analysis
results to MATLAB tables.

For instance, use this script to run a Polyspace Bug Finder analysis on a sample file:

proj = polyspace.Project

% Specify sources and includes
sourceFile = fullfile(polyspaceroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c');
includeFolder = fullfile(polyspaceroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources');

% Configure analysis
proj.Configuration.Sources = {sourceFile};
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.EnvironmentSettings.IncludeFolders = {includeFolder};
proj.Configuration.ResultsDir = fullfile(pwd,'results');

% Run analysis
bfStatus = run(proj, 'bugFinder');

% Read results
resObj = proj.Results;
bfSummary = getSummary(resObj, 'defects');

See also polyspace.Project.

Prerequisites
Before you run Polyspace from MATLAB, you must link your Polyspace and MATLAB installations. See
“Integrate Polyspace with MATLAB and Simulink” on page 5-2.

Specify Multiple Source Files
You can specify a folder containing all your source files. For instance, if proj is a
polyspace.Project, object, enter:

sourceFolder = fullfile(polyspaceroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources');
proj.Configuration.Sources = {fullfile(sourceFolder,'*')};

You can also specify multiple source folders in the cell array.

You can specify a folder that contains all your source files both directly and in subfolders. For
instance:

sourceFolder = fullfile(polyspaceroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources');
proj.Configuration.Sources = {fullfile(sourceFolder,'**')};

If you do not want to analyze all files in a folder, you can explicitly specify which files to analyze. For
instance:

 Run Polyspace Analysis by Using MATLAB Scripts

5-9

sourceFolder = fullfile(polyspaceroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources');
file1 = fullfile(sourceFolder,'numerical.c');
file2 = fullfile(sourceFolder,'staticmemory.c');
proj.Configuration.Sources = {file1, file2};

You can explicitly exclude files from analysis. For instance:

% Specify source folder.
sourceFolder = fullfile(polyspaceroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources');
proj.Configuration.Sources = {fullfile(sourceFolder,'**')};

% Specify files to exclude.
file1 = fullfile(sourceFolder,'security.c');
file2 = fullfile(sourceFolder,'tainteddata.c');
proj.Configuration.InputsStubbing.DoNotGenerateResultsFor = ['custom=' file1 ...
 ',' file2];

However, this method of exclusion does not apply to Code Prover run-time error checking.

Check for MISRA C:2012 Violations
You can customize the Polyspace analysis to check for MISRA C:2012 rule violations.

Set options for checking MISRA C:2012 rules. Disable the regular Bug Finder analysis, which looks
for defects.

If proj is a polyspace.Project object, to run a Bug Finder analysis with all mandatory MISRA
C:2012 rules, enter:

% Enable MISRA C checking
proj.Configuration.CodingRulesCodeMetrics.EnableMisraC3 = true;
proj.Configuration.CodingRulesCodeMetrics.MisraC3Subset = 'mandatory';

% Disable defect checking
proj.Configuration.BugFinderAnalysis.EnableCheckers = false;

% Run analysis
bfStatus = run(proj, 'bugFinder');

% Read summary of results
resObj = proj.Results;
misraSummary = getSummary(resObj, 'misraC2012');

Check for Specific Defects or Coding Rule Violations
Instead of the default set of defect or coding rule checkers, you can specify your own set.

If proj is a polyspace.Project object, to disable MISRA C:2012 rules 8.1 to 8.4, enter:

% Disable rules
misraRules = polyspace.CodingRulesOptions('misraC2012');

misraRules.Section_8_Declarations_and_definitions.rule_8_1 = false;
misraRules.Section_8_Declarations_and_definitions.rule_8_2 = false;

5 Run Polyspace Analysis with MATLAB Scripts

5-10

misraRules.Section_8_Declarations_and_definitions.rule_8_3 = false;
misraRules.Section_8_Declarations_and_definitions.rule_8_4 = false;

% Configure analysis
proj.Configuration.CodingRulesCodeMetrics.EnableMisraC3 = true;
proj.Configuration.CodingRulesCodeMetrics.MisraC3Subset = misraRules;

See also polyspace.CodingRulesOptions.

To enable Bug Finder defects, use the class polyspace.DefectsOptions. One difference between
coding rules and defects class is that coding rule checkers are enabled by default. You disable the
ones that you do not want. All defect checkers are disabled by default. You enable the ones that you
want.

You can also specify a coding standard XML file that enables coding rules from different standards.
When checking for coding rule violations, you can refer to the file. For instance, to use the template
XML file StandardsConfiguration.xml provided with the product in the subfolder polyspace
\examples\cxx\Bug_Finder_Example\sources, enter:

pathToTemplate = fullfile(polyspaceroot,'polyspace','examples',...
 'cxx','Bug_Finder_Example','sources','StandardsConfiguration.xml');
proj.Configuration.CodingRulesCodeMetrics.EnableMisraC3 = true;
proj.Configuration.CodingRulesCodeMetrics.MisraC3Subset = 'from-file';
proj.Configuration.CodingRulesCodeMetrics.EnableCheckersSelectionByFile = true;
proj.Configuration.CodingRulesCodeMetrics.CheckersSelectionByFile = pathToTemplate;

Find Files That Do Not Compile
If one or more of your files contain a compilation error, the analysis continues with the remaining
files. You can choose to stop analysis on compilation errors.

If proj is a polyspace.Project object, to stop analysis on compilation errors, enter:

proj.Configuration.EnvironmentSettings.StopWithCompileError = true;

However, it is more convenient to let the analysis complete and capture all compilation errors from
the analysis log file. For more information, see “Troubleshoot Polyspace Analysis from MATLAB” on
page 5-18.

Run Analysis on Server
You can run an analysis on a remote server instead of your local desktop. Once you have set up
connection to a server, you can run the analysis in batch mode. For setup information, see “Install
Products for Submitting Polyspace Analysis from Desktops to Remote Server”.

Specify that the analysis must run on a server. Specify a folder on your desktop where results are
downloaded after analysis. If proj is a polyspace.Project object, to configure analysis on a
server, enter:

proj.Configuration.MergedComputingSettings.BatchBugFinder = true;
proj.Configuration.ResultsDir = fullfile(pwd,'results');

Specify the head node that manages the Polyspace jobs:

proj.Configuration.Advanced.Additional = '-schedular nodeHost'

 Run Polyspace Analysis by Using MATLAB Scripts

5-11

Run analysis as usual.

run(proj, 'bugFinder');

Open the results from the results folder location.

pslinkfun('openresults', '-resultsfolder', proj.Configuration.ResultsDir);

If the analysis is complete and the results have been downloaded, they open in the Polyspace user
interface.

See Also
polyspace.Project | polyspaceBugFinder | -scheduler

Related Examples
• “Generate MATLAB Scripts from Polyspace User Interface” on page 5-16
• “Visualize Bug Finder Analysis Results in MATLAB” on page 24-11
• “Troubleshoot Polyspace Analysis from MATLAB” on page 5-18

5 Run Polyspace Analysis with MATLAB Scripts

5-12

Compare Results from Different Polyspace Runs by Using
MATLAB Scripts

This topic shows how to run Polyspace by using MATLAB scripts, save each result in a separate
folder, and see only new or unreviewed results compared to the last run.

If your project consists of legacy code, it is often beneficial to run a preliminary analysis. In the
subsequent runs, you can focus only on results related to newly added code.

Review Only New Results Compared to Last Run
To see only new results, specify that the current run must import results and comments from the
results folder of the last run.

This script saves results of each Polyspace run in a separate folder and compares each result set with
the result set from the previous run.

• The first time you run the script, all results are new and stored in the variable newResTable.
• If you run the script a second time without modifying the files in between, there are no new

results. The variable newResTable contains an empty table and an appropriate message is
displayed.

If you modify files in between two runs, the variable newResTable contains only results related to
the modifications.

proj = polyspace.Project;

% Specify sources and includes
sourceFile = fullfile(polyspaceroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c');
includeFolder = fullfile(polyspaceroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources');

% Create results folder name based on time of analysis
runTime = datetime('now','Format',"d_MMM_y_H'h'_m'm'");
resultsFolder = ['results_', char(runTime)];

% Configure analysis
proj.Configuration.Sources = {sourceFile};
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.EnvironmentSettings.IncludeFolders = {includeFolder};
proj.Configuration.ResultsDir = fullfile(pwd, resultsFolder);

% Set up import from previous results if a previous result folder exists
if isfile('lastResultFolder.mat')
 load('lastResultFolder.mat', 'lastResultsFolder');
 proj.Configuration.ImportComments = fullfile(pwd, lastResultsFolder);
end
lastResultsFolder = resultsFolder;
save('lastResultFolder.mat', 'lastResultsFolder');

% Run analysis
bfStatus = run(proj, 'bugFinder');

 Compare Results from Different Polyspace Runs by Using MATLAB Scripts

5-13

% Read results
resObj = proj.Results;
resTable = getResults(resObj);
matches = (resTable.New == 'yes');
newResTable = resTable(matches ,:);
if isempty(newResTable)
 disp('There are no new results.')
end

The key functions used in this example are:

• polyspace.Project: Run a Polyspace analysis and read the results to a table.

• To specify a results folder, use the property Configuration.ResultsDir.
• To specify a previous results folder to import results from, use the property

Configuration.ImportComments.
• datetime: Read the current time, convert to an appropriate format, and append it to the results

folder name.
• load and save: Load the previous results folder name from a MAT-file lastResultFolder.mat

and save the current results folder name to the MAT-file for subsequent runs.

Review New Results and Unreviewed Results from Last Run
Instead of focusing on new results only, you can choose to focus on unreviewed results. Unreviewed
results include new results and results from the last run that were not assigned a status in the
Polyspace user interface.

To focus on unreviewed results, replace this section of the previous script:

% Read results
resObj = proj.Results;
resTable = getResults(resObj);
matches = (resTable.New == 'yes');
newResTable = resTable(matches ,:);
if isempty(newResTable)
 disp('There are no new results.')
end

with this section:

% Read results
resObj = proj.Results;
resTable = getResults(resObj);
matches = (resTable.Status == 'Unreviewed');
unrevResTable = resTable(matches ,:);
if isempty(unrevResTable)
 disp('There are no unreviewed results.')
end

See Also
polyspace.Project | datetime | load | save

5 Run Polyspace Analysis with MATLAB Scripts

5-14

More About
• “Run Polyspace Analysis by Using MATLAB Scripts” on page 5-9

 Compare Results from Different Polyspace Runs by Using MATLAB Scripts

5-15

Generate MATLAB Scripts from Polyspace User Interface
You can specify analysis options in the Polyspace user interface and later generate a MATLAB script
for easier reuse of those options.

In the user interface, to determine which options to specify, you have tooltips, autocompletion of
function names, context-sensitive help and so on. After you specify the options, you can generate a
MATLAB script. For subsequent analyses, you can modify and run the script without opening the
Polyspace user interface.

Prerequisites
Before you run Polyspace from MATLAB, you must link your Polyspace and MATLAB installations. See
“Integrate Polyspace with MATLAB and Simulink” on page 5-2.

Create Scripts from Polyspace Projects
To start an analysis in the Polyspace user interface, create a project. In the project:

• You specify source and include folders during project creation.
• You specify analysis options such as compiler or multitasking in your project configuration. You

also enable or disable checkers.

From this project, you can generate a script that contains your sources, includes and other analysis
options. To begin, select File > New Project. For details, see “Add Source Files for Analysis in
Polyspace Desktop User Interface” on page 2-2.

This example uses a sample project. To open the project, select Help > Examples >
Code_Prover_Example.psprj. You see the options in the project configuration. For instance, on the
Target & Compiler node, you see a generic compiler and an i386 processor.

1 Open MATLAB.

5 Run Polyspace Analysis with MATLAB Scripts

5-16

2 Create a polyspace.Options object from the sample Polyspace project.

projectFile = fullfile(polyspaceroot, 'polyspace', 'examples', 'cxx', ...
 'Code_Prover_Example', 'Code_Prover_Example.psprj');
opts = polyspace.loadProject(projectFile);

If a project has more than one module (with more than one configuration in each module), the
options from the currently active configuration in the currently active module will be extracted in
the options object. You cannot use the loadProject method on a project file that is created
from a build command by using polyspace-configure.

3 Append the object to a MATLAB script.

filePath = opts.toScript('runPolyspace.m','append');

Open the script runPolyspace.m. You see the options that you specified from the user interface.
For instance, you see the compiler and target processor.

opts.TargetCompiler.Compiler = 'generic';
opts.TargetCompiler.Target = 'i386';

Later, you can run the script to create a polyspace.Options object.

run(filePath);

The preceding example converts the sample project Code_Prover_Example directly to a script.
When you open the sample project in the user interface, a copy is loaded into your Polyspace
workspace. If you make changes to the sample project, the changes are made to the copied version.
To see the changes in your MATLAB script, provide the copied project path to the loadProject
method. To see the location of your workspace, select Tools > Preferences and view the Project
and Results Folder tab.

See Also

Related Examples
• “Run Polyspace Analysis by Using MATLAB Scripts” on page 5-9

 Generate MATLAB Scripts from Polyspace User Interface

5-17

Troubleshoot Polyspace Analysis from MATLAB
When you run a Polyspace analysis on your C/C++ code, if one or more of your files fail to compile,
the analysis continues with the remaining files. You can choose to stop the analysis on compilation
errors.

proj = polyspace.Project;
proj.Configuration.EnvironmentSettings.StopWithCompileError = true;

However, it is more convenient to let the analysis complete and capture all compilation errors.

The compilation errors are displayed in the analysis log that appears on the MATLAB command
window. The analysis log also contains the options used and the various stages of analysis. The lines
that indicate errors begin with the Error: string. Find these lines and extract them to a log file for
easier scanning. Produce a warning to indicate that compilation errors occurred.

Prerequisites
Before you run Polyspace from MATLAB, you must link your Polyspace and MATLAB installations. See
“Integrate Polyspace with MATLAB and Simulink” on page 5-2.

Capture Polyspace Analysis Errors in Error Log
The function runPolyspace defined later captures the output from the command window using the
evalc function and stores lines starting with Error: in a file error.log. You can call
runPolyspace with paths to your source and include folders.

For instance, you can call the function with paths to demo source files in the subfolder polyspace/
examples/cxx/Bug_Finder_Example/sources of the MATLAB installation folder.

sourcePath = fullfile(polyspaceroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources');
includePath = fullfile(polyspaceroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources');
[status, resultsSummary] = runPolyspace(sourcePath, includePath);

The function is defined as follows.

function [status, resultsSummary] = runPolyspace(sourcePath, libPath)
% runPolyspace takes two string arguments: source and include folder.
% The files in the source folder are analyzed for defects.
% If one or more files fail to compile, the errors are saved in a log.
% A warning on the screen indicates that compilation errors occurred.

 proj = polyspace.Project;

 % Specify sources
 proj.Configuration.Sources = {fullfile(sourcePath,'*')};

 % Specify compiler and paths to libraries
 proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
 proj.Configuration.EnvironmentSettings.IncludeFolders = {fullfile(libPath,'*')};

 % Run analysis

5 Run Polyspace Analysis with MATLAB Scripts

5-18

 runMode = 'bugFinder';
 [logFileContent,status] = evalc('run(proj, runMode)');

 % Open file for writing errors
 errorFile = fopen('error.log','wt+');

 % Check log file for compilation errors
 numErrors = 0;

 log = strsplit(logFileContent,'\n');
 errorLines = find(contains(log, {'Error:'}, 'IgnoreCase', true));
 for ii=1:numel(errorLines)
 fprintf(errorFile, '%s\n', log{errorLines(ii)});
 numErrors = numErrors + 1;
 end

 if numErrors
 warning('%d compilation error(s). See error.log for details.', numErrors);
 end

 fclose(errorFile);

 % Read results
 resObj = proj.Results;
 resultsSummary = getSummary(resObj, 'defects');
end

The analysis log is also captured in a file Polyspace_R20##n_ProjectName_date-time.log.
Instead of capturing the output from the command window, you can search this file.

You can adapt this script for other purposes. For instance, you can capture warnings in addition to
errors. The lines with warnings begin with Warning:. The warnings indicate situations where the
analysis proceeds despite an issue. The analysis makes an assumption to work around the issue. If the
assumption is incorrect, you can see errors later or in rare cases, incorrect analysis results.

See Also
polyspace.Project

Related Examples
• “Run Polyspace Analysis by Using MATLAB Scripts” on page 5-9
• “Troubleshoot Compilation Errors”

 Troubleshoot Polyspace Analysis from MATLAB

5-19

Run Polyspace Analysis in Simulink

6

Run Polyspace Analysis on Code Generated with Embedded
Coder

If you generate code from a Simulink model by using Embedded Coder or TargetLink®, you can
analyze the generated code for bugs or run-time errors with Polyspace from within the Simulink
environment. You do not have to manually set up a Polyspace project.

This topic uses Embedded Coder for code generation. For analysis of TargetLink-generated code, see
“Run Polyspace Analysis on Code Generated with TargetLink” on page 6-62.

For a tutorial with a specific model, see “Run Polyspace Analysis on Code Generated from Simulink
Model” on page 6-15.

You might want to analyze the generated code outside Simulink with other handwritten code. In this
workflow, extract the Polyspace options and run the analysis , for instance, from the Windows
Command Line. See “Run Polyspace Analysis on Generated Code by Using Packaged Options Files”
on page 6-29. For older releases, Polyspace supports navigating from the generated code back to
model. See “Navigate Back to Model” on page 6-71.

Prerequisites
Before you run Polyspace from Simulink, you must link your Polyspace and MATLAB installations. See
“Integrate Polyspace with MATLAB and Simulink” on page 5-2.

Generate and Analyze Code

Configure Code Generation and Generate Code

To configure code generation and generate code from a model, do one of the following:

• On the Apps tab, select Embedded Coder. Then, on the C Code tab, select Quick Start. Follow
the on-screen instructions.

• On the C Code tab, click Settings and configure code generation through Simulink configuration
parameters. The chief parameters to set are:

• Type (Simulink): Select Fixed-step.
• Solver (Simulink): Select auto (Automatic solver selection) or Discrete (no continuous

states).
• System target file (Simulink Coder): Enter ert.tlc or autosar.tlc. If you derive target files

from ert.tlc, you can also specify them.
• Code-to-model (Embedded Coder): Select this option to enable links from code to model.

6 Run Polyspace Analysis in Simulink

6-2

For the full list of parameters to set, see “Recommended Model Configuration Parameters for
Polyspace Analysis” on page 6-51.

Alternatively, run the Code Generation Advisor with the objective Polyspace and see if the
required parameters are already set. See “Configure Model for Code Generation Objectives by
Using Code Generation Advisor” (Embedded Coder).

To generate code from the model, on the C Code tab, select Generate Code. You can follow the
progress of code generation in the Diagnostic Viewer.

Configure Code Analysis

On the Apps tab, select Polyspace Code Verifier. On the Polyspace tab:

1 Select the product to run: Bug Finder or Code Prover. A Code Prover analysis detects run-time
errors while a Bug Finder analysis detects coding defects and coding rule violations.

2 Select Settings. If needed, change default values of these options.

• Settings from: Enable checking of MISRA™ coding rules in addition to the default checks
specified in the project configuration. The default Bug Finder checks look for coding defects.
The default Code Prover checks look for run-time errors.

• “Input”, “Tunable parameters” and “Output”: Constrain inputs, tunable parameters, or
outputs for a more precise Code Prover analysis.

• “Output folder”: Specify a dedicated folder for results. The default analysis saves the results
in a folder results_modelName in the current working folder.

• “Open results automatically after verification”

Analyze Code

To analyze the code generated from the model, click anywhere on the canvas. The Analyze Code
from field shows the model name. Select Run Analysis.

When using Embedded Coder, Polyspace checks for generated code when you click Run Analysis. If
no generated code is present or if the model has changed since the last Polyspace analysis, Polyspace
first launches the code generation process and then starts the analysis.

If the current model is referenced in another model and you want to verify the generated code in the
context where the model is referenced, instead of Code Generated as Top Model, use Code
Generated as Model Reference. In the latter case, Polyspace does not launch code generation
automatically if there's no generated code. When analyzing Code Generated as Model Reference,
generate code before running the Polyspace analysis.

You can follow the progress of the analysis in the MATLAB Command Window.

The results open automatically unless explicitly disabled. By default, the results are saved in a folder
results_ModelName in the current folder. Each new run overwrites previous results. You can

 Run Polyspace Analysis on Code Generated with Embedded Coder

6-3

change the default folders or save the results to a Simulink project. To make these changes, on the
Polyspace tab, select Settings.

If you have closed the results and want to open them later, on the Polyspace tab, select Analysis
Results. To open a result prior to the last run, select Open Earlier Results and navigate to the
folder containing the previous results.

Review Analysis Results

Review Results in Code

The results appear in the Polyspace user interface on the Results List pane. Click each result to see
the source code on the Source pane and details on the Result Details pane. See also:

• “Interpret Bug Finder Results in Polyspace Desktop User Interface” on page 21-2
• “Bug Finder Defect Groups” on page 18-43
• “Address Results in Polyspace User Interface Through Bug Fixes or Justifications” on page 22-2
• “Filter and Group Results in Polyspace Desktop User Interface” on page 23-2

Navigate from Code to Model

Links in code comments show blocks that generate the subsequent lines of code. To see the blocks in
the model, click the block names in the links. If you encounter issues, see “Troubleshoot Navigation
from Code to Model” on page 6-66.

Alternatively, you can right-click a variable name and select Go to Model. This option is not available
for all variables. Only a subset of source code variables can be directly traced to a Simulink block.

6 Run Polyspace Analysis in Simulink

6-4

The Go to Model options is available for such a variable. For more details on which variables in
generated code can be traced to Simulink blocks, see “Trace Simulink Model Elements in Generated
Code” (Embedded Coder).

Fix Issue

Investigate whether the issues in your code are related to design flaws in the model.

Design flaws in the model can lead to issues in the generated code. For instance:

• The generated code might be free of specific run-time errors only for a certain range of a block
parameter. To fix this issue, you can change the storage class of that block parameter or use
calibration data for the analysis by using the configuration parameter “Tunable parameters”.

• The generated code might be free of specific run-time errors only for a certain range of inputs. To
determine this error-free range, you can specify a minimum and maximum value for the Inport
block signals. The Polyspace analysis uses this constrained range. See “Work with Signal Ranges
in Blocks” (Simulink).

• Certain transitions in Stateflow® charts can be unreachable.

You might integrate the generated code with handwritten code. A Polyspace analysis can detect
coding defects and coding rule violations stemming from the integration. If you include any
handwritten code in your Simulink model, you can analyze the included handwritten code in isolation.
See:

• “Run Polyspace Analysis on Custom Code in C Function Block” on page 6-45
• “Run Polyspace Analysis on Custom Code in C Caller Blocks and Stateflow Charts” on page 6-37
• “Run Polyspace Analysis on S-Function Code” on page 6-35

Annotate Blocks to Justify Issues
You might want to justify some Polyspace results without modifying the code or the model. Annotate
Simulink blocks either from the Polyspace user interface or the Simulink editor. See “Address
Polyspace Results by Annotating Simulink Blocks” on page 6-6.

See Also

More About
• “Configure Polyspace Options in Simulink” on page 6-53

 Run Polyspace Analysis on Code Generated with Embedded Coder

6-5

Address Polyspace Results by Annotating Simulink Blocks

When reviewing Polyspace results, you might want to address known Polyspace results by adding
justifications. Annotate the relevant Simulink blocks with the justification in the Simulink Editor or
the Polyspace User Interface. Polyspace supports annotating these results:

• Code Prover run-time error checks. See “Run-Time Checks” (Polyspace Code Prover).
• Bug Finder defects. See “Defects”.
• MISRA C:2004, MISRA AC AGC, and MISRA C:2012 coding rules. See “MISRA C:2004 Rules” and

“MISRA C:2012 Directives and Rules”.
• MISRA C++:2008 coding rules. See “MISRA C++:2008 Rules”.
• CERT C and C++ rules. See “CERT C Rules and Recommendations” and “CERT C++ Rules”.
• AUTOSAR C++14 rules. See “AUTOSAR C++14 Rules”.
• ISO-17961 rules. See “ISO/IEC TS 17961 Rules”.
• Custom naming convention rules. See “Custom Coding Rules”.
• Software complexity guidelines. See “Guidelines”.

After you annotate a block, code operations generated from the block show results that are
prepopulated with your comments. If you annotate a subsystem block or a block that leads to a
function call, code operations generated from the block do not show your comments in the analysis
results. If the block is a Lookup Table, enable the Stub lookup tables instead of using
annotations. See Stub lookup tables

In code generated by using Embedded Coder, there are known deviations from MISRA C:2012. See
“Deviations Rationale for MISRA C:2012 Compliance” (Embedded Coder). Justify these known issues
by annotating blocks.

Annotations in Simulink blocks or in generated code do not take the history of the analysis into
account. If you update your model, the Polyspace results might change while the annotations do not.
Updating the model might render the existing annotations outdated. Update your annotations when
you update your model or generated code.

Annotate Blocks Through Polyspace User Interface
If you use Embedded Coder to generate code, you can annotate Simulink blocks directly through the
Polyspace UI. Locate the issue that you want to annotate, and then enter review information by
adding Severity, Status, and optional notes in the Result Details pane. For instance:

• Set the Status of the issue to To Investigate
• Set the Comment for the issue to Might Impact "Module"

In the source code, right-click the variable showing the issue (or another variable in the same
expression) and from the context menu, select Annotate Block.

6 Run Polyspace Analysis in Simulink

6-6

The review information carries over to the Simulink Editor as block annotation where the annotated
block is highlighted.

You can annotate a Simulink block multiple times. Subsequent annotations on a block are appended
to previous annotations. These annotations cannot be seen in the Simulink Editor. When you analyze
the generated code by using Polyspace, these annotations are displayed as review information in the
Result details pane of the Polyspace UI.

 Address Polyspace Results by Annotating Simulink Blocks

6-7

The option Annotate Block is available for code elements that can be traced to a Simulink block. For
more information, see “Trace Simulink Model Elements in Generated Code” (Embedded Coder).

Annotate Blocks in Simulink Editor
To annotate a block in the Simulink Editor, select the block and on the Polyspace tab, select Add
Annotation. In the Polyspace Annotation window:

• Select the type of Polyspace result that you want to annotate from the drop-down list Annotation
Type.

• If you want to annotate multiple results of the same type, enter a comma-separated list of result
acronyms in the text box. See:

• “Short Names of Bug Finder Defect Groups and Defect Checkers” on page 30-11
• “Short Names of Code Prover Run-Time Checks” (Polyspace Code Prover)

• If you want to annotate only one result, select Only 1 check. The text box is converted into a
dropdown list. Select the result that you want to annotate from this dropdown list.

• In the corresponding text boxes, enter the status, severity, and comment that you want to assign
to the results.

In the Polyspace Annotation window, you can annotate a single type of Polyspace result at a time.
To annotate multiple types of results, open the Polyspace Annotation window multiple times. Each
time, add an annotation corresponding to one type of Polyspace result. The different annotations are
appended to each other. These annotations cannot be seen in the Simulink Editor. When you analyze
the generated code by using Polyspace, these annotations are displayed as review information in the
Result details pane of the Polyspace UI.

Sometimes operations in the generated code cause orange checks in Code Prover. Suppose an
operation potentially overflows. The generated code protects against the overflow by following the
operation with a saturation. Polyspace still flags the possible overflow as an orange check. To justify
these checks through code comments, specify the configuration parameter Operator annotations
(Embedded Coder).

Limitations

When you copy an annotated block, and then use it in a different model or in a different position in
the same model, the changed context can render the annotation incorrect:

• Polyspace does not allow annotation in blocks inside libraries and nonatomic subsystems because
these blocks are reused in many different contexts. For instance, you cannot annotate a block
inside a library block and justify results on all instances of the library block.

• Simulink does not retain Polyspace annotations in blocks that are copied to a different model or in
a different position in the same model.

See Also

More About
• “Configure Polyspace Options in Simulink” on page 6-53

6 Run Polyspace Analysis in Simulink

6-8

Changes in Polyspace Analysis Workflows in Simulink in
R2019b

In R2019b, a toolstrip with contextual buttons replaces the menus and toolbars in the Simulink
Editor. The Simulink toolstrip includes contextual tabs, which appear only when you need them.

Code generation and verification tasks appear in separate tabs on the Simulink toolstrip.

• To generate code, open the C Code tab. To access this tab, on the Apps tab, select Embedded
Coder.

• To analyze the generated code, open the Polyspace tab. To access this tab, on the Apps tab,
select Polyspace Code Verifier.

Code Verification Workflow in a Nutshell
After code generation, on the Polyspace tab, use these steps to perform code verification:

1 Select product to run:

For instance, select Bug Finder.
2 Specify code analysis options:

Optionally, configure code analysis options. To configure the basic options related to the model,
select Settings > Polyspace Settings. To configure advanced options related to the generated
code, select Settings > Project Settings.

3 Specify which code to analyze:

Select whether to analyze the code generated for standalone use (typically, in the
modelname_ert_rtw folder), the code generated for referencing in another context (typically, in
the slprj folder), or the custom code called from C Caller blocks or Stateflow charts.

4 Run analysis:

To start an analysis, select Run Analysis. The analysis runs on the model element selected,
provided code has been generated earlier from the same element. The selected element appears
in the Analyze Code from field. To select the entire model, click anywhere on the canvas outside
a model element.

Locate Pre-R2019b Menu Items in Simulink Toolstrip
All menu items available earlier in the submenu Code > Polyspace now appear on the Polyspace
tab.

 Changes in Polyspace Analysis Workflows in Simulink in R2019b

6-9

Task Before R2019b in Code >
Polyspace menu

R2019b on Polyspace tab

Specify a Bug Finder analysis. Select Options. Specify Bug
Finder for the configuration
parameter Product mode.

In the Mode group, select Bug
Finder.

Run analysis on code generated
from the model as standalone
code.

Typically, the analysis runs on
the generated code in the
modelname_ert_rtw folder.

Select Verify Code Generated
for > Model.

Click anywhere on the canvas
outside a model element. In the
toolstrip, the Analyze Code
from field displays the model
name. Below the field, select
Code Generated as Top
Model. Then, select Run
Analysis.

Run analysis on code generated
from the model for reference in
other models

Typically, the analysis runs on
the generated code in the
slprj folder.

Select Verify Code Generated
for > Referenced Model.

Click anywhere on the canvas
outside a model element. In the
toolstrip, the Analyze Code
from field displays the model
name. Below the field, select
Code Generated as Model
Reference. Then, select Run
Analysis.

Configure basic analysis options
related to the model.

Select Options. Select Settings > Polyspace
Settings.

Configure advanced analysis
options related to the generated
code.

Select Options. Click the
Configure button next to the
configuration parameter
Project Configuration.

Select Settings > Project
Settings.

Detach Polyspace options from
model configuration for sharing
with others who do not have
Polyspace.

Select Remove Options from
Current Configuration.

Select Settings > Remove
Polyspace Configuration from
Model.

Open results from the last
Polyspace analysis on the
model.

Select Open Results > For
Generated Code or Open
Results > For Generated
Model Referenced Code.

Make sure that the Analyze
Code from field states the
model name (otherwise select
anywhere on the canvas outside
a model element). Below this
field, select one of Code
Generated as Top Model or
Code Generated as Model
Reference. Then, select
Analysis Results.

6 Run Polyspace Analysis in Simulink

6-10

Task Before R2019b in Code >
Polyspace menu

R2019b on Polyspace tab

Open remote job monitor (if you
are offloading the analysis to a
server).

Select Open Job Monitor.

For remote analysis, you must
first set up communication with
a server by using Polyspace
preferences. See “Install
Products for Submitting
Polyspace Analysis from
Desktops to Remote Server”.

In the Review Results group,
select Remote Job Monitor.

For remote analysis, you must
first set up communication with
a server by using Polyspace
preferences. See “Install
Products for Submitting
Polyspace Analysis from
Desktops to Remote Server”.

Open Polyspace Metrics or
Polyspace Access web interface
if you are using one of them to
host Polyspace results.

Note Polyspace Metrics is
removed in R2021b and later
releases.

Select Open Metrics.

For opening a web interface,
you must first specify the
hostname and port number used
for the web server in Polyspace
preferences.

In the Review Results group,
select Code Quality Metrics
(Polyspace Metrics) or Access
(Polyspace Access).

For opening a web interface,
you must first specify the
hostname and port number used
for the web server in Polyspace
preferences.

See Also

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder” on page 6-2

 Changes in Polyspace Analysis Workflows in Simulink in R2019b

6-11

Run Polyspace on Code Generated by Using Previous Releases
of Simulink

You can use a more recent release of Polyspace without changing your Simulink release. See
“Polyspace Support of MATLAB and Simulink from Different Releases” on page 6-68.

In such a cross-release configuration, use the function pslinkrunCrossRelease to run a Polyspace
analysis on the code generated by using Embedded Coder. If you use Polyspace and Simulink from the
same release, see “Run Polyspace Analysis on Code Generated from Simulink Model” on page 6-15.

Prerequisite
When starting a Polyspace analysis from a different release of MATLAB or Simulink:

• The Polyspace release must be more recent compared to your Simulink release.
• Your Simulink release must be R2020b or later.
• You must integrate Polyspace with Simulink. See “Integrate Polyspace with MATLAB and

Simulink” on page 5-2.

This cross-release configuration does not support analyzing the custom code in your Simulink model.

Run a Cross-Release Polyspace Analysis
To run a Polyspace analysis of code generated by using an earlier release of Simulink, generate code
archive from the Simulink model and then call the function pslinkrunCrossRelease. Create and
customize a pslinkoptions object to modify the model configuration. For a list of configuration
options that you can modify, see pslinkrunCrossRelease. To apply Polyspace analysis options, use
an options file.

1 Open the Simulink model rtwdemo_roll and configure the model for code generation. See
“Recommended Model Configuration Parameters for Polyspace Analysis” on page 6-51.

% Load the model
model = 'rtwdemo_roll';
load_system(model);
% Configure the Solver
configSet = getActiveConfigSet(model);
set_param(configSet,'Solver','FixedStepDiscrete');
set_param(configSet, 'SystemTargetFile', 'ert.tlc');

2 The cross-release analysis requires packaging the generated code into a code archive. Set the
option PackageGeneratedCodeAndArtifacts to true.

set_param(configSet, 'PackageGeneratedCodeAndArtifacts', true)
3 Create temporary folders for code generation and generate code.

[TEMPDIR, CGDIR] = rtwdemodir();
slbuild(model);

Alternatively, create a folder in a writable location and set your MATLAB directory to the created
folder.

mkdir CodeGenFolder;
cd CodeGenFolder;

6 Run Polyspace Analysis in Simulink

6-12

4 To specify the model configuration for the Polyspace analysis, use a pslinkoptions object. To
run a Polyspace Bug Finder analysis, set psOpt.VerificationMode to 'BugFinder'.

% Create a Polyspace options object from the model.
psOpts = pslinkoptions(model);

% Set properties that define the Polyspace analysis.
psOpts.VerificationMode = 'BugFinder';

Alternatively, set psOpt.VerificationMode to 'CodeProver' to run a Polyspace Code Prover
analysis.

5 To specify Polyspace analysis options, create an options file. An options file is a text file that
contains Polyspace options in a flat list, one line for each option. For instance, to enable all
checkers and CERT C coding rules, create a text file in the current folder containing the
corresponding options.

% Create Options file
optFile = 'Options.txt';
fid = fopen(optFile,'wt');
option1 = '-checkers all';
option2 = '-cert-c all';
fprintf(fid, '%s\n%s', option1, option2);
fclose(fid);

See “Complete List of Polyspace Bug Finder Analysis Engine Options”.
6 Start a Polyspace analysis.

• To specify the model configurations for the Polyspace analysis run, set the object psOpt as
the optional second argument in pslinkrunCrossRelease.

• Because the code is generated as standalone code, set the third argument asModelRef to
false.

• To specify the Polyspace analysis options, specify the relative path to the created options file
as the fourth argument.

% Locate options file in the current folder
optionsPath = fullfile(pwd,optFile);
% Run Polyspace analysis
[~,resultsFolder] = pslinkrunCrossRelease(model,psOpts,false,optionsPath);
bdclose(model);

Follow the progress of the analysis in the MATLAB Command Window.

Review Results
In a cross-release workflow, direct calls to functions such as polyspaceBugFinder or
polyspaceCodeProver are not available. To open the results, use the function pslinkfun.

1 To open the results in the Polyspace User Interface, use the function pslinkfun. The character
vector resultsFolder contains the full path to the results folder.

pslinkfun('openresults', '-resultsfolder',resultsFolder);

You can upload the results to Polyspace Access. See “Upload Results to Polyspace Access” on
page 2-25.

2 Review the results, and fix or justify the identified issues. For more information, see “Address
Results in Polyspace User Interface Through Bug Fixes or Justifications” on page 22-2.

 Run Polyspace on Code Generated by Using Previous Releases of Simulink

6-13

See Also
pslinkrunCrossRelease | polyspacePackNGo | slbuild | packNGo | pslinkfun

More About
• “Run Polyspace Analysis on Generated Code by Using Packaged Options Files” on page 6-29
• “Run Polyspace Analysis by Using MATLAB Scripts” on page 5-9
• “Polyspace Support of MATLAB and Simulink from Different Releases” on page 6-68

6 Run Polyspace Analysis in Simulink

6-14

Run Polyspace Analysis on Code Generated from Simulink
Model

This tutorial shows how to run a Polyspace analysis on C/C++ code generated from a Simulink model.
You can also analyze C/C++ code generated from a subsystem. For the complete workflow, see “Run
Polyspace Analysis on Code Generated with Embedded Coder” on page 6-2.

Prerequisites
Before you run Polyspace from Simulink, you must link your Polyspace and MATLAB installations. See
“Integrate Polyspace with MATLAB and Simulink” on page 5-2.

To open the model used in this example, in the MATLAB Command Window, run:

openExample('polyspace_code_prover/OpenSimulinkModelForPolyspaceAnalysisExample')

Open Simulink Model for Polyspace Analysis

Open the model polyspace_controller_demo.

 Run Polyspace Analysis on Code Generated from Simulink Model

6-15

Check for Run-Time Errors in Generated Code
1 On the Apps tab, select Polyspace Code Verifier. The Polyspace tab opens.
2 On the Polyspace tab, select Code Prover in the Mode section.
3 Locate the Analyze section and select Code Generated as Top model from the drop-down list.
4 Click Run Analysis. Polyspace checks if the model has been changed since the last code

generation. If the generated code is up-to-date, Polyspace starts the analysis. If the generated
code is not up-to-date or if there is no generated code, Polyspace generates the code first and
then starts the analysis.

Alternatively, to start the analysis from the MATLAB Command Window, enter:

6 Run Polyspace Analysis in Simulink

6-16

% Load model
load_system('polyspace_controller_demo');
% Generate code
slbuild('polyspace_controller_demo');
% Create Polyspace options object
mlopts = pslinkoptions('polyspace_controller_demo');
% Specify result folder
mlopts.ResultDir ='\cp_result';
% Set analysis to Code Prover mode
mlopts.VerificationMode = 'CodeProver';
% Run analysis
pslinkrun('polyspace_controller_demo', mlopts);

For more information about running Polyspace analysis in the MATLAB Command Window, See
pslinkoptions and pslinkrun.

Review Analysis Results
After the analysis completes, the analysis results appear in the Polyspace user interface. The results
consist of color coded checks:

• Green(): The check appear on proven code that does not fail for the data constraints provided.
For instance, a division operation does not cause a Division by Zero error.

• Red(): The check appear on a verified error that always fails for the set of data constraints
provided. For instance, a division operation always causes a Division by Zero error.

• Orange(): The check indicates a possible error in unproven code that can fail for certain values
of the data constraints provided. For instance, a division operation sometimes causes a Division
by Zero error.

• Gray(): The check indicates a code operation that cannot be reached for the data constraints
provided.

Review each result in detail. In your Code Prover results:

1 On the Results List pane, locate the red Out of bounds array index check. Click the red check
().

2 On the Source pane, place your cursor on the red check on the [operator to view the tooltip. It
states the array size and possible values of the array index. The Result Details pane also
provides this information.

Both red checks occur in the handwritten C code in the C Function block Command_Strategy.

Trace and Fix Issues in the Model
Issues reported by Polyspace on generated code might be caused by issues in the model. Trace an
issue back to your model to investigate the root cause. Issues in code might occur due to a design
issue such as:

• Faulty scaling, unknown calibrations, and untested data ranges coming out of a subsystem into an
arithmetic block.

• Saturations leading to unexpected data flow inside the generated code.

 Run Polyspace Analysis on Code Generated from Simulink Model

6-17

• Faulty programming in custom code blocks such as the C Function and Stateflow blocks.

To fix design issues in the example model, identify the root cause of run-time errors reported by
Polyspace:

Illegally dereferenced pointer

1 On the Results List pane, select the Illegally dereferenced pointer check.
2 On the Source pane, click the link <Root>/Command strategy in the comments above the

error.

 /* CFunction: '<Root>/Command strategy' incorporates:
 * DataTypeConversion: '<S3>/Cast4'
 * Inport: '<Root>/Battery info'
 */
 //...
 p = &array[0];
 for (i = 0; i < 100; i++) {
 *p = 0;
 p = &p[1];
 }
 rtb_x = (int16_T)((uint16_T)rtb_y1 - in_battery_info);
 if (rtb_x < 3) {
 rtb_x = (int16_T)(*p + 5);
 //...

The Simulink Editor highlights the C Function block from which this error arises. In this block, the
pointer p is incremented 100 times, pointing *p outside the bound of array. The dereferencing
operation in rtb_x = (int16_T)(*p + 5); then causes a red Illegally dereferenced pointer
check.

One solution for this error is to point *p to a valid memory location after the for loop in the C
Function block:

// After the for loop, point p to a valid memory location
p = &(array[50]);
// ...
tmp = *p + 5;

Out of bounds array index

1 On the Results List pane, select the Out of bounds array index check.
2 On the Source pane, click the link <Root>/Command strategy in the comments above the

error.

 /* CFunction: '<Root>/Command strategy' incorporates:
 * DataTypeConversion: '<S3>/Cast4'
 * Inport: '<Root>/Battery info'
 */
 //...
 for (i = 0; i < 100; i++) {
 *p = 0;
 p = &p[1];
 }
 //...
 if ((rtb_x > 92) && (rtb_x < 110)) {
 if (another_array[(rtb_x - i) + 9] != 0) {

6 Run Polyspace Analysis in Simulink

6-18

 rtb_x = 92;
 } else {
 rtb_x = 91;
 }
 }

The Simulink Editor highlights the C Function block from which this error arises. In this block, the
value of i is set to 100 after the first for loop. The statement if ((rtb_x > 92) && (rtb_x <
110)) limits the possible value of rtb_x to 93..109. In the statement another_array[(rtb_x -
i) + 9] != 0, the possible indices for another_array range from 93+9-100 = 2 to 109+9-100
= 18. Because the array another_array has only two elements, the array access in
another_array[(rtb_x - i) + 9] results in a red Out of bounds array index run-time check.

One solution for this error is to modify the prevailing conditions on rtb_x so that the expression
[(rtb_x - i) + 9] evaluates to 0 or 1.

if ((rtb_x > 91) && (rtb_x < 93)) {
 if (another_array[(rtb_x - i) + 9] != 0) {
 rtb_x = 92;
 } else {
 rtb_x = 91;
 }
 }

Orange checks

The orange checks represent run-time errors that might occur in specific code execution path.
Review the orange checks and triage the source of these potential issues. For instance:

• Division by zero — This orange check is reported twice. One of these checks is reported in the
statement rtb_y1 = (int16_T)((int16_T)(10 * 10) / (int16_T)(10 - rtb_x)). To
trace the cause of this possible error, click the comment <S6>/Divide. The Simulink Editor
highlights the Divide block. In the execution paths where the ÷ input equals zero, the division
operation results in a Division by zero error.

To resolve this error, check that the ÷ input is not zero. For instance, use the If block and put the
Divide block in an If Action Subsystem.

 Run Polyspace Analysis on Code Generated from Simulink Model

6-19

The other Division by zero checks can be resolved using similar techniques to check for a zero
denominator.

• Out of bound array index: This orange check is reported on the statement
polyspace_controller_demo_Y.FaultTable[*i] = 10;. To trace the root cause of this
potential error, click the link S4:76 in the comments above the orange error. The Simulink Editor
highlights the Stateflow chart synch_and_asynch_monitoring. Trace the error to the input
variable index of the Stateflow chart.

6 Run Polyspace Analysis in Simulink

6-20

One solution to avoid this check is to constrain the input variable index. Use a Saturation block
before the Stateflow chart to limit the value of index from zero to 100.

• Overflow: Polyspace reports several orange Overflow checks. Resolve these checks by
constraining the inputs. For instance, consider the orange Overflow check in the statement rtb_k
= (int16_T)(((int16_T)((in_rotation + in_battery_info) >> 1) * 24576) >>
10). To trace the check back to the model, click the link S1/Gain in the comments above the
orange check. The Simulink Editor highlights the Gain block in the Fault Management
subsystem.

 Run Polyspace Analysis on Code Generated from Simulink Model

6-21

One solution to avoid the orange Overflow checkk is to constrain the value of the signal
in_battery_info that is fed to the Sum block. For instance:

1 Double-click the Inport block Battery info that provides the input signal
in_battery_info to the model.

2 On the Signal Attributes tab, change the Maximum value of the signal to a lower value,
such as 500.

Use this technique to address similar orange Overflow checks.

Check for Coding Rule Violations
To check for coding rule violations, start a Polyspace Bug Finder analysis.

1 On the Polyspace tab, select Settings > Project Settings and enable the MISRA C:2012 coding
standard in the Coding Standards & Code Metrics node. Save the configuration and close the
window.

2 In the Mode section, select Bug Finder.
3 Rerun the analysis.

Alternatively, in the MATLAB Command Window, enter:

% Enable checking for MISRA C:2012 violations
mlopts.VerificationSettings = 'PrjConfigAndMisraC2012';
% Specify separate folder for Bug Finder analysis
mlopts.ResultDir ='\bf_result';
% Set analysis to Bug Finder mode

6 Run Polyspace Analysis in Simulink

6-22

mlopts.VerificationMode = 'BugFinder';
% Run analysis
pslinkrun('polyspace_controller_demo', mlopts);

After the analysis completes, the Polyspace UI opens containing a list of MISRA C:2012 rule
violations.

Annotate Blocks to Justify Results
To justify Polyspace results, add annotations to your blocks. During code analysis, Polyspace
populates the results with your justification. Once you justify a result, you do not have to review it
again in subsequent analyses.

1 On the Results List pane, from the list in the upper-left corner, select File.
2 In the file polyspace_controller_demo.c, in the function

polyspace_controller_demo_step(), select the violation of MISRA C:2012 rule 10.4. The
Source pane shows that an addition operation violates the rule.

3 On the Source pane, click the link S1/Sum1 in the comments above the addition operation.

/* Gain: '<S1>/Gain' incorporates:
* Inport: '<Root>/Battery Info'
* Inport: '<Root>/Rotation'
* Sum: '<S1>/Sum1'
*/
rtb_k = (int16_T)(((int16_T)((in_rotation + in_battery_info) >> 1) * 24576) >>
 10);

The rule violation occurs in a Sum block.

4 To annotate this block and justify the rule violation:

a Select the block. On the Polyspace tab, select Add Annotation.
b Select MISRA-C-2012 for Annotation type and enter information about the rule violation.

Set the Status to No action planned and the Severity to Unset.
c Click Apply or OK. The words Polyspace annotation appear below the block, indicating

that the block contains a code annotation.
5 Regenerate code and rerun the analysis. The Severity and Status columns on the Results List

pane are now prepopulated with your annotations.

 Run Polyspace Analysis on Code Generated from Simulink Model

6-23

See Also

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder” on page 6-2
• “Run Polyspace on Code Generated by Using Previous Releases of Simulink” on page 6-12

6 Run Polyspace Analysis in Simulink

6-24

Fix Model Design Issues Found as Run-time Errors and Coding
Rule Violations in Generated Code

After testing your Simulink model for standards compliance and design errors, you can generate code
from the model. Before deployment, you can perform a final layer of error checking on the generated
code by using Polyspace. The checks detect issues such as dead logic or incorrect code generation
options that can remain despite tests on the model.

Prerequisites
Before you run Polyspace from Simulink, you must link your Polyspace and MATLAB installations. See
“Integrate Polyspace with MATLAB and Simulink” on page 5-2.

To open the model used in this example, at the MATLAB Command Window, run:

openExample('polyspace_code_prover/FixIssuesInGeneratedCodeFoundWithPolyspaceCodeProverExample')

Open Model

The model CruiseControl_RP contains a Stateflow chart with design issues. The issues translate to
possible run-time errors or unreachable branches in the generated code.

Detect and Fix Run-Time Errors
Detect Run-Time Errors

On the Polyspace tab, click anywhere on the canvas. The Analyze Code from field shows the model
name. If you use Embedded Coder, then click Run Analysis. If you use other code generating tools,
manually generate the code before starting a Polyspaceanalysis.

 Fix Model Design Issues Found as Run-time Errors and Coding Rule Violations in Generated Code

6-25

For more information, see “Run Polyspace Analysis on Code Generated with Embedded Coder” on
page 6-2.

After the analysis is complete, the Code Prover results open in the Polyspace user interface. The
results contain gray checks (unreachable code) and orange checks (potential run-time errors).

Fix Gray Checks

Select one of the two Unreachable code checks. Review the code that is unreachable.

 if ((CoastSetSw_prev != CruiseControl_RP_DW.CoastSetSw_start) &&
 CruiseControl_RP_DW.CoastSetSw_start &&
 (CruiseControl_RP_Y.tspeed > (real_T)mintspeed)) {
 /* Transition: '<S1>:74' */
 CruiseControl_RP_DW.is_ON = CruiseControl_RP_IN_Coast;
 CruiseControl_RP_DW.temporalCounter_i1 = 0U;

 /* Entry 'Coast': '<S1>:73' */
 CruiseControl_RP_Y.tspeed -= (real_T)incdec;
 }

Click the Transition:'<S1>:74' link in the if block. The transition is highlighted in the model.

Note the design flaw. The condition for outgoing transition 3 cannot be true without the condition for
outgoing transition 2 also being true. Therefore, transition 3, which executes later, is never reached.
This design flaw in the chart translates to the unreachable if block in the generated code.

One possible solution of the issue is to switch the execution order of transitions 2 and 3. To begin,
right-click transition 3.

After switching the execution order, regenerate and reanalyze the code. You no longer see the gray
Unreachable code checks.

Fix Orange Checks

Select one of the two Division by zero checks. Review the code.

6 Run Polyspace Analysis in Simulink

6-26

if (CruiseControl_RP_DW.temporalCounter_i1 >= (uint32_T)(incdec /
 holdrate * 10.0F))

Place your cursor on the variable holdrate. You see that it is a global variable whose value can be
zero.

The fact that holdrate is a global variable hints that it could be defined outside the model. Open the
Model Explorer window. In the model hierarchy, choose the base workspace. Find holdrate in the
list of parameters. You see that holdrate has a value 5, but the value can range from 0 to 10. The
Code Prover analysis uses this range and detects a division by zero.

You can modify either the generated code or the analysis configuration:

• Modify code:

In the Model Explorer window, change the storage class of holdrate from Global to Define.
The generated code defines a preprocessor directive stating that holdrate has the value of 5.

#define holdrate 5

• Modify analysis configuration:

On the Polyspace tab, select Settings. Modify the option Tunable parameters to use the
calibration data. The Code Prover analysis uses the value 5 for holdrate instead of a different
value in the range 0 to 10.

If you regenerate and reanalyze the code, you no longer see the orange Division by zero checks or
any other orange checks that have the same root cause. The Dashboard pane shows that all checks
are green.

Detect and Fix Coding Rule Violations
Detect MISRA C:2012 Violations

To detect MISRA C violations:

1 In the Mode section of the Polyspace tab, select Bug Finder.

 Fix Model Design Issues Found as Run-time Errors and Coding Rule Violations in Generated Code

6-27

2 Select Settings to open the Simulink Configuration Parameters window. In the Settings from
menu, select Project configuration and MISRA C 2012 checking.

3 Start the analysis by clicking Run Analysis.

Fix MISRA C:2012 Violations

After running the Bug Finder analysis, Polyspace reports the violations of MISRA C:2012 in the
generated code. To fix some of these violations, you might need to modify the model. Consider the
violation of rule 3.1:

The character sequences /* and // shall not be used within a comment.

Two of the violations is located in this code on the declarations of RES and SET:

typedef struct {
 uint8_T CC_Mode; /* '<Root>/CC_Mode' */
 boolean_T RES; /* '<Root>/RES//+' */
 boolean_T SET; /* '<Root>/SET//-' */
 real_T SpeedSet; /* '<Root>/Speed_Set' */
 real_T SpeedAct; /* '<Root>/Speed_Act' */
 boolean_T Break; /* '<Root>/Break' */
} ExtU_CruiseControl_RP_T;

In these statements, you see two instances of // in the code comments in the structure definition.

To navigate to the corresponding location in the model, click '<Root>/RES//+' in the code
comment. You see that the comment comes from the input variable RES/+, which contains the /
character.

Rename the variables RES/+ and SET/- so that they do not use the / character. When you reanalyze
the code, you no longer see violations of rule 3.1.

See Also

Related Examples
• “Run Polyspace Analysis on Code Generated from Simulink Model” on page 6-15

6 Run Polyspace Analysis in Simulink

6-28

Run Polyspace Analysis on Generated Code by Using Packaged
Options Files

When you start a Polyspace analysis directly from the Simulink toolstrip, the analysis takes the
model-specific context, such a design ranges, into consideration. When running a Polyspace analysis
from outside Simulink, you must specify the model-specific information by using options files. Instead
of authoring these options files, use the options files generated and packaged by the function
polyspacePackNGo.

Preserving the Simulink model context information when running a Polyspace analysis from outside
Simulink can be useful in various situations. For instance:

• Distributed workflow: A Simulink user generates code from a model and sends the code to another
development environment. In this environment, a Polyspace user, who might not have Simulink,
runs a separate analysis of the generated code. By using the packaged options files, the design
ranges and other model-specific information is preserved in the Polyspace analysis.

• Analysis options not available in Simulink: Some Polyspace analysis options are available only
when the Polyspace analysis is run separately from Simulink. Use packaged options files to run a
separate Polyspace analysis while preserving the model-specific information. For instance, analyze
concurrent threads in generated code by running a Polyspace analysis in the generated code by
using the packaged options files.

You must have Simulink to run the function polyspacePackNGo. You do not need Polyspace to
generate the options files from a Simulink model. The polyspacePackNGo function supports code
generated by Embedded Coder and TargetLink. For a tutorial on using polyspacePackNGo, see
“Analyze Code Generated as Standalone Code in a Distributed Workflow” (Simulink).

Generate and Package Polyspace Options Files
To generate and package Polyspace options file for analyzing code generated from a Simulink model,
use polyspacePackNGo.

1 In the Simulink Editor, open the Configuration Parameters dialog box and configure the model for
code generation.

2 To configure the model for compatibility with Polyspace, select ert.tlc as the System target
file

3 To enable generating a code archive, select the option Package code and artifacts. Optionally,
provide a name for the options package in the field Zip file name. If your code contains a custom
code block, select Use the same custom code settings as Simulation target in the Code
Generation> Custom Code pane.

Alternatively, in the MATLAB Command Window, enter:

% Configure the Simulink model mdlName for code generation
configSet = getActiveConfigSet(mdlName);
set_param(configSet, 'PackageGeneratedCodeAndArtifacts', true);
set_param(configSet, 'PackageName', 'CodeArchive.zip');
set_param(configSet, 'SystemTargetFile', 'ert.tlc');
set_param(configSet,'RTWUseSimCustomCode','on');

4 Generate the code archive.

 Run Polyspace Analysis on Generated Code by Using Packaged Options Files

6-29

• To generate an archive of standalone generated code from the top model, use the function
slbuild.

• To generate code as a model reference, use the function slbuild. After generating code as
model reference, create the code archive by using the function packNGo.

• Alternatively, you can use TargetLink to generate the code. Create the code archive by
archiving the generated code into a zip file.

5 To generate and package the Polyspace option files, in the MATLAB Command Window ,use the
polyspacePackNGo function :

zipFile = polyspacePackNGo(mdlName);

See “Generate and Package Polyspace Options Files”.

If you use TargetLink to generate code, then use the TargetLink subsystem name as the input
argument to polyspacepacknGo.

6 Optionally, you can use a pslinkoptions object as a second argument to modify the default
model configuration for the Polyspace analysis. Create a pslinkoptions object, modify model
configurations and specify the object when creating the archive:

psOpt = pslinkoptions(mdlName);
psOpt.InputRangeMode = 'FullRange';
psOpt.ParamRangeMode = 'DesignMinMax';
zipFile = polyspacePackNGo(mdlName,psOpt);

See “Package Polyspace Options Files That Have Specific Polyspace Analysis Options”.
7 Use the optional third argument to specify whether to generate and package Polyspace options

files for code generated as a model reference. Suppose you generated code as a model reference
by using the slbuild function. To generate and package Polyspace options for the code, at the
MATLAB Command Window, enter:

zipFile = polyspacePackNGo(mdlName,[],true);

See “Package Polyspace Options Files for Code Generated as a Model Reference”.

The function polyspacepackNGo returns the full path to the archive containing the options files.
The files are located in the polyspace folder within the archived folder hierarchy. The content of
the polyspace folder depends on the inputs of polyspacePackNGo function.

• If you do not specify the optional second and third arguments, then the folder polyspace
contains these options files in a flat hierarchy:

• optionsFile.txt: This file specifies the source files, the include files, data range
specifications, and analysis options required for analyzing the generated code by using
Polyspace. If your code contains custom C code, then this file specifies the relative paths of
the custom source and header files.

• modelname_drs.xml: This file specifies the design range specification of the model.
• linksData.xml: This file links the generated code to the components of the model.

• If you specify psOpts.ModelbyModelRef = true, then corresponding options files are
generated for all referenced models. These options files are stored in separate folders named
polyspace_<referenced model name> within the code archive. The folder polyspace
contains the options files for the top model.

6 Run Polyspace Analysis in Simulink

6-30

Run Polyspace Analysis by Using the Packaged Options Files
Once the code archive and the Polyspace option files are generated, you can use the archive to run a
Polyspace analysis on the generated code in a different development environment without Simulink.

1 Unzip the code archive and locate the polyspace folder.
2 On a Windows or Linux command line, run: productname -options-file optionsFile.txt

-results-dir resultdir.

• productname corresponds to one of: polyspace-bug-finder, polyspace-code-prover, polyspace-
bug-finder-server, or polyspace-code-prover-server.

• resultdir corresponds to the location of the Polyspace results. This argument is optional.

To link the generated code with the Simulink model, the file linksData.xml is required. In case
the file linksData.xml is not generated in the options file archive, use the option Code
Generator Support in Polyspace desktop User Interface to specify which comments in the code
act as links to the Simulink model. In the Polyspace desktop User Interface, select Tools >
Preferences and locate the Miscellaneous tab. From the context menu Code comments that
act as code-to-model-link, select the code generator that you used. If you select User defined,
then specify the comments that act as a code-to-model link by specifying their prefix in the field
Comments beginning with. For instance, if you specify the prefix as //Link_to_model, then
Polyspace interprets comments starting with //Link_to_model as links to model.

If you are using Polyspace Access to view the results, upload the file linksData.xml in the
same folder as your Polyspace results. You cannot link the code with Simulink model if you do not
have the file linksData.xml or if you upload it outside the Polyspace result folder.

3 To review the result, upload it to Polyspace Access and view the results in a web browser.
Alternatively, view the result by using the user interface of the Polyspace desktop products.

See Also
polyspacePackNGo | polyspace.Project | slbuild | packNGo

More About
• “Analyze Code Generated as Standalone Code in a Distributed Workflow” (Simulink)
• “Run Polyspace Analysis by Using MATLAB Scripts” on page 5-9
• “Integrate Polyspace Server Products with MATLAB” on page 8-33

 Run Polyspace Analysis on Generated Code by Using Packaged Options Files

6-31

Run Polyspace Analysis on Custom Code in Simulink Models
If you implement algorithms in your Simulink model by using custom C/C++ code, you can analyze
the custom code directly from the Simulink toolstrip without manually setting up a Polyspace project.
The behavior of the custom code in your model depends on the model context, such as number and
nature of input and design range specification. When you run Polyspace analysis from MATLAB or
Simulink, the analysis takes the model context into account. When running a Polyspace analysis of the
custom code outside of MATLAB/Simulink, specify the model context manually, for instance, by using
options files.

A Polyspace analysis of the custom code has different goals and configurations compared to a
Polyspace analysis of the generated code:

Generated Code Analysis Custom Code Analysis
Analyzes the code in a C Caller, C Function, or S-
Function block in isolation.

Analyzes the code generated from the entire
model.

Detects issues in the custom code that can cause
bugs or run-time errors in a Simulink simulation.

Detects issues in the total generated code that
might cause bugs or run-time errors when
deployed to an embedded system.

The target settings for Polyspace is compatible
with a Simulink simulation.

The Target processor type settings for
Polyspace is the same as the Hardware
Implementation settings specified in the
Configuration Parameters dialog box in Simulink.

Prerequisite
Before you run Polyspace with Simulink, link your Polyspace and MATLAB installations. See
“Integrate Polyspace with MATLAB and Simulink” on page 5-2 or “Integrate Polyspace Server
Products with MATLAB” on page 8-33.

Analyze Custom Code
You can implement custom algorithm by using different Simulink custom code blocks, such as:

• C Function: See “Integrate External C/C++ Code into Simulink Using C Function Blocks”
(Simulink)

• C Caller: See “Integrate C Code Using C Caller Blocks” (Simulink)
• S-Function: See “Implement C/C++ S-Functions” (Simulink)

These blocks have different functionalities. See “Comparison of Custom Block Functionality”
(Simulink).

Specify Configuration

Before running Polyspace on a Simulink model, configure the Simulink model to be compatible with
Polyspace.

To analyze custom code in Polyspace, select Import custom code in the Configuration Parameters
dialog box, on the Simulation Target pane.

6 Run Polyspace Analysis in Simulink

6-32

If the included custom code does not compile, the Polyspace analysis might fail. Before starting the
Polyspace analysis, include the appropriate header files and check the custom code for compilation
issues. The C function block does not support including header files. For this block, specify the
include statements in the Simulation Target pane. For the code included in C Caller and S Function
blocks, specify the include statements in the source file. Polyspace has stricter code and compilation
requirements than Simulink and your custom code might fail Polyspace compilation even though your
model simulation produces correct results.

Start Polyspace Analysis

Start the Polyspace analysis of custom code in your model in the Simulink Editor or in the MATLAB
Command Window.

• For more information about running a Polyspace analysis on custom code in a S function block,
see “Run Polyspace Analysis on S-Function Code” on page 6-35.

• For more information about running a Polyspace analysis on custom code in a C Caller block, see
“Run Polyspace Analysis on Custom Code in C Caller Blocks and Stateflow Charts” on page 6-37.

• For more information about running a Polyspace analysis on custom code in a C function block,
see “Run Polyspace Analysis on Custom Code in C Function Block” on page 6-45.

Once the analysis starts, Polyspace extracts the custom code from the model. To preserve the correct
design range specification and nature of the inputs, Polyspace assumes each instance of a custom
code block in a top model has a unique model context and treats the blocks as unique. When a model
containing a custom code block is referenced multiple times in another top model, the model context
of the custom code blocks remain the same. Polyspace treats the custom code block in different
instances of the referenced model as a single custom code instance.

After extracting the code and model context, Polyspace analyzes them as handwritten code. See “Bug
Finder Analysis Assumptions”.

Review Analysis Results
In the Simulink Editor, click Analysis Results. The Polyspace User Interface opens with the analysis
results. The flagged issues appear in the Results List pane. See also:

• “Interpret Bug Finder Results in Polyspace Desktop User Interface” on page 21-2
• “Bug Finder Defect Groups” on page 18-43
• “Address Results in Polyspace User Interface Through Bug Fixes or Justifications” on page 22-2
• “Filter and Group Results in Polyspace Desktop User Interface” on page 23-2

To fix the flagged issues, modify the code. For more information, see “Fix Identified Issues” on page
6-49. Alternatively, modify the Simulink model to resolve the Polyspace results. See “Fix Issues” on
page 6-38.

If a flagged issue is known or justified, then annotate that information in the custom code blocks. You
can annotate the custom code blocks directly from the Polyspace User Interface. See “Annotate
Blocks to Justify Results” on page 6-23.

See Also
pslinkoptions | pslinkrun

 Run Polyspace Analysis on Custom Code in Simulink Models

6-33

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder” on page 6-2
• “Run Polyspace Analysis on S-Function Code” on page 6-35
• “Run Polyspace Analysis on Custom Code in C Caller Blocks and Stateflow Charts” on page 6-

37
• “Run Polyspace Analysis on Custom Code in C Function Block” on page 6-45
• “Complete List of Polyspace Bug Finder Results”

6 Run Polyspace Analysis in Simulink

6-34

Run Polyspace Analysis on S-Function Code
If you want to check your S-function code for bugs or errors, you can run Polyspace directly from
your S-function block in Simulink.

Prerequisites
Before you run Polyspace from MATLAB, you must link your Polyspace and MATLAB installations. See
“Integrate Polyspace with MATLAB and Simulink” on page 5-2.

S-Function Analysis Workflow
To verify an S-function with Polyspace, follow this recommended workflow:

1 Compile your S-function to be compatible with Polyspace.
2 Select your Polyspace options.
3 Run a Polyspace Bug Finder analysis or a Polyspace Code Prover verification using one of the two

analysis modes:

• This Occurrence — Analyzes the specified occurrence of the S-function with the input for that
block.

• All Occurrences — Analyzes the S-function with input values from every occurrence of the S-
function.

4 Review results in the Polyspace interface.

• For information about navigating through your results, see “Filter and Group Results in
Polyspace Desktop User Interface” on page 23-2.

• For help reviewing and understanding the results, see “Complete List of Polyspace Bug Finder
Results”.

Compile S-Functions to Be Compatible with Polyspace
Before you analyze your S-function with Polyspace Bug Finder , you must compile your S-function
with one of following tools:

• The Legacy Code Tool with the def.Options.supportCoverageAndDesignVerifier set to
true. See legacy_code.

• The S-Function Builder block, with Enable support for Design Verifier selected on the Build
Info tab of the S-Function Builder dialog box.

• The Simulink Coverage™ function slcovmex, with the option -sldv.

Example S-Function Analysis
This example shows the workflow for analyzing S-functions with Polyspace. You use the model
psdemo_model_link_sl and the S-function Command_Strategy.

1 Open the model and use the Legacy Code Tool to compile the S-function Command_Strategy.

% Open Model
psdemo_model_link_sl

 Run Polyspace Analysis on S-Function Code

6-35

% Compile S-function Command_Strategy
def = legacy_code('initialize');
def.SourceFiles = { 'command_strategy_file.c' };
def.HeaderFiles = { 'command_strategy_file.h' };
def.SFunctionName = 'Command_Strategy';
def.OutputFcnSpec = 'int16 y1 = command_strategy(uint16 u1, uint16 u2)';
def.IncPaths = { fullfile(polyspaceroot, ...
 'toolbox','polyspace','pslink','pslinkdemos','psdemo_model_link_sl') };
def.SrcPaths = def.IncPaths;
def.Options.supportCoverageAndDesignVerifier = true;
legacy_code('compile',def);

2 Open the model psdemo_model_link_sl/controller.
3 Specify the code analysis options. On the Apps tab, select Polyspace Code Verifier. Then, on

the Polyspace tab:

• Select the product to run: Bug Finder or Code Prover. A Code Prover analysis detects run-
time errors while a Bug Finder analysis detects coding defects and coding rule violations.

• Select Settings. In the Configuration Parameters dialog box, make sure that the following
parameters are set:

• Settings from — Select Project configuration. Other values in the drop down menu
enables checking different coding rules, which require using Bug Finder as the Mode.

• Open results automatically after verification — On

Apply your settings and close the Configuration Parameters.
4 Right-click the Command_Strategy block and select Polyspace > Verify S-Function > This

Occurrence.
5 Follow the analysis in the MATLAB Command Window. When the analysis is finished, your results

open in the Polyspace interface.

See Also

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder” on page 6-2
• “Run Polyspace Analysis on Custom Code in C Caller Blocks and Stateflow Charts” on page 6-

37

6 Run Polyspace Analysis in Simulink

6-36

Run Polyspace Analysis on Custom Code in C Caller Blocks and
Stateflow Charts

You can check for bugs and run-time errors in the custom C/C++ code used in your Simulink model.
The Polyspace analysis checks functions called from C Caller blocks and Stateflow charts with inputs
from the model.

Prerequisites
Before you run Polyspace from Simulink, you must link your Polyspace and MATLAB installations. See
“Integrate Polyspace with MATLAB and Simulink” on page 5-2.

To open the models used in this example, look for this example in the MATLAB Help browser and
click the Open Model buttons.

C/C++ Function Called Once in Model
This example uses a function called only once in the model from a C Caller block. The analysis checks
the function using inputs to the C Caller block.

Open Model for Running Analysis on Custom Code

Open the model mSlccBusDemo for analyzing custom code with Polyspace. The model contains a C
Caller block that calls a function counterbusFcn defined in a file hCounterBus.c (declared in file
hCounterBus.h). The model uses variables saved in a MAT file dLctData.mat, which is loaded in
the model using a callback.

Run Analysis

Configure analysis options and run Polyspace.

1 On the Apps tab, select Polyspace Code Verifier to open the Polyspace tab.
2 Specify the type of analysis:

 Run Polyspace Analysis on Custom Code in C Caller Blocks and Stateflow Charts

6-37

• Select the product to run, Bug Finder or Code Prover. A Code Prover analysis detects run-
time errors while a Bug Finder analysis detects coding defects and coding rule violations.

• Specify that the analysis must run on custom code in the model instead of generated code.

The Analyze Code from field shows the model name. Below the field, instead of Code
Generated as Top Model, select Custom Code Used in Model.

3 Select Run Analysis.

Follow the progress of analysis in the MATLAB Command Window. After the analysis, on the
Polyspace tab, select Analysis Results. The results open in the Polyspace user interface.

You can also run the same analysis from MATLAB as follows. The script includes commands to load
the model and the .mat file containing variables used in the model.

openExample('polyspace_code_prover/OpenModelForRunningAnalysisOnCustomCodeExample');
load_system('mSlccBusDemo');
load('dLctData.mat');

mlopts = pslinkoptions('mSlccBusDemo');
mlopts.VerificationMode = 'CodeProver';
pslinkrun('-slcc','mSlccBusDemo',mlopts);

Fix Issues

The analysis results appear on the Results List pane in the Polyspace user interface. Select each
result and see further details on the Result Details pane and the corresponding source code on the
Source pane.

The rest of this tutorial shows how to investigate and fix issues found in a Code Prover analysis.
Similar steps can be followed for issues found with Bug Finder.

If you run a Code Prover analysis, the results contain an orange Overflow check.

The check highlights an addition operation in the counterbusFcn function that can overflow:

limit = u1->inputsignal.input + u2;

6 Run Polyspace Analysis in Simulink

6-38

The operands come from inputs to counterbusFcn, which in turn come from these inputs to the C
Caller block:

• The bus COUNTERBUS, which combines the signals input, upper_saturation_limit, and
lower_saturation_limit. The signal input is unbounded.

• The feedback from the C Caller block itself through a Delay block.

You can constrain the signal named input in several ways. For instance, you can constrain the
Simulink.Bus object named SIGNALBUS that contains input:

1 In the Simulink Toolstrip, on the Modeling tab, in the Design gallery, click Type Editor.

The base workspace contains a Simulink.Bus object named SIGNALBUS.

2 Specify a minimum and maximum value for the input element of SIGNALBUS.
3 Save the bus object in a MAT file. You can overwrite the file dLctData.mat or create a file.

You can also constrain the feedback from the C Caller block in several ways. For instance, you can
saturate the feedback signal:

1 Add a Saturation block immediately before the feedback signal is input to the C Caller block.

2 On the Signal Attributes tab, specify a minimum and maximum value for the Saturation block
output.

 Run Polyspace Analysis on Custom Code in C Caller Blocks and Stateflow Charts

6-39

Note that specifying a lower and upper limit on the Main tab of the Saturation block is not
sufficient to constrain the signal for the Polyspace analysis. The analysis uses the design ranges
specified on the Signal Attributes tab.

Rerun the analysis. The Overflow check in the new set of results is green.

C/C++ Function Called Multiple Times in Model
This example uses a function called from multiple C Caller blocks in the model. The function simply
returns the product of its two arguments.

The example runs a Code Prover analysis and shows how to determine the function call context
starting from Code Prover results. Typically, in a Bug Finder analysis, you do not need to distinguish
between different call contexts.

Open Model for Analyzing All Custom Code

Open the model multiCCallerBlocks for running Polyspace analysis.

openExample('polyspace_bf/OpenModelForAnalyzingAllCustomCodeExample');
open_system('multiCCallerBlocks');

6 Run Polyspace Analysis in Simulink

6-40

Inspect Model

The model contains two C Caller blocks calling the same function times_n. The inputs to one C
Caller block come from two Inport blocks that have unbounded input. The inputs to the other C Caller
block come from a Constant block and an Inport block that has the input bounded by a Saturation
block.

To see the design ranges for the C Caller block that has bounded inputs:

• Double-click the Constant block or the Saturation block.
• On the Signal Attributes tab, note the design range.

For instance, although the Constant block has the constant value set to 3, the design range for
verification is 2.5 to 3.5.

 Run Polyspace Analysis on Custom Code in C Caller Blocks and Stateflow Charts

6-41

The design range for the Saturation block is [-1,1].

Run Analysis and Review Results

Run analysis as in the previous example and open the results.

The Results List pane shows an orange Overflow check. The product in the times_n function
overflows.

#include "file.h"

double times_n(double x, double n) {
 return x * n;
}

Because the times_n function is called from two contexts, the orange color combines both contexts
and might indicate two possible situations:

• The overflow occurs in both call contexts.
• The overflow is proven to not occur in one context (green check) and might occur in the other

context (orange check).

To determine which call context leads to the overflow:

1 See all the callers of times_n.

Select the orange Overflow check. On the Result Details pane, click . The Call Hierarchy
pane shows the callers of times_n.

2 On the Call Hierarchy pane, you see two wrapper functions as callers. Each wrapper function
represents a C Caller block in the model.

Select one of the wrapper functions to open the source code for customcode_wrappers.c.
3 On the Source pane, inspect the code for the wrapper functions. To determine which inputs lead

to the overflow, use tooltips on underlined inputs.

For instance, the wrapper function for the C Caller block that has bounded inputs looks similar to
this code:

/* Go to model '<Root>/C Caller1' */
/* Variables corresponding to inputs for block C Caller1 */
 real64_T _pslink_C_Caller1_In1;
 real64_T _pslink_C_Caller1_In2;
/* Variables corresponding to outputs for block C Caller1 */

6 Run Polyspace Analysis in Simulink

6-42

 real64_T _pslink_C_Caller1_Out1;
/* Wrapper functions for code in block C Caller1 */
void _pslink_step_C_Caller1(void) {
 /* See tooltips on function inputs for input ranges */
 _pslink_C_Caller1_Out1 = times_n(_pslink_C_Caller1_In1, _pslink_C_Caller1_In2);
}

Use tooltips on the variables to determine their ranges. For instance, the tooltip on the variable
_pslink_C_Caller1_In1 shows that it is in the range [2.5, 3.5] and the tooltip on
_pslink_C_Caller1_In2 shows that it is in the range [-1,1]. Therefore, the product of the two
inputs cannot overflow. The overflow must come from the other call context. You can see the
tooltips on the inputs to the other call and confirm that the variables are unbounded.

To locate the C Caller block corresponding to a wrapper function, on the Source pane, click the
blue block name link above the wrapper function (on the line starting with Go to model). The C
Caller block is highlighted in the model.

Enable Context Sensitivity and Rerun Analysis

In this example, the function is simple enough that you can determine which call context leads to the
overflow from the function inputs themselves. For more complex functions, you can configure the
analysis to show results from the two contexts separately.

Because distinguishing call contexts involves a deeper analysis, the analysis might take longer.
Therefore, enable context sensitivity only for specific functions and only if you are not able to
distinguish the call contexts by inspection.

In this example, to enable context sensitivity for the times_n function:

1 In your model, on the Polyspace tab, select Settings > Project Settings.

Alternatively, in the Polyspace user interface, select the Project Browser. Open the
configuration of the project created for the analysis.

2 On the Code Prover Verification > Precision node, select custom for the option Sensitivity

context. In the Procedure field, click and enter times_n.

See also Sensitivity context (-context-sensitivity).

Rerun the analysis from the model and reopen the results. Select the orange Overflow check.

The Result Details pane shows the call contexts separately. You can see that the overflow occurs
only for the call with unbounded inputs (row with orange text) and does not occur for the other call
(row with green text).

Click the row with orange text to directly navigate to the wrapper function leading to the orange
check. From the wrapper function, you can navigate to the C Caller block with unbounded inputs.

 Run Polyspace Analysis on Custom Code in C Caller Blocks and Stateflow Charts

6-43

See Also
pslinkoptions | pslinkrun

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder” on page 6-2
• “Run Polyspace Analysis on S-Function Code” on page 6-35

6 Run Polyspace Analysis in Simulink

6-44

Run Polyspace Analysis on Custom Code in C Function Block
You can run a Polyspace analysis on the custom C code in a C Function block from Simulink.
Polyspace checks the custom C code for errors and bugs while keeping the model specific information
such as design range specification, nature and number of inputs that are specified in the Simulink
model.

Prerequisites
Before you run Polyspace from Simulink, you must link your Polyspace and MATLAB installations. See
“Integrate Polyspace with MATLAB and Simulink” on page 5-2.

To open the model used in this example, in the MATLAB Command Window, run:

openExample('polyspace_code_prover/CScriptDemoExample')
open_system('psdemo_model_link_sl_cscript');

Open Model for Running Polyspace Analysis on Custom Code in C
Function Block

The model contains a C Function block called Command Strategy inside the controller
subsystem.

 Run Polyspace Analysis on Custom Code in C Function Block

6-45

The Command Strategy block implements a look-up table using custom C code and outputs a value
result based on two inputs x and y.

Run Polyspace Analysis
Run Polyspace Analysis from Simulink Editor

Click the Apps tab and select Polyspace Code Verifier to open the Polyspace tab.

1 Select Bug Finder or Code Prover in the Mode section of the Polyspace tab. A Code Prover
analysis detects run-time errors while a Bug Finder analysis detects coding defects and coding
rule violations.

2 To run a Polyspace analysis on the custom C code in the C Function block, select Custom Code
Used in Model from the drop-down list in the Analyze section.

3 To start the Polyspace analysis, click the Run Analysis button. The MATLAB Command Window
displays the progress of the analysis.

4 After the analysis, the Polyspace user interface opens with the results. You can choose to not
open the results automatically after the analysis by unselecting Open results automatically
after verification in Settings. To open the results after the analysis is finished, click the
Analysis Results button.

5 To see all results of the Polyspace analysis, click Clear active filters from the Showing drop-
down list in the Results List pane. If you run a Code Prover analysis, the results for the
controller subsystem contain two red checks and an orange check.

6
To organize the results by family, click and select Family.

To switch between a Bug Finder and Code Prover analysis, return to the Simulink Editor from the
Polyspace user interface. Switch between Bug Finder and Code Prover in the Mode section and
run the analysis again.

6 Run Polyspace Analysis in Simulink

6-46

Run Polyspace Analysis from MATLAB

You can run a Polyspace Code Prover analysis on the custom code for this model from MATLAB Editor
or the Command Window using this code:

% Load the model 'psdemo_model_link_sl_cscript'
load_system('psdemo_model_link_sl_cscript');
% Create a 'pslinkoptions' object
mlopts = pslinkoptions('psdemo_model_link_sl_cscript');
% Specify whether to run 'CodeProver' or 'BugFinder' Analysis
mlopts.VerificationMode = 'CodeProver';
% Specify custom code as analysis target and run the analysis
pslinkrun('-slcc','psdemo_model_link_sl_cscript',mlopts);

Identify Issues in C Code
To identify issues in the custom C code, use the information in the Result Details pane and the
Source pane of the Polyspace user interface. If you do not see these panes, go to Window > Show/
Hide View and select the missing pane. For details on the panes, see “Result Details in Polyspace
Desktop User Interface” on page 21-22 and “Source Code in Polyspace Desktop User Interface” on
page 21-17.

Identify C Function Block Inputs and Outputs in Source Pane

Polyspace wraps the code in the C Function block in a custom code wrapper. The inputs and outputs
of the C Function block are declared as global variables. The custom C code is called as a function.

/* Variables corresponding to inputs ..*/
// global In...
/* Variables corresponding to outputs*/
// global Out...
/* Wrapper functions for code in block */
// void ...(void){
 //...
}

• The global variables corresponding to inputs start with In, such as
In1_psdemo_model_link_sl_cscript_98_Command_strategy.

• The global variables corresponding to outputs start with Out, such as
Out1_psdemo_model_link_sl_cscript_98_Command_strategy.

• The void-void function contains the custom C code with the input and output variables replaced
by the global variables. If you have multiple C Function blocks, then the code in each block is
wrapped in separate functions.

The global variables reflect all properties of the input and output of the C Function block, including
their data range, data type, and size. If you have multiple inputs, then the order of the global
variables is the same as the order of the input defined in the C Function block. This table shows the
input and output variables of the block in this example and their corresponding global variables in the
Source pane.

 Run Polyspace Analysis on Custom Code in C Function Block

6-47

Global Variable Name in Source Pane Scope Variable Name
in C Function

Block
In1_psdemo_model_link_sl_cscript_98_Command_strat

egy
Input x

In2_psdemo_model_link_sl_cscript_98_Command_strat
egy

Input y

Out1_psdemo_model_link_sl_cscript_98_Command_stra
tegy

Output result

Identify issues in the custom code by reviewing the wrapped code in the Source pane. Use the tooltip
in the Source pane and the information in the Result Details pane to fix the issues. This workflow
applies to Code Prover and Bug Finder analyses.

Illegally dereferenced pointer

The red check Illegally dereferenced pointer highlights the dereferencing operation after the for
loop.

tmp = *p + 5;

The Result Details pane states that the pointer *p is outside its bounds. To find the root cause of the
check, follow the life cycle of the pointer leading to the illegal dereferencing.

1 At the start of its life cycle, the pointer *p points to the first element of array which has 100
elements.

2 Then p is incremented 100 times, pointing *p to the nonexistent location array[100].
3 The dereferencing operation in tmp = *p+5; becomes illegal, causing a red check.

Out of Bounds array index

The red check Out of Bounds array index highlights the array indexing operation in the if
condition.

 if (another_array[return_val - i + 9] != 0)

The Result Details pane states that the size of another_array is 2 while the index value
return_val-i+9 ranges from 2 to 18. To find the root cause of the check, track the values of the
variables return_val and i using the tooltip. When you hover over any instance of the variables in
the Source pane, the tooltip is displayed.

1 The value of i is 100.
2 The value of return_val ranges from 93 to 109 because of the prevailing condition: if

((return_val > 92) && (return_val < 110)).
3 The index value (return_val-i+9) evaluates to a range of 2 to 18.
4 The index values are out of bounds for the array another_array, causing a red check.

Overflow

The orange Overflow check highlights the assignment to return_val. The Result Details pane
states that the check is related to bounded input values. To find the root cause of the check, check the
data type and corresponding range of the variables by using the tooltip.

6 Run Polyspace Analysis in Simulink

6-48

• The input values x and y correspond to these respective global variables

• In1_psdemo_model_link_sl_cscript_98_Command_strategy
• In2_psdemo_model_link_sl_cscript_98_Command_strategy

• The first input x is an unbound unsigned integer. Because x is unbound, it has the full range of an
unsigned integer, which is from 0 to 65535.

• The second input y is a bounded unsigned integer ranging from 0 to 1023.
• x-y is assigned to the unbound signed integer return_val. Because return_val is unbound, it

has full range from -32768 to 32767.
• The range of x-y is 1023 to 65535, while the range of return_val is -32768 to 32767.
• Some possible values of x-y cannot fit into return_val, causing the orange check.

For details about interpreting results of a Polyspace Bug Finder analysis, see “Interpret Bug Finder
Results in Polyspace Desktop User Interface” on page 21-2.

Fix Identified Issues
Modify the custom C code or the model to fix the issues. You can fix a Polyspace check in several
ways. The examples here illustrate the general workflow of fixing Polyspace checks.

Illegally dereferenced pointer

You can address this check in several ways. Modify the C code so that a nonexistent memory address
is not accessed.

1 Return to the Simulink Editor and double-click on the C Function block to open the custom code.
2 Use the index operator on array to access a valid array index. You can access indices from 0 to

99 because array has 100 elements. Accessing indices beyond this range results in a run-time
error in Simulink.

// access any index between 0 to 99
tmp = array[50] + 5;

Alternatively, assign the address of a valid memory location to p before the dereferencing
operation. For example, *p can point to the 51st element in array.

// After the for loop, point p to a valid memory location
p = &(array[50]);
// ...
tmp = *p + 5;

Out of Bounds array index

You can address this check in several ways. Modify the code so that the size of another_array[]
remains larger than or equal to the index value return_val-i+9.

1 Return to the Simulink Editor and double-click on the C Function block to open the custom code.
2 Modify the prevailing condition on return_val so that the index value return_val-i+9

always evaluates to 0 or 1.

if ((return_val > 91) && (return_val < 93))
//...

 Run Polyspace Analysis on Custom Code in C Function Block

6-49

Alternatively, declare another_array with size 19.

int another_array[19];

Overflow

You can address this check in several ways as well. Modify the C code or the model so that the range
of the right side of the assignment operation remains equal to or larger than that of the left side.

1 Return to the Simulink Editor.
2 Saturate the input variables x and y in the model so that their difference can fit into a 16-bit

integer. The workflow for fixing Overflow by using saturation blocks is described in “Run
Polyspace Analysis on Custom Code in C Caller Blocks and Stateflow Charts” on page 6-37.

Alternatively, increase the size of return_val in the custom C code to accommodate x-y.

1 Return to the Simulink Editor and double-click on the C Function block to open the custom code.
2 Declare return_val as a 32-bit integer.

int32_T return_val;

For details about addressing Polyspace results, see “Address Results in Polyspace User Interface
Through Bug Fixes or Justifications” on page 22-2.

See Also
pslinkoptions | pslinkrun

More About
• “Run Polyspace Analysis on Custom Code in C Caller Blocks and Stateflow Charts” on page 6-37
• “Complete List of Polyspace Bug Finder Results”

6 Run Polyspace Analysis in Simulink

6-50

Recommended Model Configuration Parameters for Polyspace
Analysis

For Polyspace analyses, set the following configuration parameters before generating code. If you do
not use the recommended value for SystemTargetFile, you get an error. For other parameters, if
you do not use the recommended value, you get a warning.

Grouping Command-Line Name and Location in
Configuration

Code Generation

Name: SystemTargetFile (Simulink Coder)

Value: An Embedded Coder Target Language Compiler
(TLC) file.

For example ert.tlc or autosar.tlc.

Location: Code Generation

Name: System target file

Value: Embedded Coder target
file

Name: MatFileLogging (Simulink Coder)

Value: 'off'

Location: Code Generation >
Interface

Name: MAT-file logging

Value: Not selected
Name: GenerateReport (Simulink Coder)

Value: 'on'

Location: Code Generation >
Report

Name: Create code-generation
report

Value: Selected
Name: IncludeHyperlinkInReport (Embedded
Coder)

Value: 'on'

Location: Code Generation >
Report

Name: Code-to-model

Value: Selected
Name: GenerateSampleERTMain (Embedded
Coder)

Value: 'off'

Location: Code Generation >
Templates

Name: Generate an example
main program

Value: Not selected
Name: GenerateComments (Simulink Coder)

Value: 'on'

Location: Code Generation >
Comments

Name: Include comments

Value: Selected

 Recommended Model Configuration Parameters for Polyspace Analysis

6-51

Grouping Command-Line Name and Location in
Configuration

Optimization

Name: DefaultParameterBehavior (Simulink
Coder)

Value: 'Inlined'

Location: Optimization

Name: Default parameter
behavior

Value: Inlined
Name: InitFltsAndDblsToZero (Simulink
Coder)

Value: 'on'

Location: Optimization

Name: Use memset to
initialize floats and doubles
to 0.0

Value: Not selected
Name: ZeroExternalMemoryAtStartup (Embedded
Coder)

Value: 'off'

Location: Optimization

Name: Remove root level I/O
zero initialization

Value: Selected

Solver

Name: SolverType (Simulink)

Value: 'Fixed-Step'

Location: Solver

Name: Type

Value: Fixed-step
Name: Solver (Simulink)

Value: 'FixedStepDiscrete'

Location: Solver

Name: Solver

Value: discrete (no
continuous states)

6 Run Polyspace Analysis in Simulink

6-52

Configure Polyspace Options in Simulink
Configure basic and advanced Polyspace options when analyzing generated code. You can reuse
existing configuration across multiple analysis.

To get started with Polyspace analysis in Simulink, see “Run Polyspace Analysis on Code Generated
with Embedded Coder” on page 6-2.

Configure Options
Set basic options

To set the basic Polyspace options in the Simulink Configuration Parameters window, on the Apps
tab, select Polyspace Code Verifier. Then, on the Polyspace tab, select Settings or Settings >
Polyspace Settings.

Set advanced options

The advanced options appear on the Configuration pane that also appears in the Polyspace user
interface when you manually create a project for handwritten code.

To open the advanced options, on the Polyspace tab, select Settings > Project Settings.

 Configure Polyspace Options in Simulink

6-53

On this pane, you can specify advanced settings.

• In the Run Settings pane, select options to run the code analysis on a remote cluster.
Alternatively, in the Advanced Settings pane, use the option Run Bug Finder or Code
Prover analysis on a remote cluster (-batch) in the Other field.

If you use this option, after starting the analysis, you can follow the analysis progress on the
remote cluster through the Job Monitor window. On the Polyspace tab, select Remote Job
Monitor.

• In the Inputs & Stubbing pane, specify options to stub certain functions for the analysis and
then constrain the function output. Alternatively, in the Advanced Settings pane, use the options
Functions to stub (-functions-to-stub) and Constraint setup (-data-range-
specifications) in the Other field.

If a basic option in the Configuration Parameters window directly conflicts with an advanced option in
the Polyspace window, the former prevails. For instance, say you specify these options:

• “Settings from (C)”: You select this basic option Project configuration and MISRA C 2012
checking for generated code.

• Check MISRA C:2012 (-misra3): You disable this advanced option.

Polyspace ignores the advanced option and checks for violations of MISRA C:2012 rules.

6 Run Polyspace Analysis in Simulink

6-54

By default, the advanced options are saved in the project file modelname_config.psprj in the
pslink_config subfolder of the results folder. Use this project file to reuse the options associated
with the project..

Share and Reuse Configuration
Share the basic or advanced options across multiple models.

• Basic options — Share and reuse the options set in the Configuration Parameters window. See
“Share a Configuration with Multiple Models” (Simulink).

• Advanced options — Share and reuse the advanced options that are in a separate Polyspace
project. Share this project across multiple models. When reusing advanced Polyspace options that
are saved in a Polyspace project file, use a project file that is configured by using the Polyspace
App in the Simulink Editor, as shown in “Set advanced options” on page 6-53. Reusing a project
file that is not generated from the Simulink Editor can result in unexpected results.

You can specify the advanced options once, and then reuse the advanced options across multiple
models. Set the basic options in each model individually.

Set options from model

Set the advanced options as needed. To see where the associated project file is stored or to change

the file name, on the Polyspace window toolbar, click the icon.

Reuse options in another model

To reuse the advanced options in another model, open the open the model and open the Configuration
Parameters window. On the Polyspace tab, select Settings.

• Select Use custom project file. Provide the path to the *.psprj project file that you previously
created.

• To use the project settings, select Project configuration under Settings from.

If you want to check for additional issues, such as MISRA C: 2012 violations, select the options
Project configuration and MISRA C 2012 checking for generated code.

If you run an analysis from the command line, you can set these options with the pslinkoptions
function. See also pslinkoptions Properties.

See Also

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder” on page 6-2
• “Run Polyspace Analysis on Code Generated with TargetLink” on page 6-62
• “Default Polyspace Options for Code Generated with Embedded Coder” on page 6-57
• “Default Polyspace Options for Code Generated with TargetLink” on page 6-64

 Configure Polyspace Options in Simulink

6-55

How Polyspace Analysis of Generated Code Works
When you generate code from a Simulink model, the generated code can contain these components:

• initialize() functions that run before the simulation starts.
• terminate() functions that run after the simulation ends.
• step() functions that run in a loop to perform the simulation.

Additionally, the generated code might have a placeholder main() function that contains calls to the
above. You might edit the placeholder main() to fit your deployment purposes. For more information
about the main generated by Embedded Coder, see “Main Program” (Embedded Coder).

When you run Polyspace on generated code, Polyspace gathers this information from your code:

• initialize() functions
• terminate() functions
• step() functions
• List of parameter variables
• List of input variables

When you run Code Prover, the software uses this information to generate a separate main()
function to facilitate the analysis. Regardless of the presence of the generated placeholder main(),
Polyspace uses its own main() function that performs these tasks:

1 Initializes parameters by using the Polyspace option Parameters (-variables-written-
before-loop).

2 Calls initialization functions by using the option Initialization functions (-functions-
called-before-loop).

3 Initializes inputs using the option Inputs (-variables-written-in-loop).
4 Calls the step function in a loop by using the option Step functions (-functions-called-

in-loop). By default, Polyspace assumes that the step function might be called an arbitrary
number of times in the loop. To specify the number of iterations in the loop for a more precise
Code Prover analysis, use the option -main-generator-bounded-loop.

5 Calls the terminate function by using the option Termination functions (-functions-
called-after-loop).

The Polyspace generated main function might have this structure:
init parameters \\ -variables-written-before-loop
init_fct() \\ -functions-called-before-loop
 while(random){ \\ start main loop with one or more iterations
 init inputs \\ -variables-written-in-loop
 step_fct() \\ -functions-called-in-loop
}
terminate_fct() \\ -functions-called-after-loop

For C++ code generated with Embedded Coder, the initialize(), step(), and terminate()
functions and associated variables are either class members or have global scope.

6 Run Polyspace Analysis in Simulink

6-56

Default Polyspace Options for Code Generated with Embedded
Coder

In this section...
“Default Options” on page 6-57
“Constraint Specification” on page 6-57
“Recommended Polyspace options for Verifying Generated Code” on page 6-58
“Hardware Mapping Between Simulink and Polyspace” on page 6-58

Default Options
For Embedded Coder code, the software sets the following verification options by default:

-sources path_to_source_code
-D PST_ERRNO
-D main=main_rtwec
-I matlabroot\polyspace\include
-I matlabroot\extern\include
-I matlabroot\rtw\c\libsrc
-I matlabroot\simulink\include
-I matlabroot\sys\lcc\include
-functions-to-stub=[rtIsNaN,rtIsInf,rtIsNaNF,rtIsInfF]
-results-dir results

Note matlabroot is the MATLAB installation folder.

Constraint Specification
You can constrain inputs, parameters, and outputs to lie within specified ranges. Use these
configuration parameters:

• “Input”
• “Tunable parameters”
• “Output”

The software automatically creates a Polyspace constraints file using information from the MATLAB
workspace and block parameters.

You can also manually define a constraints file in the Polyspace user interface. See “Specify External
Constraints for Polyspace Analysis” on page 14-2. If you define a constraints file, the software
appends the automatically generated information to the constraints file you create. Manually defined
constraint information overrides automatically generated information for all variables.

The software supports the automatic generation of constraint specifications for the following kinds of
generated code:

• Code from standalone models
• Code from configured function prototypes

 Default Polyspace Options for Code Generated with Embedded Coder

6-57

• Reusable code
• Code generated from referenced models and submodels

Additional Information

See also “External Constraints on Polyspace Analysis of Generated Code” on page 6-59.

Recommended Polyspace options for Verifying Generated Code
For Embedded Coder code, the software automatically specifies values for the following verification
options:

• -main-generator
• -functions-called-in-loop
• -functions-called-before-loop
• -functions-called-after-loop
• -variables-written-in-loop
• -variables-written-before-loop

Embedded Coder performs a wraparound of the variables in the generated code that might overflow.
When running a Code Prover analysis of code generated by Embedded Coder, Polyspace uses these
options:

• -signed-integer-overflows warn-with-wrap-around
• -unsigned-integer-overflows allow

These options might have different default values when analyzing code that is not generated by
Embedded Coder. See Overflow mode for signed integer (-signed-integer-overflows)
and Overflow mode for unsigned integer (-unsigned-integer-overflows).

In addition, for the option -server, the software uses the value specified in the Send to Polyspace
server check box on the Polyspace pane. These values override the corresponding option values in
the Configuration pane of the Polyspace user interface.

You can specify other verification options for your Polyspace Project through the Polyspace
Configuration pane. See “Configure Polyspace Options in Simulink” on page 6-53.

Hardware Mapping Between Simulink and Polyspace
The software automatically imports target word lengths and byte ordering (endianness) from
Simulink model hardware configuration settings. The software maps Device vendor and Device type
settings on the Simulink Configuration Parameters > Hardware Implementation pane to Target
processor type settings on the Polyspace Configuration pane.

The software creates a generic target for the verification.

6 Run Polyspace Analysis in Simulink

6-58

External Constraints on Polyspace Analysis of Generated Code
When you check generated code for bugs or run-time errors, you can choose whether to perform the
check for all values of an input or a specific range of values. You can extract the input range from the
Simulink model, or specify your own external constraints.

Likewise, you can use a fixed value for tunable parameters or a range of values. You can also check
whether output values fall within a specific range.

Extract External Constraints from Model
Consider this simple model with an Inport block, a Gain block, and an Outport block. Suppose the
signal in the Inport and Outport blocks and the gain parameter of the Gain block have a minimum and
maximum value.

You can analyze the code generated from this model with these minimum and maximum values. On
the Apps tab, select Polyspace Code Verifier. Then, on the Polyspace tab, select Settings. Specify
these configuration parameters:

• “Input” : Select Use specified minimum and maximum values. The Code Prover analysis
checks the generated code within the specified range of values from the Inport block. The Bug
Finder analysis uses this information to exclude false positives.

Default: This option is selected.
• “Tunable parameters”: Select Use specified minimum and maximum values.

Default: This option is not selected. The analysis uses the fixed gain value of the Gain block (the
value 2 in the example).

For the analysis to consider a range instead of a fixed value, the parameters must be tunable and
not inlined. See Default parameter behavior.

• “Output”: Select Verify outputs are within minimum and maximum values. The Code
Prover analysis creates a red check if the outputs exceed the range specified on the Outport block.
See also Correctness condition.

Default: This option is not selected. The Code Prover analysis does not check output values.

After analysis, to check if a constrained range value is used, see one of these files:

• Constraint specification XML file modelname_drs.xml in the folder results_modelname
\modelname.

• Polyspace project file modelname.prpsj in the folder results_modelname.

Open this file in the Polyspace user interface. In the project configuration, see the extracted
constraints specified for the option Constraint setup (-data-range-specifications).

 External Constraints on Polyspace Analysis of Generated Code

6-59

Storage Classes Supported for Constraint Extraction From Simulink
Model
To allow constraint extraction from the Simulink model, the signals and parameters must have data
types in specific storage classes. For details on storage classes, see “Choose Storage Class for
Controlling Data Representation in Generated Code” (Embedded Coder).

Common Storage Classes

Storage Class Signal Constraint Supported Parameter Constraint
Supported

Auto Yes Yes
ExportedGlobal Yes Yes
ImportedExtern Yes Yes
ImportedExternPointer Yes Yes
Model default Yes Yes

Other Storage Classes

Storage Class Signal Constraint Supported Parameter Constraint
Supported

BitField Yes Yes
CompilerFlag No No
Const No Yes
ConstVolatile No Yes
Define No No
ExportToFile Yes Yes
FileScope Yes No
GetSet No No
ImportedDefine No No
ImportFromFile No No
Struct No No
Volatile Yes Yes

Specify Custom External Constraints
In some instances, you might need to specify a custom set of constraints on your generated code. For
instance, you might be integrating the generated code with an existing code base, which imposes a
set of custom constraints.

When analyzing the generated code, specify custom external constraints through the Polyspace
Configuration window:

1 In the Simulink Configuration Parameters window, locate the Polyspace tab, and then click
Configure to open the Polyspace Configuration window.

6 Run Polyspace Analysis in Simulink

6-60

2 In the Constraint Setup field, located in the Inputs & Stubbing node, specify the custom
external specification XML file.

You can create and edit a custom external constraint template through the Polyspace user interface.
See “Specify External Constraints for Polyspace Analysis” on page 14-2.

See Also

More About
• “Default Polyspace Options for Code Generated with Embedded Coder” on page 6-57
• “Choose Storage Class for Controlling Data Representation in Generated Code” (Embedded

Coder)
• “Specify External Constraints for Polyspace Analysis” on page 14-2
• “External Constraints for Polyspace Analysis” on page 14-6

 External Constraints on Polyspace Analysis of Generated Code

6-61

Run Polyspace Analysis on Code Generated with TargetLink
To detect bugs and runtime errors, run a Polyspace analysis after generating code from Simulink
models by using TargetLink. Run the analysis from the Simulink Editor window. Manually setting up a
Polyspace project is not necessary. If you use Embedded Coder to generate code, see “Run Polyspace
Analysis on Code Generated from Simulink Model” on page 6-15.

Configure and Run Analysis
Configure code analysis

On the Apps tab, select Polyspace Code Verifier. Then, on the Polyspace tab:

• Select the product to run: Bug Finder or Code Prover. A Code Prover analysis detects run-time
errors while a Bug Finder analysis detects coding defects and coding rule violations.

• Select Settings. Change default values of these options if needed.

• “Settings from (C)”: Enable checking of MISRA or JSF® coding rules in addition to the default
checks.

• “Output folder”: Specify a dedicated folder for results. The default analysis runs Code Prover
on generated code and saves the results in a folder results_modelName in the current
working folder.

• “Enable additional file list”: Add C files that are not part of the generated code.
• “Open results automatically after verification”

Analyze code

To analyze generated code:

1 Choose to analyze code generated from a TargetLink Subsystem. You cannot analyze code
generated from the entire model.

The Analyze Code from field shows the top model. Unpin the content of this field and then
select the TargetLink Subsystem.

2 Select Settings > Analyze TargetLink Code. Then, select Run Analysis.

You can follow the progress of the analysis in the MATLAB command window.

6 Run Polyspace Analysis in Simulink

6-62

The results open automatically unless explicitly disabled. By default, the results are saved in a folder
results_ModelName in the current folder. Each new run overwrites previous results. You can
change these behaviors or save the results to a Simulink project using appropriate configuration
parameters.

Review Analysis Results
Review result in code

The results appear on the Results List pane. Click each result to see the source code and details on
the Result Details pane.

Navigate from code to model

Links in code comments show blocks that generate the subsequent lines of code. To see the blocks in
the model, click the block names.

Fix issue

Investigate whether the issues in your code are related to design flaws in the model.

For instance, you might need to constrain the range of signal from Inport blocks. See “Work with
Signal Ranges in Blocks” (Simulink). If a flagged issue is known or justified, then annotate that
information in the relevant blocks. To annotate a block in Simulink Editor, right-click the block and
use the contextual menu.

 Run Polyspace Analysis on Code Generated with TargetLink

6-63

Default Polyspace Options for Code Generated with TargetLink
In this section...
“TargetLink Support” on page 6-64
“Default Options” on page 6-64
“Lookup Tables” on page 6-64
“Data Range Specification” on page 6-65
“Code Generation Options” on page 6-65

TargetLink Support
The Windows version of Polyspace Bug Finder is compatible with dSPACE® Data Dictionary and
TargetLink Code Generator.

Polyspace Bug Finder does support CTO generated code. However, for better results, MathWorks
recommends that you disable the CTO option in TargetLink before generating code. For more
information, see the dSPACE documentation.

Because Polyspace Bug Finder extracts information from the dSPACE Data Dictionary, you must
regenerate the code before performing an analysis.

Default Options
Polyspace sets the following options by default:

-sources path_to_source_code
-results-dir results_folder_name
-I path_to_source_code
-D PST_ERRNO
-I dspaceroot\matlab\TL\SimFiles\Generic
-I dspaceroot\matlab\TL\srcfiles\Generic
-I dspaceroot\matlab\TL\srcfiles\i86\LCC
-I matlabroot\polyspace\include
-I matlabroot\extern\include
-I matlabroot\rtw\c\libsrc
-I matlabroot\simulink\include
-I matlabroot\sys\lcc\include
-functions-to-stub=[rtIsNaN,rtIsInf,rtIsNaNF,rtIsInfF]
-scalar-overflows-behavior wrap-around
-boolean-types Bool

Note dspaceroot and matlabroot are the dSPACE and MATLAB tool installation directories
respectively.

Lookup Tables
By default, Polyspace provides stubs for the lookup table functions. The dSPACE data dictionary is
used to define the range of their return values. A lookup table that uses extrapolation returns full
range for the type of variable that it returns. You can disable this behavior from the Polyspace
configuration menu.

6 Run Polyspace Analysis in Simulink

6-64

Data Range Specification
You can constrain inputs, parameters, and outputs to lie within specified data ranges. See “Work with
Signal Ranges in Blocks” (Simulink).

The software automatically creates a Polyspace constraints file using the dSPACE Data Dictionary for
each global variable. The constraint information is used to initialize each global variable to the range
of valid values as defined by the min..max information in the data dictionary. This information allows
Polyspace software to model real values for the system during analysis. Carefully defining the min-
max information in the model allows the analysis to be more precise, because only the range of real
values is analyzed.

Note Boolean types are modeled having a minimum value of 0 and a maximum of 1.

You can also manually define a constraint file in the Polyspace user interface. See “Specify External
Constraints for Polyspace Analysis” on page 14-2. If you define a constraint file, the software
appends the automatically generated information to the constraint file you create. Manually defined
constraint information overrides automatically generated information for all variables.

Constraints cannot be applied to static variables. Therefore, the compilation flags -D static= is set
automatically. It has the effect of removing the static keyword from the code. If you have a problem
with name clashes in the global name space, either rename the variables or disable this option in
Polyspace configuration.

Code Generation Options
From the TargetLink Main Dialog, it is recommended to:

• Set the option Clean code
• Unset the option Enable sections/pragmas/inline/ISR/user attributes
• Turn off the compute to overflow (CTO) generation. Polyspace can analyze code generated with

CTO, but the results may not be as precise.

When you install Polyspace, the tlcgOptions variable is updated with 'PolyspaceSupport',
'on' (see variable in 'C:\dSPACE\Matlab\Tl\config\codegen\tl_pre_codegen_hook.m'
file).

See Also

Related Examples
• “Run Polyspace Analysis on Code Generated with TargetLink” on page 6-62

External Websites
• dSPACE – TargetLink

 Default Polyspace Options for Code Generated with TargetLink

6-65

https://www.dspace.com/en/inc/home/products/sw/pcgs/targetlink.cfm

Troubleshoot Navigation from Code to Model
When you run Polyspace on generated code, in the analysis results, you see links in code comments.
The links show names of blocks that generate the subsequent lines of code. To see the blocks in the
model, you click the block names in the links.

This topic shows the issues that can happen in navigation from code to model.

Links from Code to Model Do Not Appear
See if you are looking at source files (.c or .cpp) or header files. Header files are not directly
associated with blocks in the model and do not have links back to the model.

Links from Code to Model Do Not Work
You may encounter issues with the back-to-model feature if:

• Your operating system is Windows Vista® or Windows 7; and User Account Control (UAC) is
enabled or you do not have administrator privileges.

• You have multiple versions of MATLAB installed.

To reconnect MATLAB and Polyspace:

1 Close Polyspace.
2 At the MATLAB command-line, enter pslinkfun('enablebacktomodel').

6 Run Polyspace Analysis in Simulink

6-66

When you open your Polyspace results, the hyper-links will highlight the relevant blocks in your
model.

Your Model Already Uses Highlighting
If your model extensively uses block coloring, the coloring from this feature may interfere with the
colors already in your model. You can change the color of blocks when they are linked to Polyspace
results. For instance, to change the color to magenta, use this command:

color = 'magenta';
HILITE_DATA = struct('HiliteType', 'find', 'ForegroundColor', 'black', ...
 'BackgroundColor', color);
set_param(0, 'HiliteAncestorsData', HILITE_DATA)

The color can be one of the following:

• 'cyan'
• 'magenta'
• 'orange'
• 'lightBlue'
• 'red'
• 'green'
• 'blue'
• 'darkGreen'

 Troubleshoot Navigation from Code to Model

6-67

Polyspace Support of MATLAB and Simulink from Different
Releases

Polyspace support of MATLAB or Simulink varies depending on their respective releases. Polyspace
fully supports MATLAB and Simulink from the same release, offering complete integration with these
software. Polyspace supports MATLAB and Simulink from earlier releases with cross-release
integration. See the table.

 Polysp
ace
Releas
e
R2018
a

Polysp
ace
Releas
e
R2018
b

Polysp
ace
Releas
e
R2019
a

Polysp
ace
Releas
e
R2019
b

Polysp
ace
Releas
e
R2020
a

Polysp
ace
Releas
e
R2020
b

Polysp
ace
Releas
e
R2021
a

Polysp
ace
Releas
e
R2021
b

Polysp
ace
Releas
e
R2022
a

Polysp
ace
Releas
e
R2022
b

Polysp
ace
Releas
e
R2023
a

MATL
AB or
Simuli
nk
Releas
e
R2018
a

Compl
ete
Integr
ation
on
page
6-70

“Partia
l
Integr
ation”
on
page
6-71

“Partia
l
Integr
ation”
on
page
6-71

“Partia
l
Integr
ation”
on
page
6-71

“Partia
l
Integr
ation”
on
page
6-71

* on
page
6-71

* on
page
6-71

* on
page
6-71

* on
page
6-71

* on
page
6-71

* on
page
6-71

MATL
AB or
Simuli
nk
Releas
e
R2018
b

* on
page
6-71

Compl
ete
Integr
ation
on
page
6-70

“Partia
l
Integr
ation”
on
page
6-71

“Partia
l
Integr
ation”
on
page
6-71

“Partia
l
Integr
ation”
on
page
6-71

“Partia
l
Integr
ation”
on
page
6-71

* on
page
6-71

* on
page
6-71

* on
page
6-71

* on
page
6-71

* on
page
6-71

MATL
AB or
Simuli
nk
Releas
e
R2019
a

* on
page
6-71

* on
page
6-71

Compl
ete
Integr
ation
on
page
6-70

“Partia
l
Integr
ation”
on
page
6-71

“Partia
l
Integr
ation”
on
page
6-71

“Partia
l
Integr
ation”
on
page
6-71

* on
page
6-71

* on
page
6-71

* on
page
6-71

* on
page
6-71

* on
page
6-71

MATL
AB or
Simuli
nk
Releas
e
R2019
b

* on
page
6-71

* on
page
6-71

* on
page
6-71

Compl
ete
Integr
ation
on
page
6-70

* on
page
6-71

* on
page
6-71

* on
page
6-71

* on
page
6-71

* on
page
6-71

* on
page
6-71

* on
page
6-71

6 Run Polyspace Analysis in Simulink

6-68

MATL
AB or
Simuli
nk
Releas
e
R2020
a

* on
page
6-71

* on
page
6-71

* on
page
6-71

* on
page
6-71

Compl
ete
Integr
ation
on
page
6-70

* on
page
6-71

* on
page
6-71

* on
page
6-71

* on
page
6-71

* on
page
6-71

* on
page
6-71

MATL
AB or
Simuli
nk
Releas
e
R2020
b

* on
page
6-71

* on
page
6-71

* on
page
6-71

* on
page
6-71

* on
page
6-71

Compl
ete
Integr
ation
on
page
6-70

“Cross
-
Releas
e
Integr
ation”
on
page
6-70

“Cross
-
Releas
e
Integr
ation”
on
page
6-70

“Cross
-
Releas
e
Integr
ation”
on
page
6-70

“Cross
-
Releas
e
Integr
ation”
on
page
6-70

“Cross
-
Releas
e
Integr
ation”
on
page
6-70

MATL
AB or
Simuli
nk
Releas
e
R2021
a

* on
page
6-71

* on
page
6-71

* on
page
6-71

* on
page
6-71

* on
page
6-71

* on
page
6-71

Compl
ete
Integr
ation
on
page
6-70

“Cross
-
Releas
e
Integr
ation”
on
page
6-70

“Cross
-
Releas
e
Integr
ation”
on
page
6-70

“Cross
-
Releas
e
Integr
ation”
on
page
6-70

“Cross
-
Releas
e
Integr
ation”
on
page
6-70

MATL
AB or
Simuli
nk
Releas
e
R2021
b

* on
page
6-71

* on
page
6-71

* on
page
6-71

* on
page
6-71

* on
page
6-71

* on
page
6-71

* on
page
6-71

Compl
ete
Integr
ation
on
page
6-70

“Cross
-
Releas
e
Integr
ation”
on
page
6-70

“Cross
-
Releas
e
Integr
ation”
on
page
6-70

“Cross
-
Releas
e
Integr
ation”
on
page
6-70

MATL
AB or
Simuli
nk
Releas
e
R2022
a

* on
page
6-71

* on
page
6-71

* on
page
6-71

* on
page
6-71

* on
page
6-71

* on
page
6-71

* on
page
6-71

* on
page
6-71

Compl
ete
Integr
ation
on
page
6-70

“Cross
-
Releas
e
Integr
ation”
on
page
6-70

“Cross
-
Releas
e
Integr
ation”
on
page
6-70

 Polyspace Support of MATLAB and Simulink from Different Releases

6-69

MATL
AB or
Simuli
nk
Releas
e
R2022
b

* on
page
6-71

* on
page
6-71

* on
page
6-71

* on
page
6-71

* on
page
6-71

* on
page
6-71

* on
page
6-71

* on
page
6-71

* on
page
6-71

Compl
ete
Integr
ation
on
page
6-70

“Cross
-
Releas
e
Integr
ation”
on
page
6-70

MATL
AB or
Simuli
nk
Releas
e
R2023
a

* on
page
6-71

* on
page
6-71

* on
page
6-71

* on
page
6-71

* on
page
6-71

* on
page
6-71

* on
page
6-71

* on
page
6-71

* on
page
6-71

* on
page
6-71

Compl
ete
Integr
ation
on
page
6-70

Note The empty cells (*) in the preceding table represent MATLAB and Simulink support without
integration. See “Navigate Back to Model” on page 6-71.

Complete Integration
If MATLAB and Polyspace are from the same release, you can integrate them after installation by
calling polyspacesetup. See “Same Release of Polyspace and MATLAB” on page 5-2.

You can:

• Run a Polyspace analysis from the Simulink Editor or from the MATLAB Command Window on C/C
++ code that is generated from a model or included as custom code in a model. Annotate Simulink
blocks and navigate back-to-model from the Polyspace user interface.

See “Bug Finder Analysis in Simulink”.
• Run a Polyspace analysis on C/C++ code that is generated from MATLAB code by using the

MATLAB Coder App (if you have Embedded Coder).

See “Bug Finder Analysis in MATLAB Coder”.
• Run a Polyspace analysis on handwritten C/C++ code by using MATLAB scripts.

See “Bug Finder Analysis with MATLAB Scripts”.

Cross-Release Integration
You can integrate Polyspace with MATLAB or Simulink from a release after R2020b. See “MATLAB
Release Earlier Than Polyspace” on page 5-3.

This cross-release integration offers limited functionalities. In a cross-release workflow, you can:

• To run a Polyspace analysis on C/C++ code generated by using Embedded Coder, in the MATLAB
Command Window, call these functions:

6 Run Polyspace Analysis in Simulink

6-70

• pslinkrunCrossRelease
• pslinkfun
• pslinkoptions

• Navigate back to your Simulink model from the Polyspace user interface.

You cannot:

• Start a Polyspace analysis of generated code from the Simulink Editor or MATLAB Coder App.
• Start a Polyspace analysis of the custom code included in models or handwritten C/C++ code in

the MATLAB Command Window.
• Start a Polyspace analysis of C/C++code generated from MATLAB code in the MATLAB Command

Window.

See “Run Polyspace on Code Generated by Using Previous Releases of Simulink” on page 6-12.

Partial Integration
You can partially integrate Polyspace with MATLAB or Simulink from a release earlier than R2020b.
See “MATLAB Release Earlier Than Polyspace” on page 5-3.

This cross-release integration offers limited functionalities. In a cross-release workflow, you can:

• To run a Polyspace analysis on C/C++ code generated by using Embedded Coder, in the MATLAB
Command Window, call these functions:

• pslinkrun
• pslinkfun
• pslinkoptions

• Navigate back to your Simulink model from the Polyspace user interface.

You cannot:

• Start a Polyspace analysis of generated code from the Simulink Editor or MATLAB Coder App.
• Start a Polyspace analysis of the custom code included in models or handwritten C/C++ code in

the MATLAB Command Window.
• Start a Polyspace analysis of C/C++code generated from MATLAB code in the MATLAB Command

Window.

Navigate Back to Model
You can navigate back to your Simulink model from the Polyspace user interface without integrating
Polyspace into your MATLAB or Simulink. Polyspace does not integrate with MATLAB and Simulink if:

• Your MATLAB or Simulink is from a more recent release than your Polyspace.
• Your MATLAB or Simulink is more than four releases behind your Polyspace.

Some specific releases of MATLAB or Simulink do not integrate with Polyspace. See the table.

To navigate back to your model from the Polyspace user interface without integrating Polyspace and
MATLAB or Simulink:

 Polyspace Support of MATLAB and Simulink from Different Releases

6-71

• Identify the comments in your code that act as links to the Simulink model. In the Tools >
Preferences > Miscellaneous tab, select your code generation tool from the context menu Code
comments that act as code-to-model links. Polyspace recognizes Embedded Coder, MATLAB
Coder, and TargetLink. If you use a different code generating tool, select User Defined. In the
field Comments beginning with, specify prefixes of the code comments that act as links.

• In the Source pane of the Polyspace user interface, click the code comments that appear as
hyperlinks.

See Also
polyspacesetup | pslinkrunCrossRelease

More About
• “Integrate Polyspace with MATLAB and Simulink” on page 5-2
• “Run Polyspace on Code Generated by Using Previous Releases of Simulink” on page 6-12
• “Fix Issues When when Integrating Polyspace with MATLAB and Simulink” on page 32-65

6 Run Polyspace Analysis in Simulink

6-72

Run Polyspace Analysis in MATLAB
Coder

7

Run Polyspace on C/C++ Code Generated from MATLAB Code
After generating C/C++ code from MATLAB code, you can independently check the generated code
for:

• Bugs or defects and coding rule violations: Use Polyspace Bug Finder.
• Run-time errors: Use Polyspace Code Prover.

Whether you generate code in the MATLAB Coder app or use codegen, you can follow the same
workflow for checking the generated code.

This tutorial uses the MATLAB Coder example averaging_filter in polyspaceroot\help
\toolbox\codeprover\examples\matlab_coder. Here, polyspacroot is the Polyspace
installation folder, for instance, C:\Program Files\Polyspace\R2023a. The example shows a
Code Prover analysis. You can follow a similar workflow for Bug Finder.

Prerequisites
To run this tutorial:

• You must have an Embedded Coder license. The MATLAB Coder app does not show options for
running Polyspace unless you have an Embedded Coder license.

• You must be familiar with how to open and use the MATLAB Coder app or the codegen command.
Otherwise, see the MATLAB Coder Getting Started.

• You must link your Polyspace and MATLAB installations. See “Integrate Polyspace with MATLAB
and Simulink” on page 5-2.

Run Polyspace Analysis
In the MATLAB Coder app, generate code from the file averaging_filter.m and analyze the
generated code.

1 Generate code.

From the entry-point function in the file, generate standalone C/C++ code (a static library,
dynamically linked library, or executable program) in the MATLAB Coder app. The function has
one input. Explicitly specify a data type for the input, for instance, a 1 X 100 vector of type
double, or provide a file for deriving data types.

2 Analyze the generated code.

After code generation, open the Polyspace pane and click Run.

7 Run Polyspace Analysis in MATLAB Coder

7-2

If the analysis is completed without errors, the Polyspace results open automatically. If you close
the results, you can reopen them from the final page in the app, under the section Generated
Output. The results are stored in a subfolder results_averaging_filter in the folder
containing the MATLAB file.

To script the preceding workflow, run:

% Generate code
matlabFileName = fullfile(polyspaceroot, 'help',...
 'toolbox','codeprover','examples','matlab_coder','averaging_filter.m');
codegenFolder = fullfile(pwd, 'codegenFolder');
codegen(matlabFileName, '-config:lib', '-c', '-args', ...
 {zeros(1,100,'double')}, '-d', codegenFolder);

% Configure Polyspace analysis
opts = pslinkoptions('ec');
opts.ResultDir = [tempdir 'results'];
opts.OpenProjectManager = 1;

% Run Polyspace
[polyspaceFolder, resultsFolder] = pslinkrun('-codegenfolder', codegenFolder, opts);

 Run Polyspace on C/C++ Code Generated from MATLAB Code

7-3

Review Analysis Results
After analysis, the Results List pane shows a list of run-time checks. For an explanation of the result
colors, see “Code Prover Result and Source Code Colors” (Polyspace Code Prover).

Review the results and determine whether to fix the issues.

1 Filter out results that you do not want to review. For instance, you might not want to see the
green checks.

See an overview of the results on the Dashboard pane. Click the orange section of the pie chart
to filter the list of results on the Results List pane to the one orange check. Click this orange
Overflow check and see the source code for the operation that can overflow.

If results are grouped by family, to see a flat list, on the Results List pane, from the
dropdown, select None.

2 Find the root cause of each run-time error.

On the Source pane, use right-click navigation tools and tooltips to identify the root cause of the
check. In this case, you see that the + operation overflows because Polyspace makes an
assumption about the input array to the function. The assumption is that the array elements can
have any value allowed by their double data type. The tooltip on the line buffer[0] = x[i]
shows the assumed range.

7 Run Polyspace Analysis in MATLAB Coder

7-4

With an Embedded Coder license, you can easily trace back from the generated C code to the
original MATLAB code. See “Interactively Trace Between MATLAB Code and Generated C/C++
Code” (Embedded Coder).

Run Analysis for Specific Design Range
You can check the generated code for a specific range of inputs. Range specification helps narrow
down the default assumption that inputs are full-range.

To specify a range for inputs:

1 Open the analysis configuration.

In the Polyspace user interface, switch to the Polyspace project created for the analysis. Select
Window > Reset Layout > Project Setup. On the Project Browser pane, click the project
configuration.

 Run Polyspace on C/C++ Code Generated from MATLAB Code

7-5

2 Specify a design range for the inputs.

In the Configuration pane, on the Inputs & Stubbing node, set up your constraints. Click Edit
beside Constraint setup. Constrain the range of the first input to [-100..100].

You can overwrite the default constraint template or save the constraints elsewhere. For
information on the columns in this window, see “External Constraints for Polyspace Analysis” on
page 14-6.

3 Rerun the analysis from the Coder app (or at the MATLAB command line) and see the results.

On the Dashboard pane, you do not see the previous orange overflow anymore.

See Also
pslinkrun

More About
• “Configure Advanced Polyspace Options in MATLAB Coder App” on page 7-7

7 Run Polyspace Analysis in MATLAB Coder

7-6

Configure Advanced Polyspace Options in MATLAB Coder App
Before analyzing generated code with Polyspace in the MATLAB Coder App, you can change some of
the default options. This topic shows how to configure the options and save this configuration.

For getting started with Polyspace analysis in the MATLAB Coder App, see “Run Polyspace on C/C++
Code Generated from MATLAB Code” on page 7-2.

Configure Options

The default analysis runs Code Prover based on a default project configuration. The results are stored
in a folder result_project_name in the current working folder.

You can change these options in the MATLAB Coder App itself:

• Product mode: Select Code Prover or Bug Finder.
• Results type: Check for MISRA C:2004 (MISRA AC AGC) or MISRA C:2012 rule violations, in

addition to or instead of the default checkers.

 Configure Advanced Polyspace Options in MATLAB Coder App

7-7

• Output folder: Choose an output folder name. To save the results of each run in a new folder,
under Advanced Settings, select Make output folder name unique by adding a suffix.

• Check code generation options: Choose to see warnings or errors if the code generation uses
options that can result in imprecise Code Prover analysis.

For instance, if the code generation setting Use memset to initialize floats and doubles to 0.0
is disabled, Code Prover can show imprecise orange checks because of approximations. See
“Orange Checks in Polyspace Code Prover” (Polyspace Code Prover).

To see the other default options or update them, under Advanced Settings, click the Configure
button. You see the options on a Configuration pane.

For more information on the options, see Bug Finder Analysis Options or Code Prover Analysis
Options (Polyspace Code Prover).

Share and Reuse Configuration
If you change some of the default options in the Configuration pane, your updated configuration is
saved as a .psprj file in the results folder. Using this file, you can reuse your configuration across
multiple MATLAB Coder projects.

Reuse Configuration in Coder App

To reuse a previous configuration in the current project opened in the MATLAB Coder App, under
Advanced Settings, select Reuse existing configuration. For Template configuration file,
provide the .psprj file that stores the previous configuration.

The Results type option in the MATLAB Coder app still shows Based on Polyspace configuration
but the configuration used is the one that you provided.

Reuse Configuration on Command Line

At the MATLAB command line, you create an options object with the pslinkoptions function. You
modify the analysis options by using the properties of this object and then run analysis with the
pslinkrun function.

opts = pslinkoptions('ec');
...
pslinkrun('-codegenfolder', codegenFolder, opts);

You can associate advanced analysis options set in a .psprj file with the options object. Use the
properties EnablePrjConfigFile and PrjConfigFile.

opts.EnablePrjConfigFile = true;
opts.PrjConfigFile = 'C:\Polyspace\config.psprj';

For more information, see pslinkoptions Properties.

See Also
pslinkoptions

7 Run Polyspace Analysis in MATLAB Coder

7-8

More About
• “Run Polyspace on C/C++ Code Generated from MATLAB Code” on page 7-2

 Configure Advanced Polyspace Options in MATLAB Coder App

7-9

Configure Analysis on Servers

11

Run Polyspace Analysis on Servers

8

Run Polyspace Bug Finder on Server and Upload Results to
Polyspace Access Web Interface

Polyspace Bug Finder Server checks C/C++ code for defects and coding standard violations, and then
uploads findings to a web interface for code review.

You can run Bug Finder as part of continuous integration. Set up scripts that run a Bug Finder
analysis at regular intervals or based on new code submissions. The scripts can upload the analysis
results for review in the Polyspace Access web interface and optionally send emails to owners of
source files with Polyspace findings. The owners can open the web interface to review only the new
findings from their submission, and then fix or justify the issues.

In a typical project or team, Polyspace Bug Finder Server runs periodically on a few testing servers
and uploads the results for review. Each developer and quality engineer in the team has a Polyspace
Bug Finder Access license to view the results in the web interface for investigation and bug fixing.

Prerequisites
To run a Bug Finder analysis on a server and review the results in the Polyspace Access web
interface, perform this one-time setup:

• To run the analysis, install one instance of the Polyspace Bug Finder Server product.
• To upload results, set up the components required to host the web interface of Polyspace Access.
• To view the uploaded results, you and each developer reviewing the results must have a Polyspace

Bug Finder Access license.

See “Install Polyspace Server and Access Products”.

8 Run Polyspace Analysis on Servers

8-2

Check Polyspace Installation
To check if Polyspace Bug Finder Server is installed:

1 Open a command window. Navigate to polyspaceserverroot\polyspace\bin. Here,
polyspaceserverroot is the Polyspace Bug Finder Server installation folder, for instance,
C:\Program Files\Polyspace Server\R2023a. See also “Installation Folder”.

2 Enter:

polyspace-bug-finder-server -help

You should see the list of options allowed for a Bug Finder analysis.

To check if the Polyspace Access web interface is set up for upload:

1 Navigate again to polyspaceserverroot\polyspace\bin.
2 Enter:

polyspace-access -host hostName -port portNumber -create-project testProject

Here, hostName is the name of the server hosting the Polyspace Bug Finder Access web server.
For a locally hosted server, use localhost. The portNumber is the optional port number of the
server. If you omit the port number, 9443 is used.

If the setup was complete, a project called testProject is created in the Polyspace Access web
interface.

You are prompted for your login and password each time that you use the polyspace-access
command. To avoid entering login information each time, provide the login and an encrypted
version of your password with the command. To create an encrypted password, enter:

polyspace-access -encrypt-password

Enter your login and password. Copy the encrypted password and provide this encrypted
password with the -encrypted-password option when using the polyspace-access
command.

3 In a web browser, open this URL:

https://hostName:portNumber/metrics/index.html

Here, hostName and portNumber are the host name and port number from the previous step.

In the Project Explorer pane on the Polyspace Access web interface, you see the newly created
project testProject.

Run Bug Finder on Sample Files
To run Bug Finder, in your operating system, open a command window.

1 To run a Bug Finder analysis, use the polyspace-bug-finder-server command.
2 To upload the results to the Polyspace Access web interface, use the polyspace-access

command.

 Run Polyspace Bug Finder on Server and Upload Results to Polyspace Access Web Interface

8-3

To avoid typing the full path to the command, add the path polyspaceserverroot\polyspace
\bin to the Path environment variable on your operating system.

Try out the commands on sample files provided with your Polyspace installation.

1 Copy the sample source files from polyspaceserverroot\polyspace\examples\cxx
\Bug_Finder_Example\sources to another folder where you have write permissions.
Navigate to this folder at the command line.

2 Enter:

polyspace-bug-finder-server -sources numerical.c,dataflow.c -I .
 -checkers numerical,data_flow -results-dir .
polyspace-access -host hostName -port portNumber
 -login username -encrypted-password pwd
 -create-project testProject
polyspace-access -host hostName -port portNumber
 -login username -encrypted-password pwd
 -upload . -project myFirstProject -parent-project testProject

Here, username is your login name and pwd is the encrypted password that you created
previously. See “Check Polyspace Installation” on page 8-3.

Refresh the Polyspace Access web interface. You see a folder testProject on the Project Explorer
pane. The folder contains one project myFirstProject.

To see the results in the project, click Review. For more information, see “Review Polyspace Bug

Finder Results in Web Browser”. You can also access the documentation using the button
in the upper right of the Polyspace Access interface.

The analysis options used with the polyspace-bug-finder-server command are:

• -sources: Specify comma-separated source files.
• -I: Specify path to include folder. Use the -I flag each time you want to add a separate include

folder.
• Find defects (-checkers): Specify the defects (bugs) to check for.

8 Run Polyspace Analysis on Servers

8-4

• -results-dir: Specify the path to the folder where Polyspace Bug Finder results will be saved.

Note that the results folder is cleaned up and repopulated at each run. To avoid accidental
removal of files during the cleanup, instead of using an existing folder that contains other files,
specify a dedicated folder for the Polyspace results.

For the full list of options available for a Bug Finder analysis, see “Complete List of Polyspace Bug
Finder Analysis Engine Options”. To open the Bug Finder documentation in a help browser, enter:

polyspace-bug-finder-server -doc

Sample Scripts for Bug Finder Analysis on Servers
To run the analysis, instead of typing the commands at the command line, you can use scripts. The
scripts can execute each time that you add or modify source files.

A sample Windows batch file is shown below. Here, the path to the Polyspace installation is specified
in the script. To use this script, replace polyspaceserverroot with the path to your installation.
You must have already generated the encrypted password for use in the scripts. See “Check
Polyspace Installation” on page 8-3.

echo off
set POLYSPACE_PATH=polyspaceserverroot\polyspace\bin
set LOGIN=-host hostName -port portNumber -login username -encrypted-password pwd
"%POLYSPACE_PATH%\polyspace-bug-finder-server" -sources numerical.c,dataflow.c -I .^
 -checkers numerical,data_flow -results-dir .
"%POLYSPACE_PATH%\polyspace-access" %LOGIN% -create-project testProject
"%POLYSPACE_PATH%\polyspace-access" %LOGIN% -upload . -project myFirstProject
 -parent-project testProject
pause

A sample Linux shell script is shown below.

POLYSPACE_PATH=polyspaceserverroot/polyspace/bin
LOGIN=-host hostName -port portNumber -login username -encrypted-password pwd
${POLYSPACE_PATH}/polyspace-bug-finder-server -sources numerical.c,dataflow.c -I .\
 -checkers numberical,data_flow -results-dir .
${POLYSPACE_PATH}/polyspace-access $LOGIN -create-project testProject
${POLYSPACE_PATH}/polyspace-access $LOGIN -upload . -project myFirstProject
 -parent-project testProject

Specify Sources and Options in Separate Files from Launching Scripts
Instead of listing the source files and analysis options within the launching scripts, you can list them
in separate text files.

• Specify the text file listing the sources by using the option -sources-list-file.
• Specify the text file listing the analysis options by using the option -options-file.

By removing the source files and analysis option specifications from the launching scripts, you can
modify these specifications as required with new code submissions while leaving the launching script
untouched.

Consider the script in the preceding example. You can modify the polyspace-bug-finder-server
command to use text files with sources and options. Instead of:

 Run Polyspace Bug Finder on Server and Upload Results to Polyspace Access Web Interface

8-5

polyspace-bug-finder-server -sources numerical.c,dataflow.c
 -I . -checkers numerical,data_flow -results-dir .

use:

polyspace-bug-finder-server -sources numerical.c,dataflow.c
 -I . -checkers numerical,data_flow -results-dir .

Here:

• sources.txt lists the source files in separate lines:

numerical.c
dataflow.c

• polyspace_opts.txt lists the analysis options in separate lines:

-I .
-checkers numerical,data_flow

Typically, your source files are specified in a build command (makefile). Instead of specifying the
source files directly, you can trace the build command to create a list of source specifications. See
polyspace-configure.

Complete Workflow
In a typical continuous integration workflow, you run a script that executes these steps:

1 Extract Polyspace options from your build command.

For instance, if you use makefiles to build your source code, you can extract analysis options
from the makefile.

polyspace-configure -output-options-file compile_opts make

See also:

• polyspace-configure
• “Create Polyspace Analysis Configuration from Build Command (Makefile)” on page 13-22

2 Run the analysis with the previously created options file. Append a second options file that
contains the remaining options required for the analysis.

polyspace-bug-finder-server -options-file compile_opts -options-file run_opts

3 Upload the results to Polyspace Bug Finder Access.

polyspace-access login -upload resultsFolder -project projName
 -parent-project parentProjName

Here, login is the combination of options required to communicate with the web server that is
hosting Polyspace Bug Finder Access:

-host hostName -port portNumber -login username -encrypted-password pwd

8 Run Polyspace Analysis on Servers

8-6

resultsFolder is the folder containing the Polyspace results. projName and parentProjName
are names of the project and parent folder as they would appear in the Polyspace Access web
interface.

4 Optionally, send email notifications to developers with new results from their code submission.
The email contains attachments with links to the results in the Polyspace Access web interface.

See “Send Email Notifications with Polyspace Bug Finder Server Results”.

See examples of scripts executing these steps in “Sample Scripts for Polyspace Analysis with Jenkins”
on page 8-17.

See Also
polyspace-access | polyspace-bug-finder-server

More About
• “Send Email Notifications with Polyspace Bug Finder Server Results”
• “Complete List of Polyspace Bug Finder Analysis Engine Options”

 Run Polyspace Bug Finder on Server and Upload Results to Polyspace Access Web Interface

8-7

Send Email Notifications with Polyspace Bug Finder Server
Results

If you run a Polyspace analysis as part of continuous integration, each new code submission produces
new results. You not only see new results in components that were modified but also in components
that depended on the modified components. You can set up e-mail alerts so that component owners
get notified when new Polyspace results appear in their components.

Creating E-mail Notifications
To create e-mail notifications:

1 Export new analysis results to a tab-delimited text file (.tsv format). For each result, the file
contains links to open the result in the Polyspace Access web interface.

Apply filters to export specific types of results, for instance, defects with high impact. If required,
you can also apply additional filters to the exported files using search and replace utilities. See
“Export Results for E-mail Attachments” on page 8-10.

2 Send an email with the results file in attachment.

For instance, if you use an e-mail plugin in Jenkins, you can create a post-build step to send an e-
mail after the analysis is complete.

If you use the Polyspace plugin in Jenkins, you can use Polyspace helper utilities for the entire e-mail
notification process. See “Sample Scripts for Polyspace Analysis with Jenkins” on page 8-17.

Alternatively, results can be directly assigned to owners based on their file paths. You can set up
email notifications that exports a separate results file per owner and sends an email to each owner

8 Run Polyspace Analysis on Servers

8-8

with the corresponding results file in attachment. See “Assign Owners and Export Assigned Results”
on page 8-10.

Prerequisites
To run this tutorial:

• You must have uploaded some result in the Polyspace Bug Finder Access interface. If you complete
the tutorial “Run Polyspace Bug Finder on Server and Upload Results to Web Interface”, you
should see a folder testProject on the Project Explorer pane. The folder contains one project
myFirstProject.

To see the results in the project, with myFirstProject selected, click the Review button. You
see a list of defects. The Information column shows the impact of the defects. In this tutorial,
only high-impact defects will be exported for e-mail attachments.

• You must be able to interact with the Polyspace Bug Finder Access interface from the command
line. For instance, navigate to polyspaceserverroot\polyspace\bin and enter:

polyspace-access login -list-project

Here. polyspaceserverroot is the Polyspace Bug Finder Server installation folder, for instance,
C:\Program Files\Polyspace Server\R2023a.The variable login refers to the following
combination of options. You provide these options with every use of the polyspace-access
command.

-host hostName -port portNumber -login username -encrypted-password pwd

Here, hostName is the name of the Polyspace Bug Finder Access web server. For a locally hosted
server, use localhost. portNumber is the optional port number of the server. If you omit the
port number, 9443 is used. username and pwd refer to the login and an encrypted version of your
password. To create an encrypted password, enter:

polyspace-access -encrypt-password

Copy the encrypted password and provide this password with later uses of the polyspace-
access command.

 Send Email Notifications with Polyspace Bug Finder Server Results

8-9

Export Results for E-mail Attachments
You can export all results in a project or only certain types of results.

Open a command window. Navigate to the folder where you want to export the results.

• To export all results, enter the following:

polyspace-access login -export testProject/myFirstProject -output .\result.txt

• To export only defects with high impact, enter the following:

polyspace-access login -export testProject/myFirstProject -defects High
 -output .\result_high_impact.txt

Open each text file in a spreadsheet viewing utility such as Microsoft® Excel®. In the first file, you see
all defects but in the second file, you only see the defects with high impact. Instead of -defects
High, you can apply other filters. For instance:

• To see only new defects compared to the previous analysis of the same project, use the option -
new-findings.

• To apply a more fine-grained set of filters, you can use software quality objectives (SQOs). The
software quality objectives are specified through a progressively stricter set of SQO levels,
numbered from 1 to 6. You can customize the requirements of each level in the Polyspace Access
web interface, and then use the option -open-findings-for-sqo with the level number to
export only those results that must be reviewed to meet the requirements. See also “Evaluate
Polyspace Bug Finder Results Against Bug Finder Quality Objectives” on page 31-2.

To see all filtering options, enter:

polyspace-access -h -export

You can configure your e-mail utility to send these exported files in attachment.

If required, you can also apply additional filters to the exported files using search and replace
utilities. For instance, use search and replace utilities on the results file to include results only from
specific files and functions. In Linux, you can use grep and sed to retain only results in specific files.

Assign Owners and Export Assigned Results
You can assign owners to results in specific files or folders. You can then export one result file per
owner and send an email to each owner with the corresponding file in attachment.

You can assign owners in the Polyspace Access web interface or at the command line.

In this tutorial, assign all results in the file numerical.c to jsmith and all results in the file
dataflow.c to jboyd.

polyspace-access login
 -set-unassigned-findings testProject/myFirstProject
 -owner jsmith -source-contains numerical.c
polyspace-access login
 -set-unassigned-findings testProject/myFirstProject
 -owner jboyd -source-contains dataflow.c

8 Run Polyspace Analysis on Servers

8-10

After assignment, export one results file per owner.

polyspace-access login
 -export testProject/myFirstProject -output .\results.txt -output-per-owner

These files contain the exported results:

• results.txt contains all results.
• results_jsmith.txt and results_jboyd.txt contains results assigned to jsmith and

jboyd respectively.
• results.txt.owners.list contains the list of owners, in this case:

jsmith
jboyd

Before assigning owners to results, use the option -dryrun to perform a dry run of the assignments.
Without performing the assignment, the option shows the files with results that are assigned and the
owner that the results are assigned to.

See Also
polyspace-access

 Send Email Notifications with Polyspace Bug Finder Server Results

8-11

Offload Polyspace Analysis from Continuous Integration Server
to Another Server

When running static code analysis with Polyspace as part of continuous integration, you might want
the analysis to run on a server that is different from the server running your continuous integration
(CI) scripts. For instance:

• You might want to perform the analysis on a server that has more processing power. You can
offload the analysis from your CI server to the other server.

• You might want to submit analysis jobs from several CI servers to a dedicated analysis server, hold
the jobs in queue, and execute them as Polyspace Server instances become available.

When you offload an analysis, the compilation phase of the analysis runs on the CI server. After
compilation, the analysis job is submitted to the other server and continues on this server. On
completion, the analysis results are downloaded back to the CI server. You can then upload the
results to Polyspace Access for review, or report the results in some other format.

Install Products
A typical distributed network for offloading an analysis consists of these parts:

• Client node(s): Each CI server acts as a client node that submits Polyspace analysis jobs to a
cluster.

The cluster consists of a head node and one or more worker nodes. In this example, we use the
same computer as the head node and one worker node.

8 Run Polyspace Analysis on Servers

8-12

• Head node: The head node distributes the submitted jobs to worker nodes.
• Worker node(s): Each worker node executes one Polyspace analysis at a time.

Note The versions of Polyspace on the client and worker nodes must match.

Install these products:

• Client nodes: Polyspace Bug Finder Server or Polyspace Code Prover Server to submit jobs from
the Continuous Integration server. Note that you do not require licenses for the Polyspace Server
products if you use them only for job submission (with the -batch option).

• Head node: MATLAB Parallel Server™ to manage submissions from multiple clients. An analysis
job is created for each submission and placed in a queue. As soon as a worker node is available,
the next analysis job from the queue is run on the worker.

• Worker node(s): MATLAB Parallel Server and Polyspace Bug Finder Server or Polyspace Code
Prover Server on the worker nodes to run a Bug Finder or Code Prover analysis.

In the simplest configuration, where the same computer serves as the head node and one worker
node, you install MATLAB Parallel Server and one or both Polyspace Bug Finder Server and Polyspace

 Offload Polyspace Analysis from Continuous Integration Server to Another Server

8-13

Code Prover Server on this computer. This example describes the simple configuration but you can
generalize the steps to multiple workers on separate computers.

Configure and Start Job Scheduler Services on Head Node and Worker
Node
Start a job scheduler service (the MATLAB Job Scheduler or mjs service) on the computer that acts
as the head node and worker node. Before starting the service, you must perform an initial setup.

Specify Polyspace Installation Paths

MATLAB Parallel Server and Polyspace Server products are installed in two separate folders. The
MATLAB Parallel Server installation routes the Polyspace analysis to the Polyspace Server products.
To link the two installations, specify the path to the root folder of the Polyspace Server products in
your MATLAB Parallel Server installation.

1 Navigate to matlabroot\toolbox\parallel\bin\. Here, matlabroot is the MATLAB
Parallel Server installation folder, for instance, C:\Program Files\MATLAB\R2023a.

2 Uncomment and modify the following line in the file mjs_polyspace.conf. To edit and save the
file, open your editor in administrator mode.

POLYSPACE_SERVER_ROOT=polyspaceserverroot

Here, polyspaceserverroot is the installation path of the server products, for instance:

C:\Program Files\Polyspace Server\R2023a

The Polyspace Server product offloading the analysis must belong to the same release as the
Polyspace Server product running the analysis. If you offload an analysis from an R2023a Polyspace
Server product, the analysis must run using another R2023a Polyspace Server product.

Configure mjs Service Settings

Before starting MATLAB Parallel Server (the mjs service), you must perform a minimum
configuration.

1 Navigate to matlabroot\toolbox\parallel\bin, where matlabroot is the MATLAB
Parallel Server installation folder, for instance, C:\Program Files\MATLAB\R2023a.

2 Modify the file mjs_def.bat (Windows) or mjs_def.sh (Linux). To edit and save the file, open
your editor in administrator mode.

Read the instructions in the file and uncomment the lines as needed. At a minimum, uncomment
these lines that specify:

• Host name.

Windows:

REM set HOSTNAME=%strHostname%.%strDomain%

Linux:

#HOSTNAME=`hostname -f`

Explicitly specify your computer host name.

8 Run Polyspace Analysis on Servers

8-14

• Security level.

Windows:

REM set SECURITY_LEVEL=

Linux:

#SECURITY_LEVEL=""

Explicitly specify a security level to avoid future errors when starting the job scheduler.

For security levels 2 and higher, you have to provide a password in a graphical window at the
time of job submission.

Start mjs Service and One Worker

In a command-line terminal, cd to matlabroot\toolbox\parallel\bin, where matlabroot is
the MATLAB Parallel Server installation folder, for instance, C:\Program Files\MATLAB\R2023a.
Run these commands (directly at the command line or by using scripts):

mjs install
mjs start
startjobmanager -name JobScheduler -remotehost hostname -v
startworker -jobmanagerhost hostname -jobmanager JobScheduler
 -remotehost hostname -v

Here, hostname is the host name of your computer. This name is the host name that you specified in
the file mjs_def.bat (Windows) or mjs_def.sh (Linux).

For more details and configuring services with multiple workers, see:

• “Install and Configure MATLAB Parallel Server for MATLAB Job Scheduler and Network License
Manager” (MATLAB Parallel Server)

• mjs

Offload Analysis from Client Node
Once you have set up the computer that acts as the head node and worker node, you are ready to
offload a Polyspace analysis from the client node (the CI server running scripts on Jenkins on another
CI system).

To offload an analysis, enter:

polyspaceserverroot\polyspace\bin\polyspace-bug-finder-server
 -batch -scheduler hostname|MJSName@hostname [options] [-mjs-username name]

where:

• polyspaceserverroot is the installation folder of Polyspace Server products on the client node,
for instance, C:\Program Files\Polyspace Server\R2023a.

• hostname is the host name of the computer that hosts the head node of the MATLAB Parallel
Server cluster.

MJSName is the name of the MATLAB Job Scheduler on the head node host.

 Offload Polyspace Analysis from Continuous Integration Server to Another Server

8-15

If you use the startjobmanager command to start the MATLAB Job Scheduler, MJSName is the
argument of the option -name.

• options are the Polyspace analysis options. These options are the same as that of a local
analysis. For instance, you can use these options:

• -sources-list-file: Specify a text file that has one source file name per line.
• -options-file: Specify a text file that has one option per line.
• -results-dir: Specify a download folder for storing results after analysis.

For the full list of options, see “Complete List of Polyspace Bug Finder Analysis Engine Options”.
• name is the user name required for job submissions using MATLAB Parallel Server. This credential

is required only if you use a security level of 1 or higher for MATLAB Parallel Server submissions.
See “Set MATLAB Job Scheduler Cluster Security” (MATLAB Parallel Server).

For security levels 2 and higher, you have to provide a password in a graphical window at the time of
job submission. To avoid this prompt in the future, you can specify that the password be remembered
on the computer.

The analysis executes locally on the CI server up to the end of the compilation phase. After
compilation, the analysis job is submitted to the other server. On completion, the analysis results are
downloaded back to the CI server. You can then upload the results to Polyspace Access for review, or
report the results in some other format.

See Also
polyspace-access

More About
• “Run Polyspace Bug Finder on Server and Upload Results to Web Interface”

8 Run Polyspace Analysis on Servers

8-16

Sample Scripts for Polyspace Analysis with Jenkins
In a continuous integration process, developers submit code to a shared repository. An automated
build system using a tool such as Jenkins builds and tests each submission at regular intervals or
based on predefined triggers and integrates the code. You can run a Polyspace analysis as part of this
process.

This topic provides sample Shell scripts that run a Polyspace analysis using Polyspace Bug Finder
Server and upload the results for review in the Polyspace Access web interface. The script also sends
e-mail notifications to potential reviewers. Notified reviewers can login to the Polyspace Access web
interface (if they have a Polyspace Access license) and review the results.

Extending Sample Scripts to Your Development Process
The scripts are written for a specific development toolchain but can be easily extended to the
processes used in your project, team or organization. The scripts are also meant to be run in a
Jenkins freestyle project. If you are using Jenkins Pipelines, see “Sample Jenkins Pipeline Scripts for
Polyspace Analysis” on page 8-31.

In particular, the scripts:

• Run on Linux only.

The scripts use some Linux-specific commands such as export. However, these commands are
not an integral part of the Polyspace workflow. If you write Windows scripts (.bat files), use the
equivalent Windows commands instead.

 Sample Scripts for Polyspace Analysis with Jenkins

8-17

• Work only with Jenkins after you install the Polyspace plugin.

The scripts are designed for the Jenkins plugin in these two ways:

• The scripts uses helper functions $ps_helper and $ps_helper_access for simpler
scripting. The helper functions export Polyspace results for e-mail attachments and use
command-line utilities to filter the results.

These helper functions are available only with the Jenkins plugin. However, the underlying
commands come with a Polyspace Bug Finder Server installation. On build automation tools
other than Jenkins, you can create these helper functions using the polyspace-report-
generator command or polyspace-access command (with the -export option). See “Send
Email Notifications with Polyspace Bug Finder Server Results”.

If you perform a distributed build in Jenkins, the plugin must be installed in the same folder in
the same operating system on both the master node and the agent node executing the
Polyspace analysis. Otherwise, you cannot use the helper functions.

• The scripts create text files for e-mail attachments and mail subjects and bodies for
personalized e-mails. If you install the Polyspace plugin in Jenkins, an extension of an e-mail
plugin is available for use in your Jenkins projects. The e-mail plugin allows you to easily send
the personalized e-mails with the previously created subjects, bodies and attachments. Without
the Polyspace plugin, you have to find an alternative way to send the e-mails.

• Run a Bug Finder analysis.

The scripts run Bug Finder on the demo example Bug_Finder_Example. If you install the
product Polyspace Bug Finder Server, the folder containing the demo example is
polyspaceserverroot/polyspace/examples/cxx/Bug_Finder_Example. Here,
polyspaceserverroot is the installation folder for Polyspace Server products, for
instance, /usr/local/Polyspace Server/R2019a/.

You can easily adapt the script to run Code Prover. Replace polyspace-bug-finder-server
with polyspace-code-prover-server. You can use the demo example
Code_Prover_Example specifically meant for Code Prover.

Prerequisites
To run a Polyspace analysis on a server and review the results in the Polyspace Access web interface,
you must perform a one-time setup.

• To run the analysis, you must install one instance of the Polyspace Server product.
• To upload results, you must set up the components required to host the web interface of Polyspace

Access.
• To view the uploaded results, you (and each developer reviewing the results) must have one

Polyspace license.

Similar requirements apply to a Polyspace Code Prover analysis on a server.

See “Install Polyspace Server and Access Products”.

To install the Polyspace plugin, in the Jenkins interface, select Manage Jenkins on the left. Select
Manage Plugin. Search for the Polyspace plugin and then download and install the plugin.

8 Run Polyspace Analysis on Servers

8-18

Set Up Polyspace Plugin in Jenkins
The following steps outline how to set up a Polyspace analysis in Jenkins after installing the Polyspace
plugin. Note that the steps refer to Jenkins version 2.150.1. The steps in your Jenkins version and
your Polyspace plugin installation might be slightly different.

If you use a different build automation tool, you can perform similar setup steps.

Specify Paths to Polyspace Commands and Server Details for Polyspace Access Web
Interface

Specify the full paths of the folder containing the Polyspace commands and host name and port
number of the server hosting the Polyspace Access web interface. After you specify the paths, in your
scripts, you do not have to use the full paths to the commands or the server details for uploading
results.

1 In the Jenkins interface, select Manage Jenkins on the left. Select Configure System.
2 In the Polyspace section, specify the following:

• Paths to Polyspace commands.

The path refers to polyspaceserverroot/polyspace/bin, where
polyspaceserverroot is the installation folder for Polyspace Server products, for
instance, /usr/local/Polyspace Server/R2019a/.

• The host name, port number and protocol (http or https) used by the server hosting the
Polyspace Access web interface.

 Sample Scripts for Polyspace Analysis with Jenkins

8-19

The Name field allows you to define a convenient shorthand that you use later in Jenkins
projects.

3 In the E-mail Notification section, specify your company's SMTP server (and other details
needed for sending e-mails).

Create Jenkins Project for Running Polyspace

When you create a Jenkins project (for instance, a Freestyle project), you can refer to the Polyspace
paths by the global shorthands that you defined earlier.

To create a Jenkins project for running Polyspace:

1 In the Jenkins interface, select New Item on the left. Select Freestyle Project.
2 In the Build Environment section of the project, enter the two shorthand names you defined

earlier:

• The name for the path to the folder containing the Polyspace commands
• The name for the details of the server hosting the Polyspace Access web interface.

Also, enter a login and password that can be used to upload to the Polyspace Access web
interface. The login and password must be associated with a Polyspace Access license.

8 Run Polyspace Analysis on Servers

8-20

3 In the Build section of the project, you can enter scripts that use the Polyspace commands and
details of the server hosting the Polyspace Access web interface. The scripts run a Polyspace
analysis and upload results to the Polyspace Access web interface.

4 In the Post-build Actions section of the project, configure e-mail addresses and attachments to
be sent after the analysis.

 Sample Scripts for Polyspace Analysis with Jenkins

8-21

Script to Run Bug Finder, Upload Results and Send Common
Notification
This script runs a Bug Finder analysis, uploads the results and exports defects with high impact for a
common notification email to all recipients.

The script assumes that the current folder contains a folder sources with .c files. Otherwise modify
the line gcc -c sources/*.c with the full path to the sources.

8 Run Polyspace Analysis on Servers

8-22

set -e
export RESULT=ResultBF
export PROG=Bug_Finder_Example
export PARENT_PROJECT=/public/BugFinderExample_PRS_01

==
Trace build command and create an options file

build_cmd="gcc -c sources/*.c"
polyspace-configure \
 -allow-overwrite \
 -allow-build-error \
 -prog $PROG \
 -author jenkins \
 -output-options-file $PROG.psopts \
 $build_cmd

==
Run Bug Finder on the options file

polyspace-bug-finder-server -options-file $PROG.psopts -results-dir $RESULT

==
Upload results to Polyspace Access web interface

$ps_helper_access -create-project $PARENT_PROJECT
$ps_helper_access \
 -upload $RESULT \
 -parent-project $PARENT_PROJECT \
 -project $PROG

==
Export results filtered for defects with "High" impact

$ps_helper_access \
 -export $PARENT_PROJECT/$PROG \
 -output Results_All.tsv \
 -defects High

==
Finalize Jenkins status

exit 0

After the script is run, you can create a post-build action to send an e-mail to all recipients with the
exported file Results_All.tsv.

 Sample Scripts for Polyspace Analysis with Jenkins

8-23

In this script, $ps_helper_access is a shorthand for the polyspace-access command with the
options specifying host name, port, login and encrypted password included. The other polyspace-
access options are explicitly written in the script.

Script to Run Bug Finder, Upload Results and Send Personalized
Notification
This script runs the previous Bug Finder analysis and uploads the results. However, the script differs
from the previous script in these ways:

• The script uses a run_command function that prints a message when running a command. The
function helps determine from the console output which part of the script is running.

• When exporting the results, the script creates a separate results file for different owners.

• A main file Results_All.tsv contains all results. This file is sent in e-mail attachment to a
manager. The manager email is configured in the post-build step.

If the file contains more than 10 defects, the build status is considered as a failure. The script
sends a status UNSTABLE in the e-mail notification.

• The results file Results_Users_userA.tsv exported for userA contains defects from the
group Programming and with impact High.

This result file is sent in e-mail attachment to userA.
• The results file Results_Users_userB.tsv exported for userB contains defects from the

function bug_memstdlib().

This result file is sent in e-mail attachment to userB.
• A separate mail subject is created for the manager in the file mailsubject_manager.txt and

for users userA and userB in the files mailsubject_user_userA.txt and
mailsubject_user_userB.txt respectively.

A mail body is created for the email to the manager in the file mailbody_manager.txt.

8 Run Polyspace Analysis on Servers

8-24

The script:

• Assumes that the current folder contains a folder sources with .c files.

Otherwise, modify the line gcc -c sources/*.c with the full path to the sources.
• Assumes users named userA and userB. In particular, the email addresses

userA@companyname.com and userB@companyname.com (determined from the user name and
SMTP server configured earlier) must be real e-mail addresses.

Replace the names with real user names.

 Sample Scripts for Polyspace Analysis with Jenkins

8-25

set -e
export RESULT=ResultBF
export PROG=Bug_Finder_Example
export REPORT=Results_List.tsv

==
Define function to print message while running command
run_command()
{
$1 is a message
$2 $3 ... is the command to dump and to run
message=$1
shift
cat >> mailbody_manager.txt << EOF
$(date): $message

EOF
"$@"
}

==
Initialize mail body
cat > mailbody_manager.txt << EOF
Dear Manager(s)

Here is the report of the Jenkins Job ${JOB_NAME} #${BUILD_NUMBER}
It contains all Red Defect found in Bug Finder Example project

EOF

==
Trace build command and create options file

build_cmd="gcc -c sources/*.c"
run_command "Tracing build command", \
 polyspace-configure \
 -allow-overwrite \
 -allow-build-error \
 -prog $PROG \
 -author jenkins \
 -output-options-file $PROG.psopts \
 $build_cmd

==
Run Bug Finder on the options file

run_command "Running Bug finder" \
 polyspace-bug-finder-server -options-file $PROG.psopts\
 -results-dir $RESULT

==
Upload results to Polyspace Access web interface

run_command "Creating Project $PARENT_PROJECT" \

8 Run Polyspace Analysis on Servers

8-26

 $ps_helper_access -create-project $PARENT_PROJECT

run_command "Uploading on $PARENT_PROJECT/$PROG" \
 $ps_helper_access \
 -upload $RESULT \
 -parent-project $PARENT_PROJECT \
 -project $PROG \
 -output upload.output
PROJECT_RUNID=$($ps_helper prs_print_runid upload.output)
PROJECT_URL=$($ps_helper prs_print_projecturl upload.output $POLYSPACE_ACCESS_URL)

==
Export report

run_command "Exporting report from $PARENT_PROJECT/$PROG" \
 $ps_helper_access \
 -export $PROJECT_RUNID \
 -output $REPORT \
 -defects High

==
Filter Reports

run_command "Filtering reports for defects" \
 $ps_helper report_filter \
 $REPORT \
 Results_All.tsv \
 Family Defect \

==
Filter Reports for userA and userB

run_command "Filtering Reports for userA based on Group and Information" \
 $ps_helper report_filter \
 $REPORT \
 Results_Users.tsv \
 userA \
 Group Programming \
 Information "Impact: High"
run_command "Filtering Reports for userB based on Function" \
 $ps_helper report_filter \
 $REPORT \
 Results_Users.tsv \
 userB \
 Function "bug_memstdlib()"

==
Update Jenkins status
Jenkins build status is unstable when there are more than 10 Defects

BUILD_STATUS=$($ps_helper report_status Results_All.tsv 10)

==
Update mail body and mail subject

 Sample Scripts for Polyspace Analysis with Jenkins

8-27

NB_FINDINGS_ALL=$($ps_helper report_count_findings Results_All.tsv)
NB_FINDINGS_USERA=$($ps_helper report_count_findings Results_Users_userA.tsv)
NB_FINDINGS_USERB=$($ps_helper report_count_findings Results_Users_userB.tsv)
cat >> mailbody_manager.txt << EOF

Number of defects: $NB_FINDINGS_ALL
Number of findings owned by userA: $NB_FINDINGS_USERA
Number of findings owned by userB: $NB_FINDINGS_USERB

All results are uploaded in: $PROJECT_URL

Build Status: $BUILD_STATUS

EOF

cat >> mailsubject_manager.txt << EOF
Polyspace run completed with status $BUILD_STATUS and $NB_FINDINGS_ALL findings
EOF

for user in userA userB
do
echo "$user - $($ps_helper report_count_findings Results_Users_$user.tsv)) findings"\
 > mailsubject_user_$user.txt
done

==
Exit with correct build status

["$BUILD_STATUS" != "SUCCESS"] && exit 129
exit 0

After the script is run, you can create a post-build action to send an e-mail to a manager with the
exported file Results_All.tsv. Specify the e-mail address in the Recipients field, the email
subject in the Mail Subject field and the email body in the Mail Body field.

In addition, a separate e-mail is sent to userA and userB with the files Results_Users_userA.tsv
and Results_Users_userB.tsv in attachment (and the content of
mailsubject_user_userA.txt and mailsubject_user_userB.txt as mail subjects). The e-
mail addresses are userA@companyname.com and userB@companyname.com (determined from the
user name and SMTP server configured earlier).

8 Run Polyspace Analysis on Servers

8-28

The script uses the helper function $ps_helper to filter the results based on group, impact and
function. The helper function uses command-line utilities to filter the main file for results and perform
actions such as create a separate results file for each owner. The function takes these actions as
arguments:

• report_filter: Filters results from exported text file based on contents of the text file.

For instance:

$ps_helper report_filter \
 Results_List.tsv \
 Results_Users.tsv \
 userA \
 Group Programming \
 Information "Impact: High"

reads the file Results_List.tsv and writes to the file Results_Users_userA.tsv. The text
file Results_List.tsv contains columns for Group and Information. Only those rows where
the Group column contains Programming and the Information column contains Impact:
High are written to the file Results_Users_userA.tsv.

• report_status: Returns UNSTABLE or SUCCESS based on the number of results in a file.

 Sample Scripts for Polyspace Analysis with Jenkins

8-29

For instance:

BUILD_STATUS=$($ps_helper report_status Results_All.tsv 10))

returns UNSTABLE if the file Results_All.tsv contains more than 10 results (10 rows).
• report_count_findings: Reports number of results in a file.

For instance:

NB_FINDINGS_ALL=$($ps_helper report_count_findings Results_All.tsv)

returns the number of results (rows) in the file Results_All.tsv.
• prs_print_projecturl: Uses the host name and port number to create the URL of the

Polyspace Access web interface.

For instance:

PROJECT_URL=$($ps_helper prs_print_projecturl Results_All.tsv $POLYSPACE_ACCESS_URL)

reads the file Results_All.tsv (exported by the polyspace-access command) and extracts
the URL of the Polyspace Access web interface in $POLYSPACE_ACCESS_URL and the URL of the
current project in $PROJECT_URL.

See Also
polyspace-bug-finder-server | polyspace-code-prover-server | polyspace-report-
generator | polyspace-access | polyspace-configure

More About
• “Run Polyspace Bug Finder on Server and Upload Results to Web Interface”
• “Send Email Notifications with Polyspace Bug Finder Server Results”
• “Sample Jenkins Pipeline Scripts for Polyspace Analysis” on page 8-31
• “Offload Polyspace Analysis from Continuous Integration Server to Another Server” on page 8-

12

8 Run Polyspace Analysis on Servers

8-30

Sample Jenkins Pipeline Scripts for Polyspace Analysis
Jenkins Pipelines enable automating the workflow of a continuous delivery pipeline through scripts in
Jenkins. You can write Pipeline scripts that build projects, run test suites and perform all necessary
checks before your code is ready for shipping. You can check in these scripts as part of a version
control system and subject them to the same review and versioning as the code itself.

You can run a Polyspace analysis in a Jenkins Pipeline script. If you are using Freestyle Projects
instead of Pipelines in Jenkins, use the Polyspace plugin for scripting conveniences. See “Sample
Scripts for Polyspace Analysis with Jenkins” on page 8-17. If you are using Pipelines, modify the script
provided below to run a Polyspace analysis.

Prerequisites
To run a Polyspace analysis on a server and review the results in the Polyspace Access web interface,
you must perform a one-time setup.

• To run the analysis, you must install one instance of the Polyspace Server product.
• To upload results, you must set up the components required to host the web interface of Polyspace

Access.
• To view the uploaded results, you and each developer reviewing the results must have one

Polyspace license.

See “Install Polyspace Server and Access Products”.

Run Polyspace Analysis in Stages in a Pipeline Script
To create a Jenkins Pipeline script:

1 In the Jenkins interface, select New Item on the left. Select Pipeline.
2 In the Pipeline section of the project, select Pipeline script for Definition. Enter this

script.

The parts in bold indicate places where you have to modify the script for your source code and
Polyspace installation.

The script is not available in the PDF documentation. Search for Polyspace Jenkins
Pipelines in the MathWorks online documentation and copy the script from the online version
of this page.

When you build this project, you can see the various stages of the analysis like this:

 Sample Jenkins Pipeline Scripts for Polyspace Analysis

8-31

This script can be part of a larger script that you save in a Jenkinsfile and commit to your version
control system. See Using a Jenkinsfile.

You can modify the script as needed:

• The script runs each step of the Polyspace analysis workflow in a separate stage section. You can
combine several steps together in one stage.

• The script runs Linux Shell commands by using the sh directive. You can run Windows commands
by using the bat directive instead.

• The script uses data from the Credentials plugin to extract user name and password. If you save
credentials in some other form, you can replace the withCredentials command that binds user
credentials to variables.

• The script builds source code using a makefile on a Git sandbox with this make command:

make -C $git_sandbox

If you use a different build command, you can replace this line with your build command.

For more information on the Pipeline-specific syntax in this script, see:

• Pipeline Syntax: Describes node, stage, label.
• Pipeline Steps Reference: Describes sh, mail.
• Credentials Binding Plugin: Describes withCredentials.

For more information on the Polyspace commands in this script, see:

• polyspace-configure
• polyspace-bug-finder-server (also polyspace-code-prover-server)
• polyspace-access

See Also
“Sample Scripts for Polyspace Analysis with Jenkins” on page 8-17

8 Run Polyspace Analysis on Servers

8-32

https://www.jenkins.io/doc/book/pipeline/jenkinsfile/
https://www.jenkins.io/doc/book/pipeline/syntax/
https://www.jenkins.io/doc/pipeline/steps/
https://www.jenkins.io/doc/pipeline/steps/credentials-binding/

Integrate Polyspace Server Products with MATLAB
You can install Polyspace Bug Finder Server and Polyspace Code Prover Server as standalone
products and analyze C/C++ code.

When installing Polyspace server products and MATLAB, you cannot install MATLAB and Polyspace
server products together in a single run of the installer. First install MATLAB by running the MATLAB
installer. Then install the Polyspace server product in a different root folder by running the installer
separately. For instance, in Windows:

• Your default MATLAB root folder is C:\Program Files\MATLAB\R2023a.
• Your default Polyspace root folder is C:\Program Files\Polyspace Server\R2023a for the

Polyspace server products.

To automate the Polyspace analysis by using MATLAB scripts, integrate the Polyspace server products
and MATLAB by running a post-installation step.

Integrate Polyspace Server Products with MATLAB
You can integrate your Polyspace server product with MATLAB only if both installations are from the
same release. After the integration, you can use all MATLAB functions and classes available for
running Polyspace.

To link your MATLAB and Polyspace installations:

1 Open MATLAB with administrator privileges.
2 At the MATLAB command prompt, enter:

polyspacesetup('install');

By default, Polyspace is installed in the folder C:\Program Files\Polyspace\R2023a. If you
install Polyspace in the default folder, the command integrates Polyspace with MATLAB. If a
Polyspace installation is not detected at the default location, provide the path to the Polyspace
installation folder when prompted. The process might take a few minutes to complete.

To avoid the prompt during installation, enter:

polyspacesetup('install', 'polyspaceFolder', Folder, 'silent', true);
3 Restart MATLAB. You can now use all functions and classes available for running Polyspace

server products.

A MATLAB installation can be integrated with only one Polyspace installation. To integrate to a new
Polyspace installation, any previous integration must be removed. To remove the integration between
a Polyspace and MATLAB installation, open MATLAB with administrator privilege and at the MATLAB
command prompt, enter:

polyspacesetup('uninstall')

Check Integration Between MATLAB and Polyspace
To check if a MATLAB installation is already integrated with a Polyspace installation, open MATLAB
and at the command prompt, enter:

 Integrate Polyspace Server Products with MATLAB

8-33

ver

You see the list of products installed. If Polyspace is integrated with MATLAB, you can see the
Polyspace products in the list.

The MATLAB-Polyspace integration adds some Polyspace installation subfolders to the MATLAB
search path. To see which paths were added, enter:

polyspacesetup('showpolyspacefolders')

Run Polyspace Server Products with MATLAB Scripts
In a continuous integration process, you can execute MATLAB scripts that run a Polyspace analysis on
new code submissions and compares the results against predefined criteria. Use these functions/
classes:

• Create a polyspace.Project object to configure Polyspace analysis options, run an analysis and
read results to MATLAB tables. You can use other MATLAB functions for comparing results
against predefined criteria.

To only read existing results without running an analysis, use the
polyspace.BugFinderResults class with the path to a results folder.

• If you want a more granular selection of checkers for:

• Coding rules, create a polyspace.CodingRulesOptions object.
• Bug Finder defects, create a polyspace.DefectsOptions object.

To create a custom target for the analysis and explicitly specify sizes of data types, create a
polyspace.GenericTargetOptions object.

You can also use the polyspaceBugFinderServer function to run the analysis and then read
results with the polyspace.BugFinderResults class. If you use build commands to build your
source code, you can create a Polyspace configuration from the build command using the
polyspaceConfigure function.

See Also
polyspacesetup

8 Run Polyspace Analysis on Servers

8-34

Configure Job Submissions from
Desktop to Server

35

Offload Polyspace Analysis to Remote
Servers from Desktop

• “Send Polyspace Analysis from Desktop to Remote Servers” on page 9-2
• “Send Polyspace Analysis from Desktop to Remote Servers Using Scripts” on page 9-5

9

Send Polyspace Analysis from Desktop to Remote Servers

In this section...
“Client-Server Workflow for Running Analysis” on page 9-2
“Prerequisites” on page 9-3
“Offload Analysis in Polyspace User Interface” on page 9-3

You can perform a Polyspace analysis locally on your desktop or offload the analysis to one or more
dedicated servers. You offload a Polyspace analysis from a Polyspace desktop product such as
Polyspace Bug Finder but the analysis runs on the server using a Polyspace server product such as
Polyspace Bug Finder Server.

This topic shows how to send a Polyspace analysis from the user interface of the Polyspace desktop
products.

• To offload an analysis with scripts, see “Send Polyspace Analysis from Desktop to Remote Servers
Using Scripts” on page 9-5.

• For a simple tutorial that walks through all the steps for offloading a Polyspace analysis, see “Send
Bug Finder Analysis from Desktop to Locally Hosted Server”. In the tutorial, the same computer
acts as the client and the server.

Client-Server Workflow for Running Analysis
After the initial setup, you can submit a Polyspace analysis from a client desktop to a server. The
client-server workflow happens in three steps. All three steps can be performed on the same
computer or three different computers.

1 Client node: You specify Polyspace analysis options and start the analysis on the client desktop.
The initial phase of analysis up to compilation runs on the desktop. After compilation, the
analysis job is submitted to the server.

You require the Polyspace desktop product, Polyspace Bug Finder on the computer that acts as
the client node.

2 Head node: The server consists of a head node and several worker nodes. The head node uses a
job scheduler to manage submissions from multiple client desktops. The jobs are then distributed
to the worker nodes as they become available.

You require the product MATLAB Parallel Server on the computer that acts as the head node.
3 Worker nodes: When a worker becomes available, the job scheduler assigns the analysis to the

worker. The Polyspace analysis runs on the worker and the results are downloaded back to the
client desktop for review.

You require the product MATLAB Parallel Server on the computers that act as worker nodes. You
also require the Polyspace server products, Polyspace Bug Finder Server and/or Polyspace Code
Prover Server, to run the analysis.

Note The versions of Polyspace on the client and worker nodes must match.

9 Offload Polyspace Analysis to Remote Servers from Desktop

9-2

Prerequisites
Before offloading an analysis from the user interface of the Polyspace desktop products, you must set
up your project’s source files, analysis options, and remote analysis settings. If you have not done so,
for more information on:

• How to add source files, see “Add Source Files for Analysis in Polyspace Desktop User Interface”
on page 2-2.

• How to set up communication between client and server, see “Install Products for Submitting
Polyspace Analysis from Desktops to Remote Server”.

Once you have set up a Polyspace project and established communicated between a desktop and a
remote server, you are ready to offload a Polyspace analysis.

Offload Analysis in Polyspace User Interface
To start a remote analysis:

1 Select a project to analyze.
2 On the Configuration pane, select Run Settings.

Select Run Bug Finder analysis on a remote cluster and/or Run Code Prover analysis on a
remote cluster.

 Send Polyspace Analysis from Desktop to Remote Servers

9-3

3 Start the analysis. For instance, to start a Bug Finder analysis, click the Run Bug Finder button.

The compilation part of the analysis takes place on the desktop product. After compilation, the
analysis is offloaded to the server.

4 To monitor the analysis, select Tools > Open Job Monitor. In the Polyspace Job Monitor, follow
your queued job to monitor progress.

Once the analysis is complete, the results are downloaded back to the user interface of the
Polyspace desktop products. You can open the results directly in the user interface.

If the analysis stops after compilation and you have to restart the analysis, to avoid restarting
from the compilation phase, use the option -submit-job-from-previous-compilation-
results.

See Also
Run Bug Finder or Code Prover analysis on a remote cluster (-batch)

More About
• “Install Products for Submitting Polyspace Analysis from Desktops to Remote Server”
• “Send Polyspace Analysis from Desktop to Remote Servers Using Scripts” on page 9-5

9 Offload Polyspace Analysis to Remote Servers from Desktop

9-4

Send Polyspace Analysis from Desktop to Remote Servers
Using Scripts

Instead of running a Polyspace analysis on your local desktop, you can send the analysis to a remote
cluster. You can use a dedicated cluster for running Polyspace to free up memory on your local
desktop.

This topic shows how to use Windows or Linux scripts to send the analysis to a remote cluster and
download the results to your desktop after analysis.

• To offload an analysis from the Polyspace user interface, see “Send Polyspace Analysis from
Desktop to Remote Servers” on page 9-2.

• For a simple tutorial that walks through all the steps for offloading a Polyspace analysis, see “Send
Bug Finder Analysis from Desktop to Locally Hosted Server”. In the tutorial, the same computer
acts as the client and the server.

Client-Server Workflow for Running Analysis
After the initial setup, you can submit a Polyspace analysis from a client desktop to a server. The
client-server workflow happens in three steps. All three steps can be performed on the same
computer or three different computers.

1 Client node: You specify Polyspace analysis options and start the analysis on the client desktop.
The initial phase of analysis up to compilation runs on the desktop. After compilation, the
analysis job is submitted to the server.

You require the Polyspace desktop product, Polyspace Bug Finder on the computer that acts as
the client node.

2 Head node: The server consists of a head node and several worker nodes. The head node uses a
job scheduler to manage submissions from multiple client desktops. The jobs are then distributed
to the worker nodes as they become available.

You require the product MATLAB Parallel Server on the computer that acts as the head node.
3 Worker nodes: When a worker becomes available, the job scheduler assigns the analysis to the

worker. The Polyspace analysis runs on the worker and the results are downloaded back to the
client desktop for review.

You require the product MATLAB Parallel Server on the computers that act as worker nodes. You
also require the Polyspace server products, Polyspace Bug Finder Server and/or Polyspace Code
Prover Server to run the analysis.

Note The versions of Polyspace on the client and worker nodes must match.

 Send Polyspace Analysis from Desktop to Remote Servers Using Scripts

9-5

Prerequisites
Before you run a remote analysis by using scripts, you must set up communication between a desktop
and a remote server. See “Install Products for Submitting Polyspace Analysis from Desktops to
Remote Server”.

Run Remote Analysis
To run a remote analysis, use the following command. Here, [] indicates optional flags.

polyspaceroot\polyspace\bin\polyspace-bug-finder
 -batch -scheduler NodeHost|MJSName@NodeHost [-wait -download]
 [options] [-mjs-username name]

where:

• polyspaceroot is the installation folder of Polyspace desktop products, for instance,
C:\Program Files\Polyspace\R2023a.

• NodeHost is the name of the computer that hosts the head node of the MATLAB Parallel Server
cluster.

MJSName is the name of the MATLAB Job Scheduler on the head node host.

If you set up communications with a cluster from the Polyspace user interface, you can determine
NodeHost and MJSName from the user interface.

Select Tools > Preferences, and then click Settings on the Server Configuration tab to open
the Cluster Profile Manager. Select the cluster profile in the left pane, and see the MJSName
and Host fields on the Properties tab for MJSName and NodeHost.

9 Offload Polyspace Analysis to Remote Servers from Desktop

9-6

If you use the startjobmanager command to start the MATLAB Job Scheduler, MJSName is the
argument of the option -name. For details, see “Configure Advanced Options for MATLAB Job
Scheduler Integration” (MATLAB Parallel Server).

• options are the analysis options. These options are the same as that of a local analysis. For
instance, you can use these options:

• -sources-list-file: Specify a text file with one source file name per line.
• -options-file: Specify a text file with one option per line.
• -results-dir: Specify a download folder for storing results after analysis.

For the full list of options, see “Complete List of Polyspace Bug Finder Analysis Engine Options”.
Alternatively, you can:

• Start an analysis in the user interface and stop after compilation. You can obtain the text files
and scripts for running the analysis at the command line. See “Configure Polyspace Analysis
Options in User Interface and Generate Scripts” on page 4-15.

• Enter polyspace-bug-finder -h. The list of available options with a brief description are
displayed.

• Place your cursor over each option on the Configuration pane in the Polyspace user interface.
Click the More Help button for information on the option syntax and when the option is
required.

• name is the username required for job submissions using MATLAB Parallel Server. These
credentials are required only if you use a security level of 1 or higher for MATLAB Parallel Server
submissions. See “Set MATLAB Job Scheduler Cluster Security” (MATLAB Parallel Server).

For security levels 2 and higher, you have to provide a password in a graphical window at the time
of job submission. To avoid this prompt in the future, you can specify that the password be
remembered on the computer.

The analysis happens in two parts:

1 The first part of the analysis up to the end of the compilation phase executes locally on your
desktop. After compilation, the software submits the analysis job to the cluster and provides a job
ID. You can also read the ID from the file ID.txt, which is stored in the .status subfolder of
the results folder. To monitor your analysis, use the polyspace-jobs-manager command with
the job ID.

2 The remaining part of the analysis continues on the cluster. The command waits till the analysis
is completed and the results automatically downloaded back to the desktop. If you want to free
up the console and download results later using the polyspace-jobs-manager command, omit
the options -wait -download.

If the analysis stops after compilation and you have to restart the analysis, to avoid rerunning the
compilation phase, use the option -submit-job-from-previous-compilation-results.

Manage Remote Analysis
To manage multiple remote analyses, use the option -batch. For instance:

polyspaceroot\polyspace\bin\polyspace-jobs-manager action
 -scheduler schedulerName

 Send Polyspace Analysis from Desktop to Remote Servers Using Scripts

9-7

See also Run Bug Finder or Code Prover analysis on a remote cluster (-batch).
Here:

• polyspaceroot is your MATLAB installation folder.
• schedulerName is one of the following:

• Name of the computer that hosts the head node of your MATLAB Parallel Server cluster
(NodeHost).

• Name of the MATLAB Job Scheduler on the head node host (MJSName@NodeHost).
• Name of a MATLAB cluster profile (ClusterProfile).

For more information about clusters, see “Discover Clusters and Use Cluster Profiles” (Parallel
Computing Toolbox)

If you do not specify a job scheduler, polyspace-job-manager uses the scheduler specified in
the Polyspace preferences. To see the scheduler name, select Tools > Preferences. On the
Server Configuration tab, see the Job scheduler host name.

• action refers to the possible action commands to manage jobs on the scheduler:

• listjobs:

Generate a list of Polyspace jobs on the scheduler. For each job, the software produces this
information:

• ID — Verification or analysis identifier.
• AUTHOR — Name of user that submitted job.
• APPLICATION — Name of Polyspace product, for example, Polyspace Code Prover or

Polyspace Bug Finder.
• LOCAL_RESULTS_DIR — Results folder on local computer, specified through the Tools >

Preferences > Server Configuration tab.
• WORKER — Local computer from which job was submitted.
• STATUS — Status of job, for example, running and completed.
• DATE — Date on which job was submitted.
• LANG — Language of submitted source code.

• download -job ID -results-folder FolderPath:

Download results of analysis with specified ID to folder specified by FolderPath. If you use
the option -wait -download when sending the analysis job to a server, the results are
automatically downloaded after analysis. Only when you want to explicitly download results do
you need to use the polyspace-jobs-manager command with the download action.

When the analysis job is queued on the server, the command polyspace-bug-finder returns
a job id. In addition, a file ID.txt that is stored in the .status subfolder of the results folder
contains the job ID in this format:

job_id;server_name:project_name version_number

For instance, 92;localhost:Demo 1.0.

If you do not use the -results-folder option, the software downloads the result to the
folder that you specified when starting analysis, using the -results-dir option.

9 Offload Polyspace Analysis to Remote Servers from Desktop

9-8

After downloading results, use the Polyspace user interface to view the results.
• getlog -job ID:

Open log for job with specified ID.
• remove -job ID:

Remove job with specified ID.
• promote -job ID:

Promote job with specified ID in the queue.
• demote -job ID

Demote job with specified ID in the queue.

Sample Scripts for Remote Analysis
In Windows, to avoid typing the commands each time, you can save the commands in a batch file. In
Linux, you can relaunch the analysis by using a shell script. To create a batch file for running
analysis:

1 Save your analysis options in a file listofoptions.txt. See -options-file.
2 Create a file launcher.bat in a text editor like Notepad.

In the file, enter these commands:

echo off
set POLYSPACE_PATH=polyspaceroot\polyspace\bin
set RESULTS_PATH=C:\Results
set OPTIONS_FILE=C:\Options\listofoptions.txt
"%POLYSPACE_PATH%\polyspace-bug-finder.exe" -batch -scheduler hostname
 -results-dir "%RESULTS_PATH%" -options-file "%OPTIONS_FILE%"
pause

polyspaceroot is the Polyspace installation folder. hostname is the name of the computer that
hosts the head node of your MATLAB Parallel Server cluster.

3 Replace the definitions of these variables in the file:

• POLYSPACE_PATH: Enter the actual location of the .exe file.
• RESULTS_PATH: Enter the path to a folder. The files generated during compilation are saved

in the folder.
• OPTIONS_FILE: Enter the path to the file listofoptions.txt.

4 Double-click launcher.bat to run the analysis.

Tip If you run a Polyspace analysis, a Windows .bat or Linux .sh file is generated. The file is in
the .settings subfolder in your results folder. Instead of writing a script from scratch, you can
relaunch the analysis using this file.

See Also
Run Bug Finder or Code Prover analysis on a remote cluster (-batch)

 Send Polyspace Analysis from Desktop to Remote Servers Using Scripts

9-9

More About
• “Install Products for Submitting Polyspace Analysis from Desktops to Remote Server”
• “Send Polyspace Analysis from Desktop to Remote Servers” on page 9-2

9 Offload Polyspace Analysis to Remote Servers from Desktop

9-10

Configure Analysis in IDEs

11

Run Polyspace Analysis in IDE Plugins

10

Run Polyspace Analysis on Eclipse Projects
This topic describes how to run a Polyspace analysis on complete Eclipse projects using Polyspace
Bug Finder or Polyspace Code Prover. For the Polyspace as You Code plugin, see “Run Polyspace as
You Code in Eclipse and Review Results”.

If you develop code in Eclipse or an Eclipse-based IDE, you can install the Polyspace plugin and run a
Polyspace analysis on the source files in an Eclipse project. You can check for bugs each time you
save your code, or explicitly run an analysis.

This topic describes how to set up a Polyspace analysis in Eclipse and review analysis results.

After you install the Polyspace plugin, you see a Polyspace menu and right-click options in the
Project Explorer to run a Polyspace analysis.

10 Run Polyspace Analysis in IDE Plugins

10-2

The analysis progress bar, quick run buttons and analysis results appear on specific panes. To avoid
cluttering your window, you can confine these panes to the Polyspace perspective. Select Window >
Open Perspective > Other. In the Open Perspective dialog box, select Polyspace. You can switch
back to other perspectives using tabs on the upper right.

Configure and Run Analysis
Configure analysis

Polyspace analyzes the source files in your Eclipse project. In addition to sources, the analysis uses
the following information:

• Compiler: The compiler toolchain can be extracted from your Eclipse project. If the project
directly refers to a compilation toolchain such as MinGW GCC, the Polyspace analysis can use the
information.

If your Eclipse project uses a build command (makefile) that has the compiler information, you
must perform some additional steps to extract this information for the Polyspace analysis.

If Polyspace cannot extract the compiler information from your build command, you can also
explicitly specify your compiler options explicitly like other analysis options.

See “Specify Polyspace Compiler Options Through Eclipse Project” on page 10-7.
• Other analysis options: You can retain the default analysis options or adjust them to your

requirements. Select Polyspace > Configure Project.

 Run Polyspace Analysis on Eclipse Projects

10-3

The key options are:

• Target & Compiler: If you have not specified your compiler information through your Eclipse
project, use these options.

• Bug Finder Analysis: Specify which defects to check for in a Bug Finder analysis.
• Code Prover Verification, Check Behavior, Precision: Modify the behavior of checkers in a

Code Prover verification.

Note that you cannot run a remote analysis using the Polyspace plugin for Eclipse. To send the
analysis job to a remote cluster, start the analysis from the Polyspace user interface or using scripts.
See “Bug Finder Analysis on Clusters”.

Run analysis

After configuration, you can start and stop a Polyspace analysis explicitly from the Polyspace menu,
right-click options on your Eclipse project or quick run buttons in the Polyspace panes. You can
switch between Bug Finder and Code Prover using the icon on the Polyspace Run pane.

Run analysis when saving code

In the Polyspace perspective, you can set up a Bug Finder analysis that runs each time you save your
code. To enable this analysis, select Polyspace > Run Fast Analysis on Save. The analysis runs
quickly but looks for a reduced set of defects. You get the same results as if you had specified the
analysis option Use fast analysis mode for Bug Finder (-fast-analysis).

10 Run Polyspace Analysis in IDE Plugins

10-4

Review Analysis Results
View results after analysis

After analysis, the results appear on the Results List pane. Click each result to see the source code
and details on the Result Details pane.

View results as available

Some results of a Bug Finder analysis are often available before the analysis is complete. If so, the

icon in the Polyspace Run - Bug Finder pane turns to . To load available results, click this icon.
The icon shows up again when more results are available.

Address results

Based on the result details, fix your code or justify the result. To justify a result, set its Status to
Justified, No Action Planned or Not a Defect. To hide a justified result in the next run, add
the status as annotation to your source code. See “Annotate Code and Hide Known or Acceptable
Results” on page 30-2.

For quick annotation, right-click the result and select Annotate Code and Hide Result. The option
adds annotations in this format and hides the result from the results list:

line of code; /* polyspace Family:Result_name */

For details of the format, see “Annotate Code and Hide Known or Acceptable Results” on page 30-
2. To unhide the hidden results, from the Showing menu, clear the box Hide results justified in
code.

 Run Polyspace Analysis on Eclipse Projects

10-5

See Also

Related Examples
• “Specify Polyspace Compiler Options Through Eclipse Project” on page 10-7
• “Interpret Bug Finder Results in Polyspace Desktop User Interface” on page 21-2
• “Address Results in Polyspace User Interface Through Bug Fixes or Justifications” on page 22-

2
• “Filter and Group Results in Polyspace Desktop User Interface” on page 23-2

10 Run Polyspace Analysis in IDE Plugins

10-6

Specify Polyspace Compiler Options Through Eclipse Project
This topic describes how to configure a Polyspace analysis of Eclipse projects using Polyspace Bug
Finder or Polyspace Code Prover. For the Polyspace as You Code plugin, see “Run Polyspace as You
Code in Eclipse and Review Results”.

Polyspace analysis in Eclipse uses a set of default analysis options preconfigured for your coding
language and operating system. For each project, you can customize the analysis options further.

• Compiler options: You specify the compiler that you use, the libraries that you include and the
macros that are defined for your compilation.

• If your Eclipse project directly refers to a compilation toolchain, the analysis reads the
compiler options from the project.

See “Eclipse Refers Directly to Your Compilation Toolchain” on page 10-7.
• If the project refers to your compilation toolchain through a build command, the analysis

cannot read the compiler options directly. Trace the build command to extract the options.
Tracing a build command involves first executing the command and extracting required
information from the processes executed.

See “Eclipse Uses Your Compilation Toolchain Through Build Command” on page 10-8.
• Other options: Through the other options, you specify which analysis results you want and how

precise you want them to be.To specify these options in Eclipse, select Polyspace > Configure
Project.

For information on how to run Polyspace from Eclipse, see “Run Polyspace Analysis on Eclipse
Projects” on page 10-2.

Eclipse Refers Directly to Your Compilation Toolchain
When setting up your Eclipse project, you might be directly referring to your compilation toolchain
without using a build command. For instance, you might refer to the MinGW GCC toolchain in the
project setup wizard as below.

 Specify Polyspace Compiler Options Through Eclipse Project

10-7

The compiler options from your Eclipse project, such as include paths and preprocessor macros, are
reused for the analysis.

You cannot view the options directly in the Polyspace configuration but you can view them in your
Eclipse editor. In your project properties (Project > Properties), in the Paths and Symbols node:

• See the include paths under the Includes tab.

During analysis, the paths are implicitly used with the analysis option -I.
• See the preprocessor macros under the Symbols tab.

During analysis, the macros are implicitly used with the analysis option Preprocessor
definitions (-D).

Eclipse Uses Your Compilation Toolchain Through Build Command
When setting up your Eclipse project, instead of specifying your compilation toolchain directly, you
might be specifying it through a build command. For instance, in the Wind River Workbench IDE (an
Eclipse-based IDE), you might specify your build command as shown in the following figure.

10 Run Polyspace Analysis in IDE Plugins

10-8

If you use a build command for compilation, the analysis cannot automatically extract the compiler
options. You must trace your build command.

1 Replace your build command with:

polyspaceroot\polyspace\bin\polyspace-configure.exe
 -no-sources -output-project
PolyspaceWorkspace\EclipseProjects\Name\Name.psprj buildCommand

Here:

• polyspaceroot is the Polyspace installation folder.
• polyspaceWorkspace is the folder where your Polyspace files are stored. You specify this

location on the Project and Results Folder tab in your Polyspace preferences (Tools >
Preferences in the Polyspace user interface).

• Name is the name of your Eclipse project.
• buildCommand is the original build command that you want to trace.

For instance, in the preceding example, buildCommand is the following:

%makeprefix% make --no-print-directory

For information on the options -output-project and -no-sources, see polyspace-
configure.

2 Build your Eclipse project. Perform a clean build so that files are recompiled.

For instance, select the option Project > Clean. Normally, the option runs your build command.
With your replacement in the previous step, the option also traces the build to extract the
compiler options.

3 Restore the original build command and restart Eclipse.

You can now run analysis on your Eclipse project. The analysis uses the compiler options that it
has extracted.

 Specify Polyspace Compiler Options Through Eclipse Project

10-9

See Also

Related Examples
• “Run Polyspace Analysis on Eclipse Projects” on page 10-2

10 Run Polyspace Analysis in IDE Plugins

10-10

Configure Polyspace as You Code

11

Configure Polyspace as You Code Extension in Visual Studio
Polyspace as You Code allows you to find bugs and coding rule violations while you work in your
Visual Studio IDE.

After you install the Polyspace as You Code analysis engine and Visual Studio extension, configure the
extension so that a Polyspace analysis runs smoothly when you save your code or explicitly start an
analysis. An analysis has run smoothly if results appear as expected, either as source code markers
with tooltips or in a list on the Results List pane.

To configure the extension, in Visual Studio:

• Select Tools > Options and specify the General settings on the Polyspace node. These settings
apply to all projects in Visual Studio.

• Right-click a project in the Visual Studio Solution Explorer pane and select Polyspace
properties to specify settings that apply only to the selected project.

All settings retain their current values when you reinstall the extension.

General Settings
Setting Description
Analysis launch
mode

Select whether Polyspace as You Code runs on each file save or explicitly.
Select one of the following:

• Automatically(default): Analysis starts on each file save.
• Manually: User explicitly starts the analysis. To start an analysis, right-

click in the source code or the file in the Solution Explorer, and select
Run Polyspace analysis.

Polyspace as You
Code installation
folder

Polyspace as You Code installation folder. This field is read-only and set at the
time of installation.

If you see errors related to starting a Polyspace Connector, check if the folder
still exists (and contains a Polyspace as You Code installation). The errors
appear on the Output pane in Visual Studio.

Working directory
for extension

Folder where analysis results are stored. When you start an analysis, a
subfolder is created in this folder for each Visual Studio solution. Within a
subfolder, a second subfolder is created per project and then another per file.

For each file, a new run overwrites results of the previous run. If the analysis
fails for a given file, you can check the failed subfolder for information
useful for troubleshooting, such as the options given to the analysis engine.

The default results folder is C:\TEMP\%USERNAME%\Polyspace.

11 Configure Polyspace as You Code

11-2

Setting Description
Polyspace Access
URL

URL of the Polyspace Access instance from which you get a baseline.

After you obtain a baseline from Polyspace Access, subsequent runs of
Polyspace as You Code allow you to distinguish between new results and
results that were present in existing code (code previously uploaded to
Polyspace Access).

See also “Baseline Polyspace as You Code Results in Visual Studio” on page
11-44.

Polyspace Properties for Project
Build tab

Setting Description
Get from
solution(default)

If your project configuration type is Application (.exe), Dynamic Library (.dll),
or Static Library (.lib), Polyspace extracts the build options from your project
when you start the analysis.

Otherwise, before you start an analysis, click Generate Polyspace build
configuration to build the Visual Studio solution, trace the build, and extract
your build options. If the project configuration type is Makefile or Utility, the
label for this setting lists the project type. For instance (project type:
'Utility').

See also “Configure Polyspace as You Code to Extract Build Configuration” on
page 11-27.

Get from build
command line

Specify:

• The build command in the setting Build command line
• The folder from which the build command must be launched in the setting

Working directory.

Before you start an analysis, click Generate Polyspace build configuration
to run your build command, trace your build, and extract your build options.

See also “Configure Polyspace as You Code to Extract Build Configuration” on
page 11-27.

 Configure Polyspace as You Code Extension in Visual Studio

11-3

https://learn.microsoft.com/en-us/cpp/build/reference/general-property-page-project?view=msvc-160#configuration-type

Setting Description
Get from JSON
compilation
database

Specify the path to the JSON file (typically named compile_commands.json)
in the setting Path to JSON file.

Before you start an analysis, click Generate Polyspace build configuration
to extract the build options from the JSON compilation database that you
specify.

See also “Configure Polyspace as You Code to Extract Build Configuration” on
page 11-27.

If you use a build system generator such as CMake, you can follow this
approach to set up Polyspace as You Code. For instance, if you use CMake
projects in Visual Studio, CMake also allows you to generate a JSON
compilation database with the commands used for building the project. You
can then provide the compilation database to this setting. For an example of
how to generate this JSON file, see “Create Polyspace Options File from JSON
Compilation Database”.

Get from Polyspace
build options file

The analysis uses manually specified options. Provide these options in the
options file that you specify in the setting Build options file. See “Specify
Analysis Options Manually” on page 11-29.

Build options file
not required

You do not have to specify Polyspace options related to your building
configuration. This option applies only to simple projects.

The analysis uses the default Polyspace build options. You should typically
provide Polyspace as You Code with the specificities of your build
configuration so that the analysis runs without errors.

Analysis tab

Setting Description
Checkers file Path to a checkers configuration file.

To create or edit this file, open the Checkers selection window by clicking

. Enable the checkers that you want and save the file.

To select an existing file, open the file explorer by clicking .

See also “Configure Checkers for Polyspace as You Code in Visual Studio” on
page 11-63.

11 Configure Polyspace as You Code

11-4

Setting Description
Analysis options
file

Path to an options file. The options file contains one Polyspace analysis option
per line. For example:

-D _WIN32
-termination-functions exit_handler

You typically do not need to specify additional options in an options file.
However, in some situations, you might want to use an options file. For
instance, if you want to manually specify Polyspace options related to your
build command.

See also “Options Files for Polyspace Analysis” on page 12-5.
Import options
from Polyspace
Desktop project
(*.psprj)

Import the analysis options and checkers configuration file from existing
Polyspace desktop project file. See “Import Analysis Options from Polyspace
Desktop Project” on page 11-30.

Polyspace Access tab

Setting Description
Use baseline from
Polyspace Access

Specify whether to use a baseline for Polyspace results.

If you enable this setting, specify a Project path and click Download
baseline from Polyspace Access to download a baseline.

After you download the baseline, subsequent runs of Polyspace as You Code
import review information from the baseline and allow you to distinguish
between new results and results that were present in existing code.

See also “Baseline Polyspace as You Code Results in Visual Studio” on page
11-44.

Show only new
findings compared
to the results
baseline

Specify whether only new results must be shown. If you select this option,
results are compared with the baseline downloaded from Polyspace Access
and only new results are shown.

See also “Baseline Polyspace as You Code Results in Visual Studio” on page
11-44.

 Configure Polyspace as You Code Extension in Visual Studio

11-5

Expert tab

Setting Description
Run analysis script Run a script each time you save your code (or explicitly run analysis).

The extension passes these parameters to the script:

• Path to the current file as the first argument.
• Working directory for extension path as the second argument.
• Polyspace as You Code installation folder as the third argument.

For example, this simple Windows batch script analyzes the current file, uses
the default Polyspace build options, and imports the review information from a
previously downloaded baseline:
set INSTALL_DIR=%3
set ANALYZE=%INSTALL_DIR%\polyspace\bin\polyspace-bug-finder-access.exe
set SOURCES=%1
set RESULTS_FOLDER=%2
set BASELINE_DIR=%RESULTS_FOLDER%\..\..\..\baseline

"%ANALYZE%" -sources %SOURCES% -import-comments %BASELINE_DIR% -results-dir %RESULTS_FOLDER%
IF %ERRORLEVEL% NEQ 0 EXIT 1

For more on downloading a baseline and importing its review information at
the command line, see “Baseline Polyspace as You Code Results on Command
Line” on page 11-56.

Use a script if, for instance, you switch between files from components that
have different build configurations or you use a custom tool to setup your
build environment.

If you enable this setting, all other extension settings are ignored.

Note The Polyspace as You Code extension does not check the exit status of
the commands in your script. Make sure your script checks exit codes (for
instance by using %ERRORLEVEL%) and returns a meaningful exit status.

Typically, the Polyspace binaries return 0 on success and a non-zero value on
failure.

Analysis script Enter the full path to a script that runs each time your run Polyspace as You
Code. The script can be written in any language. On Windows, the extension
supports scripting languages only for scripts that are executable from the
Command Prompt.

Depending on your Analysis launch mode setting, the script runs on each
file save, or when you right-click in the source code or the file in the Solution
Explorer and select Run Polyspace analysis.

11 Configure Polyspace as You Code

11-6

See Also

Related Examples
• “Generate Build Options for Polyspace as You Code Analysis in Visual Studio” on page 11-27
• “Baseline Polyspace as You Code Results in Visual Studio” on page 11-44
• “Configure Checkers for Polyspace as You Code in Visual Studio” on page 11-63
• “Run Polyspace as You Code in Visual Studio and Review Results” on page 29-2

 Configure Polyspace as You Code Extension in Visual Studio

11-7

Configure Polyspace as You Code Extension in Visual Studio
Code

Polyspace as You Code allows you to find bugs and coding rule violations while you work in your
Visual Studio Code editor.

After you install the Polyspace as You Code analysis engine and Visual Studio Code extension,
configure the extension so that a Polyspace analysis runs smoothly when you save your code or
explicitly start an analysis. An analysis has run smoothly if results appear as expected, either as
source code markers with tooltips or in a list on the PROBLEMS pane.

To configure the extension, in Visual Studio Code, open the settings interface by pressing Ctrl + ,
(comma) and type polyspace in the settings search bar.

For each setting, you can specify a value that applies globally to all workspaces or folders that you
open in the Visual Studio editor. For most of the settings, you can also override the global
specification with a workspace-specific value.

• To specify global settings, enter the settings on the User tab.
• To override the global settings for the currently open workspace or folder, enter the settings on

the Workspace tab or the Remote tab if you are using the VS Code Remote Development
feature .

Unless otherwise specified, settings that are available on the User tab are also available on the
Workspace or Remote tabs.

To reset a setting to its default value, click the icon on the left of the setting and select Reset
Setting. All settings retain their current values when you reinstall the extension.

Tip Type the Setting ID in the settings search bar to view only the settings related to that ID.

Analysis Engine
Setting ID: polyspace.analysisEngine

These settings are mandatory. For better performance on Windows, the path that you provide for
these settings should not point to network drives.

11 Configure Polyspace as You Code

11-8

Setting Description
Polyspace
Installation Folder

Root folder of the Polyspace as You Code installation, for instance,
C:\Program Files\Polyspace as You Code\R2023a.

Working Directory Folder where analysis results are stored. Each new run overwrites results of
the previous run. If you do not specify a folder path, Polyspace creates a
Working Directory in your system's temporary folder:

• /tmp in Linux.

• C:\users\%username%\AppData\Local\Temp in Windows.

Analysis Behavior On Save
Setting ID: polyspace.analysisOptions OnSave

By default, Polyspace as You Code adds the current file to the Quality Monitoring list and runs each
time you save your code. You can choose to disable these automatic actions.

Setting Description
Analysis Options:
Add To Quality
Monitoring On
Save

Select how you add files to the Quality Monitoring list. Polyspace as You
Code analyzes files only if they are added to that list.

By default, Polyspace adds the current file to the list on save (Ctrl + S).
Deselect this setting to add files to the Quality Monitoring list manually. To
add files manually, right-click the file in the editor, the EXPLORER panel, or
SOURCE CONTROL panel in the side bar.

Analysis Options:
Analysis Of Files
On Save

Select when Polyspace as You Code runs on files that are in the Quality
Monitoring list.

By default, Polyspace as You Code runs each time you save your code.
Deselect this setting to run the analysis manually. You can right-click the
source code or a file in the EXPLORER and select Run Polyspace Analysis
(or run the command Polyspace: Run Polyspace Analysis from the
Command Palette).

Analysis Setup
Setting ID: polyspace.analysisOptions.analysisSetup

You can set up a Polyspace as You Code analysis through extension settings or override extension
settings and run a script instead. By default, the analysis uses extension settings.

 Configure Polyspace as You Code Extension in Visual Studio Code

11-9

Setting Description
Analysis Options:
Analysis Setup

Select between manual setup and script.

• Manual Setup (default): Set up Polyspace as You Code through extension
settings. Specify build-related and other options through the Manual
Setup group of settings.

See “Analysis Options > Manual Setup” on page 11-10.
• Script: Run a script each time you save your code (or right-click a source
file and select Run Polyspace Analysis).

See “Analysis Options > Script” on page 11-13.

Analysis Options > Manual Setup

Setting ID: polyspace.analysisOptions.manualSetup

Manual setup of the analysis involves specifying build options, checkers and other analysis options.
Extract build options from a Visual Studio Code build task or a JSON Compilation Database file, or
specify them explicitly in a build options file. Enable or disable checkers in a checkers selection
window. Specify all remaining analysis options explicitly in an options file.

11 Configure Polyspace as You Code

11-10

Setting Description
Analysis Options >
Manual Setup:
Build

Specification of build-related Polyspace analysis options. Options are:

• Build options file not required (default)

You do not have to specify Polyspace options related to building your files.
This is a basic option for simple projects where the default Polyspace
analysis options are sufficient to compile the files.

• Get from build command

Polyspace uses your build command to generate a build options file. Make
sure that the command builds all source files in your workspace. Specify
the build command in the setting Analysis Options > Manual Setup >
Build Setting: Build Command.

To generate the build options file, from the Command Palette, run
Polyspace: Generate Build Options.

See “Get Build Configuration from Build Command” on page 11-33
• Get from build task

Polyspace uses your Visual Studio build task to generate a build options
file. Make sure that the build task performs a complete build of all the files
in your workspace. Specify the build task name in the setting Analysis
Options > Manual Setup > Build Setting: Build Task.

To generate the build options file, from the Command Palette, run
Polyspace: Generate Build Options.

See “Get Build Configuration from Build Task” on page 11-33.
• Get from JSON Compilation Database file

Polyspace uses your JSON compilation database to generate a build
options file. Specify the path to the database file (typically named
compile_commands.json) in the setting Analysis Options > Manual
Setup > Build Setting: JSON Compilation Database File.

To generate the build options file, from the Command Palette, run
Polyspace: Generate Build Options.

See “Get Build Configuration from JSON Compilation Database” on page
11-34.

• Get from Polyspace build options file

Provide the build options in the options file that you specify in the setting
Analysis Options > Manual Setup > Build Setting: Polyspace Build
Options File.

See also “Options Files for Polyspace Analysis” on page 12-5.

 Configure Polyspace as You Code Extension in Visual Studio Code

11-11

Setting Description
Analysis Options >
Manual Setup >
Build Setting:
Build Command

Use this setting if you choose Get from build command for the setting
Analysis Options > Manual Setup: Build.

Specify the build command name exactly as you would enter on a command-
line terminal or console.

Use a build command that performs a complete build of all files in your
workspace and not an incremental build.

See “Get Build Configuration from Build Command” on page 11-33
Analysis Options >
Manual Setup >
Build Setting:
Build Task

Use this setting if you choose Get from build task for the setting
Analysis Options > Manual Setup: Build.

Specify the build task name. The build task name is the name of a command
that runs when you select Terminal > Run Task. For more information on
tasks, see Visual Studio Code documentation.

Use a build task that performs a complete build of all files in your workspace
and not an incremental build.

See “Get Build Configuration from Build Task” on page 11-33.
Analysis Options >
Manual Setup >
Build Setting:
JSON Compilation
Database File

Use this setting if you choose Get from JSON Compilation Database
File for the setting Analysis Options > Manual Setup: Build.

Specify the full path to a database file (typically named
compile_commands.json).

See “Get Build Configuration from JSON Compilation Database” on page 11-
34.

If you use a build system generator such as CMake, you can follow this
approach to set up Polyspace as You Code. For instance, if you use CMake
projects in Visual Studio Code, CMake also allows you to generate a JSON
compilation database with the commands used for building the project. You
can then provide the compilation database to this setting. For an example of
how to generate this JSON file, see “Create Polyspace Options File from JSON
Compilation Database”.

Analysis Options >
Manual Setup >
Build Setting:
Polyspace Build
Options File

Use this setting if you choose Get from Polyspace Build Options File
for the setting Analysis Options > Manual Setup: Build.

Specify the full path to a Polyspace build options file. The options file is a text
file with one Polyspace analysis option per line.

See also “Options Files for Polyspace Analysis” on page 12-5.
Analysis Options >
Manual Setup:
Checkers File

Specify the full path to a checkers configuration file.

To create this file, in the Command Palette, run Polyspace: Configure
Checkers. Enable the checkers that you want and save the file.

See also “Configure Checkers for Polyspace as You Code in Visual Studio
Code” on page 11-66.

11 Configure Polyspace as You Code

11-12

https://code.visualstudio.com/docs/editor/tasks

Setting Description
Analysis Options >
Manual Setup:
Other Analysis
Options

Path to an options file. The options file contains one Polyspace analysis option
per line. For example:

-termination-functions exit_handler
-code-behavior-specifications /usr/jdoe/util/checkerModifiers.xml

You typically do not need to specify additional options in an options file.
However, in some situations,you might want to use an options file. For
instance, you might want to modify some checkers using an XML file that you
provide with the option -code-behavior-specifications.

See also “Options Files for Polyspace Analysis” on page 12-5.

Analysis Options > Script

Setting ID: polyspace.analysisOptions.scriptFile

 Configure Polyspace as You Code Extension in Visual Studio Code

11-13

Setting Description
Analysis Options >
Script: Script File

Use this setting if you choose Script for the setting Analysis Options:
Analysis Setup.

Enter the full path to a script that runs each time your run Polyspace as You
Code on save or explicitly. The script can be written in any language. On
Windows, the extension supports scripting languages only for scripts that are
executable from the Command Prompt.

The extension passes these parameters to the script:

• Path to the current file as the first argument.
• Working Directory path as the second argument.
• Polyspace Installation Folder path as the third argument.

For example, this simple Windows batch script analyzes the current file, uses
the default Polyspace build options, and imports the review information from a
previously downloaded baseline:
set INSTALL_DIR=%3
set ANALYZE=%INSTALL_DIR%\polyspace\bin\polyspace-bug-finder-access.exe
set SOURCES=%1
set RESULTS_FOLDER=%2
set BASELINE_DIR=%RESULTS_FOLDER%\..\..\..\baseline

"%ANALYZE%" -sources %SOURCES% -import-comments %BASELINE_DIR% -results-dir %RESULTS_FOLDER%
IF %ERRORLEVEL% NEQ 0 EXIT 1

For more on downloading a baseline and importing its review information at
the command line, see “Baseline Polyspace as You Code Results on Command
Line” on page 11-56.

Use a script if, for instance, you switch between files from components that
have different build configurations or you use a custom tool to setup your
build environment.

If you enable this setting, all other extension settings are ignored.

Note The Polyspace as You Code extension does not check the exit status of
the commands in your script. Make sure your script checks exit codes (for
instance by using %ERRORLEVEL%) and returns a meaningful exit status.

Typically, the Polyspace binaries return 0 on success and a non-zero value on
failure.

Baseline
Setting ID: polyspace.baseline

Set these options if you want to compare your local results against a baseline from Polyspace Access.
After you obtain a baseline from Polyspace Access, subsequent runs of Polyspace as You Code allow
you to distinguish between new results and results that were present in existing code. See also
“Baseline Polyspace as You Code Results in Visual Studio Code” on page 11-48.

11 Configure Polyspace as You Code

11-14

Setting Description
Baseline:
Polyspace Access
Login

Specify the user name that you use to log in to Polyspace Access.

Later, when you run Polyspace: Download Baseline in the Command
Palette, you are prompted for the password that corresponds to this user
name.

Baseline:
Polyspace Access
Url

Specify the Polyspace Access URL, for instance https://example.access-
server:9443.

Baseline: Project Specify the path of a project on Polyspace Access that you use as baseline.

To download the baseline, from the Command Palette, run Polyspace:
Download Baseline.

See also “Baseline Polyspace as You Code Results in Visual Studio Code” on
page 11-48.

Baseline: Show
Baseline
Information

Enable or disable the use of information from the baseline run:

• Show local findings only (default)

When you run an analysis, Polyspace does not use information from the
baseline run. You see only local findings in the PROBLEMS pane.

• Show local findings and baseline info

When you run an analysis, Polyspace imports review information from the
baseline run. Results that are already justified in the baseline run are
suppressed in the PROBLEMS pane.

• Show new findings only

When you run an analysis, Polyspace imports review information from the
baseline. Results that are already present in the baseline run are
suppressed in the PROBLEMS pane.

Use this setting to focus only on new findings.

See also “Baseline Polyspace as You Code Results in Visual Studio Code” on
page 11-48.

Justification Catalog
Setting ID: polyspace.justification.catalog

Use this setting if your team or organization has a predefined set of comments that they use to justify
results. You can store these justifications in a catalog file and associate one or more justification with
a specific result or result family.

If you use the Polyspace syntax to annotate a result in the Visual Studio Code editor, justifications
that you store in the catalog for that result are available in a dropdown when you start typing the
annotation comment. For details of the Polyspace syntax, see “Annotation Syntax Details” on page 30-
4.

 Configure Polyspace as You Code Extension in Visual Studio Code

11-15

To create a justification catalog, see “Use a Justification Catalog to Autocomplete Annotations in
Polyspace as You Code plugins” on page 29-27.

Setting Description
Justification:
Catalog

Specify the full file path of the JSON catalog.

Other Settings
Setting ID: polyspace.otherSettings

Additional settings to configure the debugging mode and the port the extension uses to communicate
with the analysis engine.

Setting Description
Other Settings:
Debug Mode

Enable or disable debugging.

• Disabled(default)

Show only errors, warnings, and information messages such as start and
end of analysis in the OUTPUT pane.

• Enabled

Show all debugging information in the OUTPUT pane. Enable this setting
to troubleshoot issues with the Polyspace as You Code extension.

Other Settings:
Headers
Extensions

Specify the extensions that Polyspace as You Code should treat as header files
instead of source files.

If you configure Polyspace to add files to the Quality Monitoring list on save
and you make edits to a file with one of the specified header extensions,
Polyspace does not add that file to the Quality Monitoring list on save.

Polyspace analyzes and reports findings in a header file if you analyze a file
that includes the header file or if you explicitly start an analysis of the header
file. The header file is analyzed even if you do not specify the extension of the
file in this setting.

See also “HEADERS view” on page 29-7.
Other Settings:
Help Improve
Polyspace as You
Code

Enable or disable the sharing of user experience information with MathWorks.
Polyspace uses this information to improve the Polyspace as You Code
extension.

This setting is available only on the User tab.

11 Configure Polyspace as You Code

11-16

Setting Description
Other Settings:
Port

Specify the port number that the Polyspace as You Code extension uses on
startup to establish an internal connection with the analysis engine.

Use this setting if, for instance, your machine is configured with a firewall and
you want to specify an open port in the firewall.

By default, port 0 is specified and Polyspace queries your system for an
available port and uses whichever port your system returns.

If you run multiple instances of the Polyspace as You Code extension, specify a
different port for each instance.

If you change this setting, you might need to reload Visual Studio Code. If you
let Polyspace obtain a port number automatically (port 0), the extension might
connect on a different port when you reload Visual Studio Code and you might
need to rerun the command Polyspace: Generate Build Options.

Configure Polyspace as You Code for Remote Development
The Polyspace as You Code extension supports the Visual Studio Code remote development feature.
See VS Code Remote Development.

With remote development, you can run a Polyspace as You Code analysis from your local machine on
code that you develop and edit on a remote machine. To enable remote development, see Remote
tutorials.

When you enable remote development:

• The Polyspace as You Code extension is disabled on your local machine. You use the Polyspace as
You Code extension on the remote machine to run the analysis.

• You see an additional Remote tab in the Polyspace extension settings. You configure the extension
on the remote machine in this tab.

• If you set Analysis Options > Manual Setup: Build to Get from build task or Get from
build command, check that your build completes successfully before you run the Polyspace:
Generate Build Options command.

Note On Windows, if any of your project files or folders on the remote machine are on a network
drive, provide the UNC path for that network drive. The Polyspace as You Code extension cannot
resolve the path of a network drive that is mapped to a drive letter when you enable remote
development and the Polyspace: Generate Build Options command might fail.

See Also

Related Examples
• “Generate Build Options for Polyspace as You Code Analysis in Visual Studio Code” on page 11-

32
• “Baseline Polyspace as You Code Results in Visual Studio Code” on page 11-48

 Configure Polyspace as You Code Extension in Visual Studio Code

11-17

https://code.visualstudio.com/docs/remote/remote-overview
https://code.visualstudio.com/docs/remote/remote-overview#_remote-tutorials
https://code.visualstudio.com/docs/remote/remote-overview#_remote-tutorials

• “Configure Checkers for Polyspace as You Code in Visual Studio Code” on page 11-66
• “Run Polyspace as You Code in Visual Studio Code and Review Results” on page 29-6

11 Configure Polyspace as You Code

11-18

Configure Polyspace as You Code Plugin in Eclipse
This topic describes how to configure the Polyspace as You Code plugin in Eclipse. For Polyspace
desktop products such as Polyspace Bug Finder, see “Bug Finder Analysis Based on Eclipse Projects”.

Polyspace as You Code allows you to find bugs and coding rule violations while you work in your
Eclipse-based IDE.

After you install the Polyspace as You Code analysis engine and Eclipse plugin, configure the plugin
so that a Polyspace analysis runs smoothly when you save your code or explicitly start an analysis. An
analysis has run smoothly if results appear as expected, either as source code markers with tooltips
or in a list on the Polyspace Problems view.

To configure the Eclipse plugin, go to Window > Preferences and select the Polyspace as You
Code node in the Preferences window. You can also open the Preferences window by pressing Alt
+W+P. Under the Polyspace as You Code node, select:

• Analysis to configure the analysis options for the projects.
• Baseline to configure the use of analysis results you download from Polyspace Access as a

baseline.

To save your configuration, click Apply and Close, or click Apply to save your changes and continue
making edits to the configuration. To restore default configuration values, click Restore Defaults. All
settings retain their current values when you reinstall the plugin.

Polyspace as You Code Node
Installation and results folders

Setting Description
Polyspace
installation folder

Root folder of the Polyspace as You Code installation, for instance,
C:\Program Files\Polyspace as You Code\R2023a.

Working directory Folder where analysis results are stored. Each new run overwrites results of
the previous run.

The default working directory, is stored under your system temporary folder,
and typically contains polyspace_eclipse in the folder name:

• Windows: %temp% folder, for instance C:\Users\jsmith\AppData
\Local\Temp.

• Linux: /tmp folder.

Polyspace justification

Use this setting if your team or organization has a predefined set of comments that they use to justify
results. You can store these justifications in a catalog file and associate one or more justification with
a specific result or result family.

If you use the Polyspace syntax to annotate a result , the annotation comment is auto-filled with the
justifications that you store in the catalog for that result. For details of the Polyspace syntax, see
“Annotation Syntax Details” on page 30-4.

 Configure Polyspace as You Code Plugin in Eclipse

11-19

To create a justification catalog, see “Use a Justification Catalog to Autocomplete Annotations in
Polyspace as You Code plugins” on page 29-27.

Setting Description
Justification
catalog

Specify the full file path of the justification catalog JSON file.

Other

Setting Description
Debug Mode Enable or disable debugging.

• (default) — The Console view shows only errors, warnings, and
information messages such as start and end of analysis.

• — The Console view shows all debugging information. Enable this
setting to troubleshoot issues with the Eclipse plugin.

Help Improve
Polyspace as You
Code

Enable (default) or disable the sharing of user experience information with
MathWorks.

• (default) — Polyspaceshares user experience information with
MathWorks and uses this information to improve the Eclipse plugin.

• — Polyspace does not share user experience information.

Polyspace
Port Specify the port number that the Polyspace as You Code plugin uses on

startup to establish an internal connection with the analysis engine.

Use this setting if, for instance, your machine is configured with a firewall and
you want to specify an open port in the firewall.

By default, port 0 is specified and Polyspace queries your system for an
available port and uses whichever port your system returns.

If you run multiple instances of Eclipse which access different workspaces,
specify a different port for each instance.

If you change this setting, you might need to restart your Eclipse IDE. If you
let Polyspace obtain a port number automatically (port 0), the plugin might
connect on a different port when you restart your Eclipse IDE and you might
need to regenerate your build options.

Analysis Node
Plugin Behavior on Save

Specify whether the plugin performs certain actions when you save your edits

11 Configure Polyspace as You Code

11-20

Setting Description
Add To Quality
Monitoring list on
save

Select how you add files to the Quality Monitoring list. Polyspace as You
Code analyzes files only if they are added to that list.

• (default) — Polyspace adds the current file to the list on save (Ctrl + S).
• — add files to the Quality Monitoring list manually. To add files

manually, right-click the file in the editor or the Project Explorer view.
Start analysis on
save

Select when Polyspace as You Code runs on files that are in the Quality
Monitoring list.

• — Polyspace as You Code runs each time you save your code. (Ctrl + S).
• (default) — Run the analysis manually. Right-click the source code or a
file in the Project Explorer and select Run Polyspace Analysis.

Build Configuration

Setting Description
Analysis Setup Select between manual setup and script.

• Manual Setup (default): Set up Polyspace as You Code through extension
settings. Specify build-related and other options through the Manual
Setup: Manual setup group of settings.

• Script: Run a script each time you save your code (or right-click a source
file and select Run Polyspace Analysis).

Analysis Setup — Script

Run a script each time you save your code or explicitly run analysis.

The plugin passes these parameters to the script:

• Path to the current file as the first argument.
• Working directory path as the second argument.
• Polyspace installation folder path as the third argument.

For example, this simple Windows batch script analyzes the current file, uses the default Polyspace
build options, and imports the review information from a previously downloaded baseline:
set INSTALL_DIR=%3
set ANALYZE=%INSTALL_DIR%\polyspace\bin\polyspace-bug-finder-access.exe
set SOURCES=%1
set RESULTS_FOLDER=%2
set BASELINE_DIR=%RESULTS_FOLDER%\..\..\..\baseline

"%ANALYZE%" -sources %SOURCES% -import-comments %BASELINE_DIR% -results-dir %RESULTS_FOLDER%
IF %ERRORLEVEL% NEQ 0 EXIT 1

For more on downloading a baseline and importing its review information at the command line, see
“Baseline Polyspace as You Code Results on Command Line” on page 11-56.

Use a script if, for instance, you switch between files from components that have different build
configurations or you use a custom tool to setup your build environment.

If you enable this setting, all other plugin settings are ignored.

 Configure Polyspace as You Code Plugin in Eclipse

11-21

Note The Polyspace as You Code plugin does not check the exit status of the commands in your
script. Make sure your script checks exit codes (for instance by using %ERRORLEVEL%) and returns a
meaningful exit status.

Typically, the Polyspace binaries return 0 on success and a non-zero value on failure.

Setting Description
Script file Enter the full path to a script that runs each time your run Polyspace as You

Code. The script can be written in any language. On Windows, the extension
supports scripting languages only for scripts that are executable from the
Command Prompt.

Depending on how you configure the plugin behavior on save, the script runs
on each file save, or when you right-click in the source code or the file in the
Project Explorer and select Run Polyspace Analysis.

11 Configure Polyspace as You Code

11-22

Analysis Setup — Manual

Setting Description
Build • Build options file not required (default)

You do not have to specify Polyspace options related to your build
configuration. This is a basic option for simple projects.

More...

The analysis uses the default Polyspace build options. So that the analysis
runs without errors, you typically provide Polyspace as You Code with the
specificities of your build configuration.

• Get from build command

The analysis traces the build command that you specify and generates a
build options file.

More...

Specify the build command in setting Build Command, for instance make
-B and click in the Configuration view of the Polyspace as You Code
perspective. See “Get Build Configuration from Build Command” on page
11-37.

• Get from Eclipse C/C++ project

The analysis extracts the build configuration from the Eclipse project and
generates a build options file.

More...

Click in the Configuration view of the Polyspace as You Code
perspective.

See “Get Build Configuration from Eclipse Project” on page 11-37.
• Get from JSON Compilation Database file

The analysis extracts the build configuration from the JSON compilation
database that you specify and generates a build options file. See “Get Build
Configuration from JSON Compilation Database” on page 11-38.

More...

Specify the full path to the JSON file (typically named
compile_commands.json) in the JSON Compilation Database file
setting and click in the Configuration view of the Polyspace as You
Code perspective.

If you use a build system generator such as CMake, you can follow this
approach to set up Polyspace as You Code. For instance, if you use CMake
projects in Eclipse, CMake also allows you to generate a JSON compilation
database with the commands used for building the project. You can then

 Configure Polyspace as You Code Plugin in Eclipse

11-23

Setting Description
provide the compilation database to this setting. For an example of how to
generate this JSON file, see “Create Polyspace Options File from JSON
Compilation Database”.

• Get from Polyspace build options file

When you select this setting, you provide an options file that you generate
or fill in manually with all the necessary build options. Specify the full path
of the options file in the setting Polyspace Build Options File.

Build Command Specify the build command name exactly as you would enter on a command-
line terminal or console.

Use a build command that performs a complete build of all files in your
workspace and not an incremental build.

Fill in this setting if you select Get from build command from the Build
dropdown menu. See “Get Build Configuration from Build Command” on page
11-37.

JSON Compilation
Database file

Specify the full path to a database file (typically named
compile_commands.json).

Use a build command that performs a complete build of all files in your
workspace and not an incremental build.

Fill in this setting if you select Get from JSON Compilation Database
file from the Build dropdown menu. See “Create Polyspace Options File
from JSON Compilation Database”.

Polyspace Build
Options File

Specify the full path to a Polyspace build options file. The options file is a text
file with one Polyspace analysis option per line.

Fill in this setting if you select Get from Polyspace build options
file from the Build dropdown menu. See “Options Files for Polyspace
Analysis” on page 12-5.

Checkers file Path to a checkers configuration file.

To create this file, click the Configure Checkers icon in the Configuration
view of the Polyspace as You Code perspective.. Enable the checkers that
you want and save the file.

See also “Configure Checkers for Polyspace as You Code in Eclipse” on page
11-60.

11 Configure Polyspace as You Code

11-24

Setting Description
Other Analysis
Options

Path to an options file. The options file contains one Polyspace analysis option
per line. For example:

-D _WIN32
-termination-functions exit_handler

You typically do not need to specify additional options in an options file.
However, in some situations,you might want to use an options file. For
instance, if you want to manually specify Polyspace options related to your
build command, select Build options file not required for Build setting and
enter the options in an options file.

See also “Options Files for Polyspace Analysis” on page 12-5.

Baseline Node
Use this settings to select whether you import review information from a baseline run into your
analysis, and to configure the connection to a Polyspace Access Server from which you download the
baseline.

Setting Description
Show Baseline
Information

Enable or disable the use of information from the baseline run:

• Show local findings only (default)

When you run an analysis, Polyspace does not use information from the
baseline run. You see only local findings in the Polyspace Problems view.

• Show local findings and baseline info

When you run an analysis, Polyspace imports review information from the
baseline run. Results that are already justified in the baseline run are
suppressed in the Polyspace Problems pane.

• Show new findings only

When you run an analysis, Polyspace imports review information from the
baseline. Results that are already present in the baseline run are
suppressed in the Polyspace Problems pane.

Use this setting to focus only on new findings.

See also “Baseline Polyspace as You Code Results in Eclipse” on page 11-53.
Polyspace Access
URL

URL of the Polyspace Access instance from which you get a baseline.

After you obtain a baseline from Polyspace Access, subsequent runs of
Polyspace as You Code allow you to distinguish between new results and
results that were present in existing code.

See also “Baseline Polyspace as You Code Results in Eclipse” on page 11-53.

 Configure Polyspace as You Code Plugin in Eclipse

11-25

Setting Description
Polyspace Access
Login

Specify the user name that you use to log in to Polyspace Access.

Later, when you click the Download Baseline icon in the Baseline view of
the Polyspace as You Code perspective, you are prompted for the password
that corresponds to this user name.

Project path Path of project in Polyspace Access Project Explorer that you get the
baseline from.

See Also

Related Examples
• “Generate Build Options for Polyspace as You Code Analysis in Eclipse” on page 11-37
• “Baseline Polyspace as You Code Results in Eclipse” on page 11-53
• “Configure Checkers for Polyspace as You Code in Eclipse” on page 11-60
• “Run Polyspace as You Code in Eclipse and Review Results” on page 29-15

11 Configure Polyspace as You Code

11-26

Generate Build Options for Polyspace as You Code Analysis in
Visual Studio

Polyspace as You Code checks the source code file that is currently active in your Visual Studio IDE
for bugs and coding standards violations.

So that the analysis runs without errors, provide Polyspace as You Code with the specificities of your
build configuration, such as data type sizes and compiler macro definitions. To provide your build
configuration information, you can:

• Configure Polyspace as You Code to extract the build configuration information from your Visual
Studio solution, build command, or JSON compilation database. Note that running polyspace-
configure on a build command involves first executing the command and gathering information
from the processes executed. On the other hand, polyspace-configure can simply read all
required information from a JSON compilation database or even a Visual Studio solution in some
cases (see details later).

• Manually specify analysis options that emulate your build configuration in an options file. See
“Options Files for Polyspace Analysis” on page 12-5.

• Import the analysis options from a Polyspace desktop product project file.

Configure Polyspace as You Code to Extract Build Configuration
To extract your build configuration information from the Visual Studio solution, build command, or
JSON compilation database:

1 Right-click a project in the Visual Studio Solution Explorer pane and select Polyspace
properties.

2 Select the appropriate build configuration option on the Build tab. See “Configure Polyspace as
You Code Extension in Visual Studio” on page 11-2.

The build configuration option that you select applies only to the selected project.

Polyspace extracts the build information and generates an options file that the Polyspace as You Code
analysis engine uses in subsequent analyses.

• The file contains analysis options that emulate your build configuration. Make sure that the build
completes successfully before you use this file .

• The generated options file is stored in the .polyspace-configure folder under the
workingDirectory/projectName folder or one of its subfolders.

The workingDirectory path is the Working directory for extension folder path that you
specify in the General options of the Polyspace extension. The projectName is the name of the
project that contains the files you are currently analyzing.

 Generate Build Options for Polyspace as You Code Analysis in Visual Studio

11-27

Build Option Description
Get from solution • If your project configuration type is Application (.exe), Dynamic Library

(.dll), or Static Library (.lib), when you start an analysis, Polyspace extracts
the build options from your project and generates an options file. If you
make changes to your project, Polyspace updates the options file when you
start the next analysis.

• If your project configuration type is Makefile or Utility, or if you do not use
the cl.exe compiler to compile your code, before the analysis starts,
Polyspace builds the Visual Studio solution and traces the build to extract
your build options and generate an options file. If you make changes to your
project, update the generated options file before you start the next analysis.
See “Update Generated Build Options File” on page 11-29.

Polyspace builds your solution and generates an options file only if:

• You start an analysis and Polyspace cannot find a generated options file
in the .polyspace-configure folder for the project that contains the
currently analyzed file.

• You explicitly generate an options file by selecting Generate Polyspace
build configuration from your project context menu in the Solution
Explorer.

Get from build
command line

• Specify your build command in the Build command line field. The build
command that you specify must perform a full build. For instance:

cl /W1 hello.c main.c
• Specify the full path of the folder where Polyspace runs the build command

in the Working directory field. For instance:

C:\Projects\HelloWorld

Before the analysis starts, Polyspace runs your build command, traces the build
to extract the configuration information, and generates an options file. If you
make changes to your project, update the generated options file before you
start the next analysis. See “Update Generated Build Options File” on page 11-
29.

Polyspace runs your build command and generates an options file only if:

• You start an analysis and Polyspace cannot find a generated options file in
the .polyspace-configure folder for the project that contains the
currently analyzed file.

• You explicitly generate an options file by selecting Generate Polyspace
build configuration from your project context menu in the Solution
Explorer.

11 Configure Polyspace as You Code

11-28

https://learn.microsoft.com/cpp/build/reference/general-property-page-project?view=msvc-160#configuration-type
https://learn.microsoft.com/cpp/build/reference/general-property-page-project?view=msvc-160#configuration-type

Build Option Description
Get from JSON
compilation
database

If your build system supports the generation of a JSON compilation database
file, use this setting. The file contains compiler calls for all the translation units
in your project. See JSON compilation database.

To extract your build configuration information from the JSON compilation
database:

1 Generate a JSON compilation database file. For an example of how to
generate this file, see “Create Polyspace Options File from JSON
Compilation Database”.

If you use a JSON compilation database that was not generated on your
local machine, make sure that the paths listed in the file are accessible
from the location where you run Polyspace as You Code.

2 Specify the full path to the JSON compilation database file that you
generated in step 1 in the Path to JSON file field.

Before the analysis starts, Polyspace extracts the build configuration
information from the compilation database and generates an options file. If you
make changes to your project, update the generated options file before you
start the next analysis. See “Update Generated Build Options File” on page 11-
29.

Polyspace generates an options file only if:

• You start an analysis and Polyspace cannot find a generated options file in
the .polyspace-configure folder for the project that contains the
currently analyzed file.

• You explicitly generate an options file by selecting Generate Polyspace
build configuration from your project context menu in the Solution
Explorer.

Update Generated Build Options File

If you make changes to your build configuration, for instance if you add a source file to your project
or workspace or rename an existing file, update the generated options file to reflect those changes.
Before you update the options file, make sure that your build completes successfully with the new
configuration.

To update the options file, from the project context menu in the Solution Explorer, select Generate
Polyspace build configuration.

If you extract your build information from a JSON compilation database file, regenerate the
compilation database before you update the build options file.

See also “Troubleshoot Failed Analysis or Unexpected Results in Polyspace as You Code” on page 11-
81.

Specify Analysis Options Manually
Use this setting if:

 Generate Build Options for Polyspace as You Code Analysis in Visual Studio

11-29

https://clang.llvm.org/docs/JSONCompilationDatabase.html

• You know the details of your build system and you want to specify the Polyspace analysis options
that emulate your build configuration in an options file. See “Options Files for Polyspace Analysis”
on page 12-5.

For a list of available analysis options, see “Complete List of Polyspace Bug Finder Analysis Engine
Options”.

• You reuse a Polyspace options file that you or someone else on your team has configured for your
build system.

If you reuse an options file that was not configured or generated on your local machine, make sure
that the paths listed in the file are accessible from the location where you run Polyspace as You
Code.

To specify an analysis options file:

1 Right-click a project in the Visual Studio Solution Explorer pane and select Polyspace
properties.

2 Select Get from build options file on the Build tab. See “Configure Polyspace as You Code
Extension in Visual Studio” on page 11-2.

3 Specify the full path to the options file in the Build options file field.

The Polyspace as You Code analysis engine uses the specified options file in subsequent analyses.

If you make changes to your build configuration, edit the options file to reflect those changes. See
“Specify Target Environment and Compiler Behavior” on page 13-2.

Import Analysis Options from Polyspace Desktop Project
If you configure an analysis in the Polyspace desktop product, you can use the information from the
resulting Polyspace desktop PSPRJ file to configure your Polyspace as You Code analysis.

To import the analysis options from a Polyspace desktop PSPRJ file:

1 Right-click a project in the Visual Studio Solution Explorer pane and select Polyspace
properties.

2 Select Build options file not required on the Build tab.
3 On the Analysis tab, click Import from Polyspace desktop project and select the PSPRJ file

that you import from.

Polyspace generates an options file and an XML checkers activation file on page 11-63, and
populates the Checkers file and Analysis options file field on the Analysis tab. The Polyspace as
You Code analysis engine uses these files in subsequent analyses.

If you make changes to your build configuration, edit the options file to reflect those changes. See
“Specify Target Environment and Compiler Behavior” on page 13-2.

See Also

Related Examples
• “Configure Polyspace as You Code Extension in Visual Studio” on page 11-2

11 Configure Polyspace as You Code

11-30

• “Configure Checkers for Polyspace as You Code in Visual Studio” on page 11-63
• “Baseline Polyspace as You Code Results in Visual Studio” on page 11-44

 Generate Build Options for Polyspace as You Code Analysis in Visual Studio

11-31

Generate Build Options for Polyspace as You Code Analysis in
Visual Studio Code

Polyspace as You Code checks the source code file that is currently active in your Visual Studio Code
editor for bugs and coding standards violations.

So that the analysis runs without errors, provide Polyspace as You Code with the specificities of your
build configuration, such as data type sizes and compiler macro definitions. To provide your build
configuration information, you can:

• Configure Polyspace as You Code to extract the build configuration information from your build
task or build command, or JSON compilation database. Note that running polyspace-
configure on a build task or command involves first executing the task or command and
gathering information from the processes executed. On the other hand, polyspace-configure
can simply read all required information from a JSON compilation database.

• Manually specify analysis options that emulate your build configuration in an options file. See
“Options Files for Polyspace Analysis” on page 12-5.

• Import the analysis options from a Polyspace desktop product project file.

Configure Polyspace as You Code to Extract Build Configuration
To extract your build configuration information from the build task, build command, or JSON
compilation database:

1 Open the Visual Studio Code settings by pressing Ctrl+, (comma).

Enter polyspace.analysisoptions in the settings search bar and set Polyspace > Analysis
Options: Analysis Setup to Manual setup.

2 Set the appropriate Polyspace > Analysis Options > Manual Setup: Build options and fill out
the corresponding Build Setting field.

See “Configure Polyspace as You Code Extension in Visual Studio Code” on page 11-8.
3 Open the Command Palette (Ctrl+Shift+P) and enter Polyspace: Generate Build

Options.

Note On Windows, if you enable remote development and if any of your project files or folders on the
remote machine are on a network drive, provide the UNC path for that network drive. See “Configure
Polyspace as You Code for Remote Development” on page 11-17. The Polyspace as You Code
extension cannot resolve the path of a network drive that is mapped to a drive letter when you enable
remote development and the Polyspace: Generate Build Options command might fail.

Polyspace extracts the build information and generates an options file that the Polyspace as You Code
analysis engine uses in subsequent analyses. The file contains analysis options that emulate your
build configuration.

The generated options file is stored in the .polyspace-configure folder under the
workingDirectory/projectName folder or one of its subfolders.

11 Configure Polyspace as You Code

11-32

The workingDirectory path is the Polyspace > Analysis Engine: Result Folder path that you
specify in the Polyspace as You Code extension settings. The projectName is the name of the top-
level folder in the EXPLORER that contains the files that you are currently analyzing.

Get Build Configuration from Build Task

Visual Studio Code enables you to define tasks so that you can run an external tool from your code
editor. See Integrate with External Tools via Tasks.

If you define a custom task that calls your compiler to perform a full build of your project, Polyspace
can extract your build configuration from this build task.

1 Open the Visual Studio Code settings by pressing Ctrl+, (comma).

Enter polyspace.analysisoptions in the settings search bar.
2 Set these Polyspace > Analysis Options settings to the values listed in the table.

Setting Value
Analysis Setup Manual setup
Manual Setup: Build Get from build task
Manual Setup >
Build Setting: Build
Task

Specify the name of the build task. This corresponds to the
"label" field of the task definition in the tasks.json file. The
task that you specify must perform a full build.

Polyspace supports the use of only these Visual Studio Code
predefined variables in task definitions:

• ${workspaceFolder}
• ${workspaceFolderBasename}

3 Open the Command Palette (Ctrl+Shift+P) and enter Polyspace: Generate Build
Options.

Polyspace runs the build command specified by the task, traces the build to extract the configuration
information, and generates an options file.

Get Build Configuration from Build Command

To extract your build configuration information from your build command:

1 Open the Visual Studio Code settings by pressing Ctrl+, (comma).

Enter polyspace.analysisoptions in the settings search bar.
2 Set these Polyspace > Analysis Options settings to the values listed in the table.

Setting Value
Analysis Setup Manual setup
Manual Setup: Build Get from build command

 Generate Build Options for Polyspace as You Code Analysis in Visual Studio Code

11-33

https://code.visualstudio.com/docs/editor/tasks
https://code.visualstudio.com/docs/editor/variables-reference

Setting Value
Manual Setup >
Build Setting: Build
Command

Specify your build command, for instance:

gcc -g -o helloworld hello.c main.c

The command that you specify must perform a full build
3 Open the Command Palette (Ctrl+Shift+P) and enter Polyspace: Generate Build

Options.

Polyspace runs your build command, traces the build to extract the configuration information, and
generates an options file.

Get Build Configuration from JSON Compilation Database

If your build system supports the generation of a JSON compilation database file, use this setting. The
file contains compiler calls for all the translation units in your project. See JSON compilation
database.

To extract your build configuration information from the JSON compilation database:

1 Generate a JSON compilation database file. For an example of how to generate this file, see
“Create Polyspace Options File from JSON Compilation Database”.

If you use a JSON compilation database that was not generated on your local machine, make sure
that the paths listed in the file are accessible from the location where you run Polyspace as You
Code.

2 Open the Visual Studio Code settings by pressing Ctrl+, (comma).

Enter polyspace.analysisoptions in the settings search bar.
3 Set these Polyspace > Analysis Options settings to the values listed in the table.

Setting Value
Analysis Setup Manual setup
Manual Setup: Build Get from JSON Compilation Database file
Manual Setup >
Build Setting: JSON
Compilation
Database File

Specify the full path to the file that you generated in step 1. The file
is typically named compile_commands.json.

4 Open the Command Palette (Ctrl+Shift+P) and enter Polyspace: Generate Build
Options.

Polyspace extracts the build configuration information from the compilation database and generates
an options file.

Update Generated Build Options File

If you make changes to your build configuration, for instance if you add a source file to your project
or workspace or rename an existing file, update the generated options file to reflect those changes.
Before you update the options file, make sure that your build completes successfully with the new
configuration.

11 Configure Polyspace as You Code

11-34

https://clang.llvm.org/docs/JSONCompilationDatabase.html
https://clang.llvm.org/docs/JSONCompilationDatabase.html

To update the options file, Open the Command Palette (Ctrl+Shift+P) and enter Polyspace:
Generate Build Options.

If you extract your build information from a JSON compilation database file, regenerate the
compilation database before you update the build options file.

See also “Troubleshoot Failed Analysis or Unexpected Results in Polyspace as You Code” on page 11-
81.

Specify Analysis Options Manually
Use this setting if:

• You know the details of your build system and you want to specify the Polyspace analysis options
that emulate your build configuration in an options file. See “Options Files for Polyspace Analysis”
on page 12-5.

For a list of available analysis options, see “Complete List of Polyspace Bug Finder Analysis Engine
Options”.

• You reuse a Polyspace options file that you or someone else on your team has configured for your
build system.

If you reuse an options file that was not configured or generated on your local machine, make sure
that the paths listed in the file are accessible from the location where you run Polyspace as You
Code.

To specify an analysis options file:

1 Open the Visual Studio Code settings by pressing Ctrl+, (comma).

Enter polyspace.analysisoptions in the settings search bar.
2 Set these Polyspace > Analysis Options settings to the values listed in the table.

Setting Value
Analysis Setup Manual setup
Manual Setup: Build Get from Polyspace build options file
Manual Setup >
Build Setting:
Polyspace Build
Options File

Specify the full path to the Polyspace options file.

The Polyspace as You Code analysis engine uses the specified options file in subsequent analyses.

If you make changes to your build configuration, edit the options file to reflect those changes. See
“Specify Target Environment and Compiler Behavior” on page 13-2.

Import Analysis Options from Polyspace Desktop Project
If you configure an analysis in the Polyspace desktop product, you can use the information from the
resulting Polyspace desktop PSPRJ file to configure your Polyspace as You Code analysis.

 Generate Build Options for Polyspace as You Code Analysis in Visual Studio Code

11-35

To import the analysis options from a Polyspace desktop PSPRJ file, open a terminal in Visual Studio
Code and enter this command:
polyspace-checkers-selection -import-options-from-psprj pathToPsprjFile

The polyspace-checkers-selection binary is available under the polyspace/bin folder in
your Polyspace as You Code installation folder. If you did not add this installation folder to your PATH
environment variable, include the full path of the binary to execute this command.

The pathToPsprjFile path is the full path of the PSPRJ file.

Polyspace generates an options file (analysis_options.txt) and an XML checkers activation file
on page 11-66 (checkers_activation_file.xml). The generated files are stored in the import
folder in the same location as the PSPRJ file.

To complete the configuration of the Polyspace as You Code analysis:

1 Open the Visual Studio Code settings by pressing Ctrl+, (comma).

Enter polyspace.analysisoptions in the settings search bar.
2 Set these Polyspace > Analysis Options settings to the values listed in the table.

Setting Value
Analysis Setup Manual setup
Manual Setup: Build Build options file not required

This setting ignores the file specified in the Build Setting:
Polyspace Build Options File field.

Manual Setup:
Checkers File

Full file path of checkers_activation_file.xml

Manual Setup:
Other Analysis
Options

Full file path of analysis_options.txt

The Polyspace as You Code analysis engine uses these files in subsequent analyses.

If you make changes to your build configuration, edit the options file to reflect those changes. See
“Specify Target Environment and Compiler Behavior” on page 13-2.

See Also

Related Examples
• “Configure Polyspace as You Code Extension in Visual Studio Code” on page 11-8
• “Configure Checkers for Polyspace as You Code in Visual Studio Code” on page 11-66
• “Baseline Polyspace as You Code Results in Visual Studio Code” on page 11-48

11 Configure Polyspace as You Code

11-36

Generate Build Options for Polyspace as You Code Analysis in
Eclipse

This topic describes how to configure the Polyspace as You Code plugin in Eclipse. For Polyspace
desktop products such as Polyspace Bug Finder, see “Bug Finder Analysis Based on Eclipse Projects”.

Polyspace as You Code checks the source code of the file that is currently active in your Eclipse IDE
for bugs and coding standards violations.

So that the analysis runs without errors, provide Polyspace as You Code with the specificities of your
build configuration, such as data type sizes and compiler macro definitions. To provide your build
configuration information, you can:

• Configure Polyspace as You Code to extract the build configuration information from your Eclipse
project, build command, or JSON compilation database. Note that running polyspace-
configure on a build command involves first executing the command and gathering information
from the processes executed. On the other hand, polyspace-configure can simply read all
required information from an Eclipse project or JSON compilation database.

• Manually specify analysis options that emulate your build configuration in an options file. See
“Options Files for Polyspace Analysis” on page 12-5.

• Import the analysis options from a Polyspace desktop product project file.

Configure Polyspace as You Code to Extract Build Configuration
To extract your build configuration information from the Eclipse project, build command, or JSON
compilation database:

1 Go to Window > Preferences and select the Polyspace as You Code node.
2 Select the appropriate Build option on the Analysis node. See “Configure Polyspace as You Code

Plugin in Eclipse” on page 11-19.

Get Build Configuration from Eclipse Project

To extract your build configuration information from your Eclipse project:

1 Go to Window > Preferences and select the Polyspace as You Code node.
2 On the Analysis node and select Get from Eclipse C/C++ project from the Build

dropdown menu. See “Configure Polyspace as You Code Plugin in Eclipse” on page 11-19.

Click in the Configuration view of the Polyspace as You Code perspective to extract the build
options from your project toolchain. The Polyspace analysis engine uses those options in the
subsequent analysis.

To view the details of the toolchain configuration:

1 Select a project in the Project Explorer and go to Project > Properties.
2 Under the C/C++ General node, select Paths and symbols and Preprocessor Include Paths,

Macros, etc.

Get Build Configuration from Build Command

To extract your build configuration information from your build command:

 Generate Build Options for Polyspace as You Code Analysis in Eclipse

11-37

1 Go to Window > Preferences and select the Polyspace as You Code node.
2 On the Analysis node select Get from build command from the Build dropdown menu. See

“Configure Polyspace as You Code Plugin in Eclipse” on page 11-19.

The build command that you specify must perform a full build. For instance:

gcc -g -o helloworl hello.c main.c
3 Click in the Configuration view of the Polyspace as You Code perspective.

Polyspace runs your build command, traces the build to extract the configuration information, and
generates an options file. The Polyspace as You Code analysis engine uses the generated options file
in subsequent analyses.

The generated options file is stored in the .polyspace-configure folder under the
workingDirectory/projectName folder or one of its subfolders.

Here, workingDirectory is the Working directory path that you specify on the Polyspace as You
Code node and projectName is the name of the project that contains the files you are currently
analyzing.

Get Build Configuration from JSON Compilation Database

If your build system supports the generation of a JSON compilation database file, use this setting. The
file contains compiler calls for all the translation units in your project. See JSON compilation
database.

To extract your build configuration information from the JSON compilation database:

1 Generate a JSON compilation database file. For an example of how to generate this file, see
“Create Polyspace Options File from JSON Compilation Database”.

If you use a JSON compilation database that was not generated on your local machine, make sure
that the paths listed in the file are accessible from the location where you run Polyspace as You
Code.

2 Go to Window > Preferences and select the Polyspace as You Code node.
3 On the Analysis node select Get from JSON Compilation Database file from the Build

dropdown menu and specify the full path to the JSON compilation database file that you
generated in step 1. See “Configure Polyspace as You Code Plugin in Eclipse” on page 11-19.

4 Click in the Configuration view of the Polyspace as You Code perspective.

Polyspace extracts the build configuration information from the compilation database and generates
an options file. The Polyspace as You Code analysis engine uses the generated options file in
subsequent analyses.

The generated options file is stored in the .polyspace-configure folder under the
workingDirectory/projectName folder or one of its subfolders.

Here, workingDirectory is the Working directory path that you specify on the Polyspace as You
Code node and projectName is the name of the project that contains the files you are currently
analyzing.

11 Configure Polyspace as You Code

11-38

https://clang.llvm.org/docs/JSONCompilationDatabase.html
https://clang.llvm.org/docs/JSONCompilationDatabase.html

Update Generated Build Options File

If you make changes to your build configuration, for instance if you add a source file to your project
or workspace or rename an existing file, update the generated options file to reflect those changes.
Before you update the options file, make sure that your build completes successfully with the new
configuration.

To update the options file, click in the Configuration view of the Polyspace as You Code
perspective.

If you extract your build information from a JSON compilation database file, regenerate the
compilation database before you update the build options file.

See also “Troubleshoot Failed Analysis or Unexpected Results in Polyspace as You Code” on page 11-
81.

Specify Analysis Options Manually
Use this setting if:

• You know the details of your build system and you want to specify the Polyspace analysis options
that emulate your build configuration in an options file. See “Options Files for Polyspace Analysis”
on page 12-5.

For a list of available analysis options, see “Complete List of Polyspace Bug Finder Analysis Engine
Options”.

• You reuse a Polyspace options file that you or someone else on your team has configured for your
build system.

If you reuse an options file that was not configured or generated on your local machine, make sure
that the paths listed in the file are accessible from the location where you run Polyspace as You
Code.

To specify an analysis options file:

1 Go to Window > Preferences and select the Polyspace as You Code node.
2 On the Analysis node select Get from Polyspace build options file from the Build

dropdown menu and specify the full path to the options file. See “Configure Polyspace as You
Code Plugin in Eclipse” on page 11-19.

The Polyspace as You Code analysis engine uses the options file that you specify in subsequent
analyses.

If you make changes to your build configuration, edit the options file to reflect those changes. See
“Specify Target Environment and Compiler Behavior” on page 13-2.

Import Analysis Options from Polyspace Desktop Project
If you configure an analysis in the Polyspace desktop product, you can use the information from the
resulting Polyspace desktop PSPRJ file to configure your Polyspace as You Code analysis.

To import the analysis options from a Polyspace desktop PSPRJ file, open a terminal in Eclipse and
enter this command:

 Generate Build Options for Polyspace as You Code Analysis in Eclipse

11-39

polyspace-checkers-selection -import-options-from-psprj pathToPsprjFile

The polyspace-checkers-selection binary is available under the polyspace/bin folder in
your Polyspace as You Code installation folder. If you did not add this installation folder to your PATH
environment variable, include the full path of the binary to execute this command.

The pathToPsprjFile path is the full path of the PSPRJ file.

Polyspace generates an options file (analysis_options.txt) and an XML checkers activation file
on page 11-66 (checkers_activation_file.xml). The generated files are stored in the import
folder in the same location as the PSPRJ file.

To complete the configuration of the Polyspace as You Code analysis:

1 Go to Window > Preferences and select the Polyspace as You Code node.
2 On the Analysis node select Get from Polyspace build options file from the Build

dropdown. See “Configure Polyspace as You Code Plugin in Eclipse” on page 11-19.
3 Specify the path of the generated options file analysis_options.txt in the Other Analysis

Options field.
4 Specify the path of the generated checkers activation file checkers_activation_file.xml in

the Checkers File field.

The Polyspace as You Code analysis engine uses these files in subsequent analyses.

If you make changes to your build configuration, edit the options file to reflect those changes. See
“Specify Target Environment and Compiler Behavior” on page 13-2.

See Also

Related Examples
• “Configure Polyspace as You Code Plugin in Eclipse” on page 11-19
• “Configure Checkers for Polyspace as You Code in Eclipse” on page 11-60
• “Baseline Polyspace as You Code Results in Eclipse” on page 11-53

11 Configure Polyspace as You Code

11-40

Generate Build Options for Polyspace as You Code Analysis at
the Command Line

Polyspace as You Code checks your code for bugs and coding standards violations while you work in
your IDE or code editor.

So that the analysis runs without errors, provide Polyspace as You Code with the specificities of your
build configuration, such as data type sizes and compiler macro definitions. To provide your build
configuration information, you can:

• Use the polyspace-configure binary to extract the build configuration information from your
build command or JSON compilation database. Note that running polyspace-configure on a
build command involves first executing the command and gathering information from the
processes executed. On the other hand, polyspace-configure can simply read all required
information from a JSON compilation database.

• Manually specify analysis options that emulate your build configuration in an options file. See
“Options Files for Polyspace Analysis” on page 12-5.

• Import the analysis options from a Polyspace desktop product project file.

Use polyspace-configure to Generate Build Options File
The polyspace-configure binary enables you to extract the build configuration information from a
build command or a JSON compilation database file. The binary uses the extracted information to
generate a build options file which contains a set of options that emulate your build configuration.

polyspace-configure is available with your Polyspace as You Code installation, in the
polyspaceAsYouCodeRoot/polyspace/bin folder, where polyspaceAsYouCodeRoot is your
Polyspace as You Code installation folder.

Get Build Configuration from Build Command

To extract the build configuration information from your build command, provide a build command
that performs a full build. For instance, if you use make on Linux to build your project, use this
command:
polyspace-configure \
 -no-sources -allow-overwrite \
 -output-options-file path/To/buildOptions.txt \
 -merge-common-options make -B

Polyspace runs your build command, traces the build to extract the configuration information, and
generates buildOptions.txt inside path/To. For more information about the polyspace-
configure options, see polyspace-configure.

Use the generated options file in subsequent analyses of source files from your project. For instance:
polyspace-bug-finder-access -sources file.c -options-file path/To/buildOptions.txt

Get Build Configuration from JSON Compilation Database

If your build system supports the generation of a JSON compilation database file, use this workflow.

The compilation database file contains compiler calls for all the translation units in your project. See
JSON compilation database.

 Generate Build Options for Polyspace as You Code Analysis at the Command Line

11-41

https://clang.llvm.org/docs/JSONCompilationDatabase.html

To extract your build configuration information from the JSON compilation database:

1 Generate a JSON compilation database file. For an example of how to generate this file, see
“Create Polyspace Options File from JSON Compilation Database”. The generated file is typically
named compile_commands.json.

If you use a JSON compilation database that was not generated on your local machine, make sure
that the paths listed in the file are accessible from the location where you run Polyspace as You
Code.

2 Pass the compilation database file to polyspace-configure. For instance:

polyspace-configure \
 -no-sources -allow-overwrite \
 -output-options-file path/To/buildOptions.txt \
 -merge-common-options \
-compilation-database otherPath/To/compile_commands.json

Polyspace extracts the build configuration information from the compilation database and generates
an options file. For more information about the polyspace-configure options, see polyspace-
configure

Use the generated options file in subsequent analyses of source files from your project. For instance:
polyspace-bug-finder-access -sources file.c -options-file path/To/buildOptions.txt

Update Generated Build Options File

If you make changes to your build configuration, for instance if you add a source file to your project
or workspace or rename an existing file, update the generated options file to reflect those changes.
Before you update the options file, make sure that your build completes successfully with the new
configuration.

To update the options file, rerun the command that you used to generate the file and specify the same
set of options you used.

If you extract your build information from a JSON compilation database file, regenerate the
compilation database before you update the build options file.

Specify Analysis Options Manually
Use this workflow if:

• You know the details of your build system and you want to specify the Polyspace analysis options
that emulate your build configuration in an options file. See “Options Files for Polyspace Analysis”
on page 12-5.

For a list of available analysis options, see “Complete List of Polyspace Bug Finder Analysis Engine
Options”.

• You reuse a Polyspace options file that you or someone else on your team has configured for your
build system.

If you reuse an options file that was not configured or generated on your local machine, make sure
that the paths listed in the file are accessible from the location where you run Polyspace as You
Code.

11 Configure Polyspace as You Code

11-42

If you make changes to your build configuration, edit the options file to reflect those changes. See
“Specify Target Environment and Compiler Behavior” on page 13-2.

Import Analysis Options from Polyspace Desktop Project
If you configure an analysis in the Polyspace desktop product, you can use the information from the
resulting Polyspace desktop PSPRJ file to configure your Polyspace as You Code analysis.

To import the analysis options from a Polyspace desktop PSPRJ file, use this command:
polyspace-checkers-selection -import-options-from-psprj pathToPsprjFile

The polyspace-checkers-selection binary is available under the polyspace/bin folder in
your Polyspace as You Code installation folder.

The pathToPsprjFile path is the full path of the PSPRJ file.

Polyspace generates an options file (analysis_options.txt) and an XML checkers activation file
on page 11-70 (checkers_activation_file.xml). The generated files are stored in the import
folder in the same location as the PSPRJ file.

Use the generated options file and checkers activation file in subsequent analyses of source files from
your project. For instance:
polyspace-bug-finder-access -sources file.c \
-options-file path/To/import/analysis_options.txt \
-checkers-activation-file path/To/import/checkers_activation_file.xml

If you make changes to your build configuration, edit the options file (analysis_options.txt) to
reflect those changes. See “Specify Target Environment and Compiler Behavior” on page 13-2.

See Also
polyspace-configure | polyspace-bug-finder-access

Related Examples
• “Options Files for Polyspace Analysis” on page 12-5
• “Configure Checkers for Polyspace as You Code at the Command Line” on page 11-70
• “Baseline Polyspace as You Code Results on Command Line” on page 11-56

 Generate Build Options for Polyspace as You Code Analysis at the Command Line

11-43

Baseline Polyspace as You Code Results in Visual Studio
For more efficient bug fixing, you can baseline the results of a Polyspace as You Code analysis with
previous results. When you baseline the results, you compare them against the results of a previous
run and focus on new results only or on unreviewed results only. You baseline Polyspace as You Code
results using previous Polyspace Bug Finder Server results that you download from Polyspace Access.

Note To keep using the most up-to-date baseline information, make sure that you periodically run the
command to download results from Polyspace Access. See “Step 3: Download Baseline” on page 11-
47.

What Baselined Results Look Like
If you baseline Polyspace as You Code results using Polyspace Bug Finder Server results that you
downloaded from Polyspace Access, you can see the following benefits:

• Results that have a justified Status on Polyspace Access (No Action Planned, Justified, or Not a
Defect) are no longer shown.

• Results that have a non-justified Status on Polyspace Access carry over all review information to
the Polyspace Results List pane in Visual Studio. If a result is reviewed in Polyspace Access and
marked as such, one of the following is true:

• The Status is different from Unreviewed.
• The Severity is different from Unset.
• The Comment is not blank.

11 Configure Polyspace as You Code

11-44

For instance, the fact that the Float division by zero defect has associated review information
indicates that the defect is also present in the baseline. In Polyspace Access, the defect has been
reviewed and assigned a Status of To fix.

You can also open the Polyspace Access project used as baseline in a web browser. In Visual
Studio, right-click the project on the Solution Explorer pane and select Show project in
Access.

• If you specify the Polyspace as You Code extension setting Show only new findings compared
to the results baseline, you see only results that are new in the current run. That way, you can
focus only on results that explicitly occurred because of the changes you made since the last
Polyspace Server run.

Baselining Steps
To use Polyspace Bug Finder Server results as baseline for a Polyspace as You Code analysis, follow
the steps below. Once a baseline is downloaded, if you choose to point to the baseline, each
subsequent run, whether on file save or on-demand, uses the baseline.

 Baseline Polyspace as You Code Results in Visual Studio

11-45

Step 1: Identify Project to Use as Baseline

First, identify a project in Polyspace Access that you want to use as baseline. The project must
contain results of a Polyspace Bug Finder Server analysis on files that you will analyze in Polyspace as
You Code.

Copy the path to the project for use in the Visual Studio Code extension settings. To copy this path:

1 Open the Polyspace Access web interface in a web browser.
2 On the Project Explorer pane, right-click the project and select Copy Project Path to

Clipboard.

Step 2: Refer to Project from Polyspace as You Code

Next, refer to the Polyspace Access project from the Polyspace as You Code extension settings in
Visual Studio.

1 Go to Tools > Options and select the Polyspace node.
2 Specify on the General node the Polyspace Access URL. This is the URL of the server that

hosts Polyspace Access. For instance, https://my-access-url:9443/.

3 Right-click the project on the Solution Explorer pane and select Polyspace properties.

Specify these settings on the Polyspace Access tab:

• Use baseline from Polyspace Access: Select this option to use the project on Polyspace
Access as baseline.

• Project path: The path to the project in Polyspace Access that you want to use as baseline.
You previously copied this path from the Polyspace Access web interface.

11 Configure Polyspace as You Code

11-46

• Show only new findings compared to the results baseline: Select this option to suppress
results that are already present in the project in Polyspace Access.

Step 3: Download Baseline

Explicitly download the Polyspace Access result to use as baseline.

1 The first time you configure this settings, click Download baseline from Polyspace Access to
download a baseline.

To download an updated baseline later, right-click the project on the Solution Explorer pane
and select Download baseline from Polyspace Access.

2 Enter the username and password that you use to log in to Polyspace Access. The baseline
download begins.

To follow the progress of download, select View > Output and from the dropdown on the top, select
Polyspace. Wait for the message:

Baseline downloaded successfully for Access project ProjectName

After download, subsequent runs use the baseline. To disable baseline usage, disable the extension
setting Use baseline from Polyspace Access.

See Also

More About
• “Configure Polyspace as You Code Extension in Visual Studio” on page 11-2
• “Run Polyspace as You Code in Visual Studio and Review Results” on page 29-2

 Baseline Polyspace as You Code Results in Visual Studio

11-47

Baseline Polyspace as You Code Results in Visual Studio Code
For more efficient bug fixing, you can baseline the results of a Polyspace as You Code analysis using
previous results. When you baseline the results, you compare them against the results of a previous
run and focus on new results only or on unreviewed results only. You baseline Polyspace as You Code
results using previous Polyspace Bug Finder Server results that you download from Polyspace Access.

Note To keep using the most up-to-date baseline information, make sure that you periodically run the
command to download results from Polyspace Access. See “Step 3: Download Baseline” on page 11-
51.

What Baselined Results Look Like
If you baseline Polyspace as You Code results using Polyspace Bug Finder Server results that you
downloaded from Polyspace Access, you can see the following benefits:

• Results that have a justified Status on Polyspace Access (No Action Planned, Justified, or Not a
Defect) are no longer shown.

• Results that have a non-justified Status on Polyspace Access carry over all review information to
the RESULT DETAILS view.

For instance, the Write without a further read defect below is also present in the baseline. In
Polyspace Access, the defect has been reviewed and assigned a Status of To investigate and a
Severity of Medium. This review information appears in the Comment from baseline section
in the RESULT DETAILS view. The word [baseline] also appears next to the result in the
PROBLEMS panel.

11 Configure Polyspace as You Code

11-48

If a Polyspace as You Code result also appears in the baseline, you can open the project that you
use as baseline in the Polyspace Access interface. Click in the BASELINE view. See “Open
Additional Polyspace Views” on page 29-7.

You can also open the project on Polyspace Access by running Polyspace: Open Project in
Access Web from the Command Palette.

• If you specify Show local findings only in the Baseline: Show Baseline Information
Polyspace as You Code extension setting, you see only results that are new in the current run. That
way, you can only focus on results that explicitly occurred because of the changes you made since
the last Polyspace Server run.

Baselining Steps
To use Polyspace Bug Finder Server results as baseline for a Polyspace as You Code analysis, follow
the steps below. Once a baseline is downloaded, if you choose to point to the baseline, each
subsequent run, whether on file save or on-demand, uses the baseline.

Step 1: Identify Project to Use as Baseline

First, identify a project in Polyspace Access that you want to use as baseline. The project must
contain results of a Polyspace Bug Finder Server analysis on files that you will analyze in Polyspace as
You Code.

Copy the path to the project for use in the Visual Studio Code extension settings. To copy this path:

1 Open the Polyspace Access web interface in a web browser.
2 On the Project Explorer pane, right-click the project and select Copy Project Path to

Clipboard.

 Baseline Polyspace as You Code Results in Visual Studio Code

11-49

Step 2: Refer to Project from Polyspace as You Code

Next, refer to the Polyspace Access project from the Polyspace as You Code extension settings in
Visual Studio Code.

1 Open the extension settings.

To open the baseline settings, press Ctrl + , (comma) and type polyspace.baseline in the
settings search bar.

2 Specify these settings on the User tab:

• Baseline: Polyspace Access Login: The username that you use to log in to Polyspace
Access.

• Baseline: Polyspace Access Url: The URL of the server that hosts Polyspace Access. For
instance, https://my-access-url:9443/.

11 Configure Polyspace as You Code

11-50

3 Specify these settings on the Workspace tab:

• Baseline: Project: The path to the project in Polyspace Access that you want to use as
baseline. You previously copied this path from the Polyspace Access web interface.

• Baseline: Show Baseline Information: Select an option from the dropdown.

• Show local findings only — Do not use the baseline.
• Show local findings and baseline info — After you download a baseline, findings

that are already justified in the baseline run are suppressed in the PROBLEMS panel.
• Show new findings only — After you download a baseline, findings that are already

present in the baseline run are suppressed in the PROBLEMS panel. Use this option to
focus on only new findings in your file.

Step 3: Download Baseline

Explicitly download the Polyspace Access result to use as baseline.

1 Click in the BASELINE view or open the command palette (Ctrl + Shift + P) and select
Polyspace: Download Baseline.

2 Enter the password that you use to log in to Polyspace Access. The baseline download begins.

You can view the progress of the download in the BASELINE view. See “Open Additional Polyspace
Views” on page 29-7.

After download, subsequent runs use the baseline. To disable baseline usage, select Show local
findings only in the Baseline: Show Baseline Information drop down menu.

 Baseline Polyspace as You Code Results in Visual Studio Code

11-51

See Also

More About
• “Configure Polyspace as You Code Extension in Visual Studio” on page 11-2
• “Run Polyspace as You Code in Visual Studio Code and Review Results” on page 29-6

11 Configure Polyspace as You Code

11-52

Baseline Polyspace as You Code Results in Eclipse
This topic describes how to configure the Polyspace as You Code plugin in Eclipse. For Polyspace
desktop products such as Polyspace Bug Finder, see “Bug Finder Analysis Based on Eclipse Projects”.

For more efficient bug fixing, you can baseline the results of a Polyspace as You Code analysis with
previous results. When you baseline the results, you compare them against the results of a previous
run and focus on new results only or on unreviewed results only. You baseline Polyspace as You Code
results using previous Polyspace Bug Finder Server results that you download from Polyspace Access.

Note To keep using the most up-to-date baseline information, make sure that you periodically run the
command to download results from Polyspace Access. See “Step 3: Download Baseline” on page 11-
55.

What Baselined Results Look Like
If you baseline Polyspace as You Code results using Polyspace Bug Finder Server results that you
downloaded from Polyspace Access, you can see the following benefits:

• Results that have a justified Status on Polyspace Access (No Action Planned, Justified, or Not a
Defect) are no longer shown.

• Results that have a non-justified Status on Polyspace Access carry over all review information to
the Polyspace Results List pane in Eclipse. If a result is reviewed in Polyspace Access and
marked as such, one of the following is true:

• The Status is different from Unreviewed.
• The Severity is different from Unset.

 Baseline Polyspace as You Code Results in Eclipse

11-53

• The Comment is not blank.
• If you specify the Polyspace as You Code plugin setting Show only new findings compared to

the results baseline, you see only results that are new in the current run. That way, you can only
focus on results that explicitly occurred because of the changes you made since the last Polyspace
Server run.

Baselining Steps
To use Polyspace Bug Finder Server results as baseline for a Polyspace as You Code analysis, follow
the steps below. Once a baseline is downloaded, if you choose to point to the baseline, each
subsequent run, whether on file save or on-demand, uses the baseline.

Step 1: Identify Project to Use as Baseline

First, identify a project in Polyspace Access that you want to use as baseline. The project must
contain results of a Polyspace Bug Finder Server analysis on files that you will analyze in Polyspace as
You Code.

Copy the path to the project for use in the Visual Studio Code extension settings. To copy this path:

1 Open the Polyspace Access web interface in a web browser.
2 On the Project Explorer pane, right-click the project and select Copy Project Path to

Clipboard.

Step 2: Refer to Project from Polyspace as You Code

Next, refer to the Polyspace Access project from the Polyspace as You Code plugin settings in Eclipse.

1 Go to Window > Preferences and select the Polyspace as You Code node.
2 On the Baseline node configure these settings:

• Show Baseline Information: Select an option from the dropdown.

• Show local findings only — Do not use the baseline.

11 Configure Polyspace as You Code

11-54

• Show local findings and baseline info — After you download a baseline, findings
that are already justified in the baseline run are suppressed in the Polyspace Problems
view.

• Show new findings only — After you download a baseline, findings that are already
present in the baseline run are suppressed in the Polyspace Problems view. Use this
option to focus on only new findings in your file.

• Polyspace Access URL: The URL of the server that hosts Polyspace Access. For instance,
https://my-access-url:9443/.

• Polyspace Access Login: The username that you use to log in to Polyspace Access.
• Project path: The path to the project in Polyspace Access that you want to use as baseline.

You previously copied this path from the Polyspace Access web interface.

Step 3: Download Baseline

Explicitly download the Polyspace Access result to use as baseline.

1 The first time you configure the plugin settings, click in the Baseline view of the Polyspace
as You Code perspective.

The plugin prompts you to enter your Polyspace Access password and you have the option to save
the password so that you don't need to enter it in subsequent downloads.

Click the same icon to download an updated baseline. The icon is available only if you configure
the plugin to use a baseline.

2 The plugin prompts you to enter your Polyspace Access password. You have the option to save
the password so that you don't need to enter it in subsequent downloads.

An indicator in the Baseline view shows the progress of the download. If there are issues with the
download, check the Console output.

After download, subsequent runs use the baseline. To disable baseline usage, set the Show Baseline
information setting to Show local findings only.

See Also

More About
• “Configure Polyspace as You Code Plugin in Eclipse” on page 11-19
• “Run Polyspace as You Code in Eclipse and Review Results” on page 29-15

 Baseline Polyspace as You Code Results in Eclipse

11-55

Baseline Polyspace as You Code Results on Command Line
For more efficient bug fixing, you can baseline the results of a Polyspace as You Code analysis with
previous results. When you baseline the results, you compare them against the results of a previous
run and focus on new results only or on unreviewed results only. You baseline Polyspace as You Code
results using previous Polyspace Bug Finder Server results that you download from Polyspace Access.

Note To keep using the most up-to-date baseline information, make sure that you periodically run the
command to download results from Polyspace Access. See “Step 2: Download Baseline” on page 11-
58.

What Baselined Results Look Like
The effect of baselining depends on whether you export results to the console or JSON format
(SARIF). For more details on the formats, see polyspace-results-export.

Console Output

Results that have a justified Status on Polyspace Access (No Action Planned, Justified, or Not a
Defect) are no longer shown in the console output.

JSON Output

In the following statements, obj represents the JSON object that is exported from the Polyspace
results.

• If a result is new and not already present in Polyspace Access, the corresponding property
obj.runs[0].results[n].baselineState is set to "new":

11 Configure Polyspace as You Code

11-56

"baselineState" : "new"

Otherwise, the property is set to "unchanged".
• Results carry over their review information (Status, Severity and additional notes) from

Polyspace Access to the corresponding properties in obj.runs[0].results[n].properties.

For instance, without a baseline, these properties are:

"severity" : "Unset",
"status" : "Unreviewed",
"comment" : ""

With a baseline, the severity can be different from "Unset", the status different from
"Unreviewed", and so on.

• Results that have a justified Status on Polyspace Access (No Action Planned, Justified, or Not a
Defect) appear with the property obj.runs[0].results[n].properties.justified set to
true:

"justified" : true

Baselining Steps
To use Polyspace Bug Finder Server results as baseline for a Polyspace as You Code analysis, follow
the steps below.

Step 1: Identify Project to Use as Baseline
First, identify a project in Polyspace Access that you want to use as baseline. The project must
contain results of a Polyspace Bug Finder Server analysis on files that you will analyze in Polyspace as
You Code.

Copy the path to the project that you want to use as baseline. To copy this path:

1 Open the Polyspace Access web interface in a web browser.
2 On the Project Explorer pane, right-click the project and select Copy Project Path to

Clipboard.

 Baseline Polyspace as You Code Results on Command Line

11-57

Step 2: Download Baseline
Next, download the baseline information from the Polyspace Access project. For instance, in a
terminal, enter the following:
polyspace-access -host hostname -download projectPath -output-folder-path downloadFolder

Here:

• hostname is the name of the Polyspace Access server.
• projectPath is the path to the project on Polyspace Access that is used as baseline. You copied

this name from the Polyspace Access web interface.
• downloadFolder is the folder to which you download the baseline information.

After download, the folder contains three databases: results (ps_results.psbf), source files
(ps_sources.db), and review information (ps_comments.db). You cannot open these results in the
Polyspace user interface or use them in any other way other than as baseline for Polyspace as You
Code runs.

The folder also contains a file ps_access_info.json that contains information about the Access
project and run ID that was used as baseline. If required, you can write a script to compare this run
ID with the latest run ID of the project on Polyspace Access and run this script at certain points in
your workflow to make sure that you are always using the latest run of the project as baseline.

Step 3: Use Baseline
Once the baseline download completes, import the downloaded baseline information into your current
analysis by using option -import-comments. In a terminal, enter the following:
#Linux command
polyspace-bug-finder-access -sources filename -import-comments downloadFolder \
-results-dir resultsFolder

#DOS command

polyspace-bug-finder-access.exe -sources filename -import-comments downloadFolder ^
-results-dir resultsFolder

Here:

• filename is the current file being analyzed.
• downloadFolder is the folder to which you previously downloaded the baseline information.
• resultsFolder is the folder for storing analysis results.

You can see the effects of using the baseline when you export the analysis results by using the
polyspace-results-export command. For instance:

polyspace-results-export -format console -results-dir resultsFolder

.See also “What Baselined Results Look Like” on page 11-56.

See Also
polyspace-bug-finder-access | polyspace-results-export

11 Configure Polyspace as You Code

11-58

More About
• “Run Polyspace as You Code from Command Line and Export Results” on page 29-21

 Baseline Polyspace as You Code Results on Command Line

11-59

Configure Checkers for Polyspace as You Code in Eclipse

In this section...
“Select Checkers and Coding Rules” on page 11-60
“Modify Checker Behavior” on page 11-62

This topic describes how to configure the Polyspace as You Code plugin in Eclipse. For Polyspace
desktop products such as Polyspace Bug Finder, see “Bug Finder Analysis Based on Eclipse Projects”.

You can check for various types of defects and coding rule violations by using Polyspace as You Code
in Eclipse. See Defects and Coding Standards. The default analysis checks for a subset of defects. See
“Polyspace Bug Finder Defects Checkers Enabled by Default” on page 18-65. To check for
nondefault defects and coding rule violations, configure Polyspace as You Code extension in your IDE.

To configure checkers, create a checkers file, and then specify the checkers file in the Configure
Project window. For equivalent workflows in the Polyspace desktop and server, see “Prepare Checkers
Configuration for Polyspace Bug Finder Analysis” on page 18-38.

Select Checkers and Coding Rules
To select coding rule checkers and nondefault defect checkers, click the Configure Checkers icon in
the Configuration View of the Polyspace as You Code perspective. Configure the checker selection
in the Configure Project window.

Create or Modify Checkers Configuration

Create a new selection or modify an existing selection of checkers and coding rules in the Checker
selection window. Save the new configuration in a reusable checkers file.

1 In the Configuration view of the Polyspace as You Code perspective, open the Checkers
selection window by clicking .

11 Configure Polyspace as You Code

11-60

2 To create a new selection, in the Checkers Selection window, select the defect and the coding
rule checkers that you want to activate. To modify an existing selection, click Browse, navigate
to the existing checkers file and then modify the checkers selection.

You can also select predefined categories of defect checkers such as All, Default, High,
Medium, and Low. See“Classification of Defects by Impact” on page 18-49. Similarly, you can
activate a predefined set of coding rules that are defined by their corresponding standards.

• When selecting Guidelines > Software Complexity checkers, review their thresholds. If the
default thresholds are not acceptable, specify a suitable threshold in the Threshold column.
See Check guidelines (-guidelines).

• When selecting Custom rules, review the Pattern and Convention for the rules. See Check
custom rules (-custom-rules).

• To create a custom coding standard classification, or to tag coding rule checkers of interest,
enter text in the Comment column of the Checkers selection window. Polyspace displays
that text in the Results Details pane and in the Detail column of the Results List (if

 Configure Checkers for Polyspace as You Code in Eclipse

11-61

available) when you review results in the desktop interface, in Polyspace Access, or in the
Polyspace as You Code plugins.

3 Save the selection as a reusable checkers XML file by clicking Save Changes. After you click
Finish, the path to the new checkers XML file is specified in the field Checkers file in the
Configure Project window.

Import Checkers Configuration from Desktop Project

You can import checkers and coding rule configuration from a Polyspace desktop project (*.psprj)
file. See “Import Analysis Options from Polyspace Desktop Project” on page 11-39.

Modify Checker Behavior
To modify the default behavior of Bug Finder defect checkers and coding rules, use analysis options.
For a list of analysis options that modify the default checker behavior, see “Modify Default Behavior of
Bug Finder Checkers” on page 18-3.

To specify analysis options in Polyspace as You Code:

• Append the analysis options in the options file specified in the field Analysis options file. An
options file is a text file with one analysis option for each line. For instance, to add the analysis
options -code-behavior-specifications and Effective boolean types (-boolean-
types), in the options file, append these lines:

-code-behavior-specifications file1
-boolean-types boolean1_t,boolean2_t

• If you do not have an option file, create an option file that contains the necessary options. Specify
the path to the new options file in the field Analysis options file. See “Options Files for Polyspace
Analysis” on page 12-5.

See Also

More About
• “Polyspace Bug Finder Defects Checkers Enabled by Default” on page 18-65
• “Options Files for Polyspace Analysis” on page 12-5
• “Checkers Deactivated in Polyspace as You Code Analysis” on page 11-78
• “Modify Default Behavior of Bug Finder Checkers” on page 18-3

11 Configure Polyspace as You Code

11-62

Configure Checkers for Polyspace as You Code in Visual Studio

In this section...
“Select Checkers and Coding Rules” on page 11-63
“Modify Checker Behavior” on page 11-65

You can check for various types of defects and coding rule violations by using Polyspace as You Code
in Visual Studio. See Defects and Coding Standards.The default analysis checks for a subset of
defects. See “Polyspace Bug Finder Defects Checkers Enabled by Default” on page 18-65. To check
for nondefault defects and coding rule violations, configure Polyspace as You Code extension in your
IDE.

To configure checkers, create a checkers file, and then specify the checkers file in the Options
window. For equivalent workflows in the Polyspace desktop and server, see “Prepare Checkers
Configuration for Polyspace Bug Finder Analysis” on page 18-38.

Select Checkers and Coding Rules
To select coding rule checkers and nondefault defect checkers, right-click the project on the Solution
Explorer pane and select Polyspace properties. Specify the checkers configuration on the Analysis
tab.

 Configure Checkers for Polyspace as You Code in Visual Studio

11-63

Create or Modify Checkers Configuration

Create a new selection or modify an existing selection of checkers and coding rules in the Checker
selection window. Save the new configuration in a reusable checkers file.

1
On the Analysis tab in the Polyspace properties window, click to open the Checkers
selection window.

2 To create a new selection, in the Checkers selection window, select the defect and the coding
rule checkers that you want to activate. To modify an existing selection, click Browse, navigate
to the existing checkers file and then modify the checkers selection.

You can also activate predefined categories of defect checkers such as All, Default, High,
Medium, and Low. See “Classification of Defects by Impact” on page 18-49. Similarly, you can
activate predefined set of coding rules that are defined by their corresponding standards.

11 Configure Polyspace as You Code

11-64

• When selecting Guidelines > Software Complexity checkers, review their thresholds. If the
default thresholds are not acceptable, specify a suitable threshold in the Threshold column.
See Check guidelines (-guidelines).

• When selecting Custom rules, review the Pattern and Convention for the rules. See Check
custom rules (-custom-rules).

• To create a custom coding standard classification, or to tag coding rule checkers of interest,
enter text in the Comment column of the Checkers selection window. Polyspace displays
that text in the Results Details pane and in the Detail column of the Results List (if
available) when you review results in the desktop interface, in Polyspace Access, or in the
Polyspace as You Code plugins.

3 Save the selection as a reusable checkers XML file by clicking Save Changes. After you click
Finish, the path to the new checkers XML file is specified in the field Checkers file on the
Analysis tab in the Polyspace properties window.

Import Checkers Configuration from Desktop Project

To import checkers and coding rule selection from a Polyspace desktop project (*.psprj) file, on the
Analysis tab in the Polyspace properties window, click Import options from Polyspace desktop
project (*.psprj). Browse to the folder containing the project file and specify the project file. The
checkers configuration in the desktop project is extracted as a checkers file, which is specified in the
field Checkers file. The analysis options of the desktop project are extracted as an options file which
is specified in the field Analysis options file.

Modify Checker Behavior
To modify the default behavior of Bug Finder defect checkers and coding rules, use analysis options.
For a list of analysis options that modify the default checker behavior, see “Modify Default Behavior of
Bug Finder Checkers” on page 18-3.

To specify analysis options in Polyspace as You Code:

• Append the analysis options in the options file specified in the field Analysis options file. An
options file is a text file with one analysis option for each line. For instance, to add the analysis
options -code-behavior-specifications and Effective boolean types (-boolean-
types), in the options file, append these lines:

-code-behavior-specifications file1
-boolean-types boolean1_t,boolean2_t

• If you do not have an option file, create an option file that contains the necessary options. Specify
the path to the new options file in the field Analysis options file. See “Options Files for Polyspace
Analysis” on page 12-5.

See Also

More About
• “Polyspace Bug Finder Defects Checkers Enabled by Default” on page 18-65
• “Options Files for Polyspace Analysis” on page 12-5
• “Checkers Deactivated in Polyspace as You Code Analysis” on page 11-78
• “Modify Default Behavior of Bug Finder Checkers” on page 18-3

 Configure Checkers for Polyspace as You Code in Visual Studio

11-65

Configure Checkers for Polyspace as You Code in Visual Studio
Code

In this section...
“Configure Checkers in Checkers File” on page 11-66
“Modify Checkers Behavior” on page 11-68

You can check for various types of defects and coding rule violations by using Polyspace as You Code
in Visual Studio Code. See Defects and Coding Standards. The default analysis checks for a subset of
defects. See “Polyspace Bug Finder Defects Checkers Enabled by Default” on page 18-65. To check
for nondefault defects and coding rule violations, configure Polyspace as You Code extension in your
IDE.

To configure checkers, create a checkers file, and then specify the checkers file in extension settings.
For equivalent workflows in the Polyspace desktop and server, see “Prepare Checkers Configuration
for Polyspace Bug Finder Analysis” on page 18-38.

Configure Checkers in Checkers File
To configure checkers, first select checkers in a checkers file. Then specify the checkers file in the
Settings pane.

Step 1: Select Checkers and Coding Rules

To enable nondefault defects and coding rules, you might:

• Create or modify a checkers file.
• Import a checkers selection from a Polyspace desktop project.

Create or Modify Checkers File

Create a new selection or modify an existing selection of checkers and coding rules in the Checker
selection window. Save the new configuration in a reusable checkers file. To use an existing checkers
file without modifying the checkers selection, specify a path to it in the Settings pane. See “Step
2:Specify Checkers File in Extension Settings” on page 11-68.

1 To open the Checkers selection user interface, in the command palette, run Polyspace:
Configure Checkers.

11 Configure Polyspace as You Code

11-66

2 To create a new selection, in the Checkers Selection window, select the defect and the coding
rule checkers that you want to activate. To modify an existing selection, click Browse, navigate
to the existing checkers file and then modify the checkers selection.

You can also activate predefined categories of defect checkers such as All, Default, High,
Medium, and Low. See “Classification of Defects by Impact” on page 18-49. Similarly, you can
activate predefined set of coding rules that are defined by their corresponding standards.

• When selecting Guidelines > Software Complexity checkers, review their thresholds. If the
default thresholds are not acceptable, specify a suitable threshold in the Threshold column.
See Check guidelines (-guidelines).

• When selecting Custom rules, review the Pattern and Convention for the rules. See Check
custom rules (-custom-rules).

• To create a custom coding standard classification, or to tag coding rule checkers of interest,
enter text in the Comment column of the Checkers selection window. Polyspace displays
that text in the Results Details pane and in the Detail column of the Results List (if

 Configure Checkers for Polyspace as You Code in Visual Studio Code

11-67

available) when you review results in the desktop interface, in Polyspace Access, or in the
Polyspace as You Code plugins.

3 Save the selection as a reusable checkers XML file by clicking Save Changes. You can later
reuse the checkers XML file as an input in the field Checkers file. Click Finish.

Import Checkers Configuration from desktop Project

If you have a Polyspace desktop project file (*.psprj), you can import checkers configuration from
it. In the Visual Studio Code terminal, run:
#Linux command
polyspace-checkers-selection -checkers-selection-output-file PathToOutputFile.json \
-import-options-from-psprj PathToProject.psprj

#DOS command

polyspace-checkers-selection.exe -checkers-selection-output-file PathToOutputFile.json ^
-import-options-from-psprj PathToProject.psprj

where PathToProject.psprj is the full path to the polyspace desktop project file and
PathToOutputFile.json is the full path to a JSON file. The JSON file must be in a writable folder.
The JSON file contains the location of the produced checkers file in this format:

 {
 "checkers-activation-file": "GeneratedCheckersActivationFile",
 "analysis-options-file": "GeneratedAnalysisOptionFile"
 }

The checkers file in GeneratedCheckersActivationFile contains the imported checker
configurations from the Polyspace desktop project file.

Step 2:Specify Checkers File in Extension Settings

After creating the checkers file, specify the path to it in the Settings pane:

• On the Side bar, click the Extensions button. The Extensions pane opens where your installed
extensions are listed.

•
Locate Polyspace as You Code in the Extensions pane. Click and select Extension Settings.

• In the Settings pane, specify the path to the checkers file in the field Checkers File.

Modify Checkers Behavior
To modify the default behavior of Bug Finder defect checkers and coding rules, use analysis options.
For a list of analysis options that modify the default checker behavior, see “Modify Default Behavior of
Bug Finder Checkers” on page 18-3.

To specify analysis options in Polyspace as You Code:

• Append the analysis options in the options file specified in the field Analysis options file. An
options file is a text file with one analysis option for each line. For instance, to add the analysis
options -code-behavior-specifications and Effective boolean types (-boolean-
types), in the options file, append these lines:

-code-behavior-specifications file1
-boolean-types boolean1_t,boolean2_t

11 Configure Polyspace as You Code

11-68

• If you do not have an option file, create an option file that contains the necessary options. Specify
the path to the new options file in the field Other Analysis Options. See “Options Files for
Polyspace Analysis” on page 12-5.

See Also

More About
• “Polyspace Bug Finder Defects Checkers Enabled by Default” on page 18-65
• “Options Files for Polyspace Analysis” on page 12-5
• “Checkers Deactivated in Polyspace as You Code Analysis” on page 11-78
• “Modify Default Behavior of Bug Finder Checkers” on page 18-3

 Configure Checkers for Polyspace as You Code in Visual Studio Code

11-69

Configure Checkers for Polyspace as You Code at the Command
Line

In this section...
“Configure Checkers and Coding Rules Directly at the Command Line” on page 11-70
“Configure Checkers in Checkers file” on page 11-71
“Modify Checkers Behavior” on page 11-73

If you use an unsupported IDE, you can check for various types of defects and coding rule violations
by using Polyspace as You Code at the command line. See Defects and Coding Standards. The default
analysis checks for a subset of defects. See “Polyspace Bug Finder Defects Checkers Enabled by
Default” on page 18-65. To check for other defects and coding rule violations, configure Polyspace as
You Code.

To configure checkers, create a checkers file and then specify the checkers file at the command line.
For equivalent workflows in the Polyspace desktop and server, see “Prepare Checkers Configuration
for Polyspace Bug Finder Analysis” on page 18-38.

Configure Checkers and Coding Rules Directly at the Command Line
When running Polyspace as You Code in an unsupported IDE, you can specify a selection of checkers
and coding rules by using these analysis options with appropriate values directly at the command
line:

• Find defects (-checkers)
• Check MISRA C:2004 (-misra2)
• Check MISRA C:2012 (-misra3)
• Check SEI CERT-C (-cert-c)
• Check ISO/IEC TS 17961 (-iso-17961)
• Check MISRA C++:2008 (-misra-cpp)
• Check SEI CERT-C++ (-cert-cpp)
• Check AUTOSAR C++ 14 (-autosar-cpp14)
• Check JSF AV C++ rules (-jsf-coding-rules)
• Check custom rules (-custom-rules)
• Check guidelines (-guidelines)
• Check CWE (-cwe)

For instance, to activate the performance checkers and MISRA C:2012 coding rule, in the command
line interface, run

polyspace-bug-finder-access -sources <source.c> -checkers performance -misra3 all

See the documentation of the analysis options for their command line syntax. To view the results, use
polyspace-results-export.

Specifying checkers and coding rule selection enables you to select predefined subsets of checkers
and coding rules. To select a customized subset of checkers and coding rules, configure checkers by
using a checker file.

11 Configure Polyspace as You Code

11-70

Configure Checkers in Checkers file
To configure checkers, first select checkers in a checkers file. Then specify the checkers file in the
Settings pane.

Step 1: Select Checkers and Coding Rule

To enable nondefault defects and coding rules, you might:

• Create or modify a checkers file.
• Import a checkers selection from a Polyspace desktop project.

Create or Modify Checkers Configuration

Create a new selection or modify an existing selection of checkers and coding rules in the Checker
selection window. Save the new configuration in a reusable checkers file. To use an existing checkers
file without modifying the checkers selection, specify it at the command line. See “Step 2: Specify
Checker File at the Command Line” on page 11-73.

1 To open the Checkers selection user interface, in the command line, run:

polyspace-checkers-selection

The Checkers Selection interface opens.

 Configure Checkers for Polyspace as You Code at the Command Line

11-71

2 To create a new selection, in the Checkers Selection window, select the defect and the coding
rule checkers that you want to activate. To modify an existing selection, click Browse, navigate
to the existing checkers file and then make your selection.

You can also activate predefined categories of defect checkers such as All, Default, High,
Medium, and Low. See “Classification of Defects by Impact” on page 18-49. Similarly, you can
activate predefined set of coding rules that are defined by their corresponding standards.

• When selecting Guidelines > Software Complexity checkers, review their thresholds. If the
default thresholds are not acceptable, specify a suitable threshold in the Threshold column.
See Check guidelines (-guidelines).

• When selecting Custom rules, review the Pattern and Convention for the rules. See Check
custom rules (-custom-rules).

• To create a custom coding standard classification, or to tag coding rule checkers of interest,
enter text in the Comment column of the Checkers selection window. Polyspace displays
that text in the Results Details pane and in the Detail column of the Results List (if

11 Configure Polyspace as You Code

11-72

available) when you review results in the desktop interface, in Polyspace Access, or in the
Polyspace as You Code plugins.

3 Save the selection as a reusable checkers XML file as CreatedCheckerFile.xml and then
Finish. You can later reuse CreatedCheckerFile.xml as a value to -checkers-
activation-file.

Import Checkers Configuration from Desktop Project

If you have a Polyspace desktop Project (*.psprj) file, you can import checker selection from it. At
the command line, run
#Linux command
polyspace-checkers-selection -checkers-selection-output-file PathToOutputFile.json \
-import-options-from-psprj PathToProject.psprj

#DOS command
polyspace-checkers-selection -checkers-selection-output-file PathToOutputFile.json ^
-import-options-from-psprj PathToProject.psprj

where PathToProject.psprj is the full path to the polyspace desktop project file and
PathToOutputFile.json is the full path to a JSON file. The JSON file must be in a writable folder.
The JSON file contains the location of the produced checkers file in this format:

 {
 "checkers-activation-file": "PathToCreatedCheckerFile",
 "analysis-options-file": "CreatedOptionsFile"
 }

The checkers file in PathToCreatedCheckerFile contains the checker configurations in the
Polyspace desktop project file.

Step 2: Specify Checker File at the Command Line

After you obtain the checkers file, specify its full path as an argument to -checkers-activation-
file. For instance:

#Linux command
polyspace-bug-finder-access -sources <source.c> \
-checkers-activation-file PathToCreatedCheckerFile

#DOS command

polyspace-bug-finder-access -sources <source.c> ^
-checkers-activation-file PathToCreatedCheckerFile

where PathToCreatedCheckerFile is the full path to the checkers file.

Modify Checkers Behavior
To modify the default behavior of Bug Finder defect checkers and coding rules, use analysis options.
For a list of analysis options that modify the default checker behavior, see “Modify Default Behavior of
Bug Finder Checkers” on page 18-3.

To specify analysis options in Polyspace as You Code:

• Use the options in the command line. For instance, to modify the trust boundary of your analysis,
in the command line, run:
#Linux Command
polyspace-bug-finder-access -sources <source.c> -checkers-activation-file CreatedCheckerFile\

 Configure Checkers for Polyspace as You Code at the Command Line

11-73

 -consider-analysis-perimeter-as-trust-boundary

#DOS command

polyspace-bug-finder-access -sources <source.c> -checkers-activation-file CreatedCheckerFile^
 -consider-analysis-perimeter-as-trust-boundary

You can specify multiple behavior modifying options in the command line.
• Append the analysis options in the options file specified in the field Analysis options file. An

options file is a text file with one analysis option for each line. For instance, to add the analysis
options -code-behavior-specifications and Effective boolean types (-boolean-
types), in the options file, append these lines:

-code-behavior-specifications file1
-boolean-types boolean1_t,boolean2_t

• If you do not have an existing options file, create an options file containing the necessary options.
See “Options Files for Polyspace Analysis” on page 12-5.

See Also

More About
• “Polyspace Bug Finder Defects Checkers Enabled by Default” on page 18-65
• “Options Files for Polyspace Analysis” on page 12-5
• “Checkers Deactivated in Polyspace as You Code Analysis” on page 11-78
• “Modify Default Behavior of Bug Finder Checkers” on page 18-3
• “Run Polyspace as You Code from Command Line and Export Results” on page 29-21

11 Configure Polyspace as You Code

11-74

Analysis Scope of Polyspace as You Code
Polyspace as You Code is a static code analysis software meant for regular use by C/C++ developers
within their Integrated Development Environments (IDEs). Polyspace as You Code can find bugs and
coding standard violations on the file that is currently active in the IDE.

This topic outlines the analysis scope of Polyspace as You Code and the benefits of using Polyspace
Bug Finder or Polyspace Bug Finder Server for full integration analysis.

Results Involve Current File Only
Polyspace as You Code is designed to provide results that are of immediate interest to developers. So
the tool only shows results in files that you are currently working on. After installing the Polyspace as
You Code extension, each time you open or save a file in your IDE, the analysis runs silently in the
background and highlights issues in the file.

All issues found originate within the source file itself and can also be fixed within this file. You can
either implement the fix at the highlighted location or another related location still within the current
file. For instance, the following integer division by zero result is shown with related events on
previous lines. You can implement a guard against division by zero just before the division or
implement some checks on inputs to the function where the division is performed.

Results that involve multiple files, for instance, declaration mismatch across files or data flow
between functions in different files, are not shown in the default Polyspace as You Code analysis. To
see complete integration results on your project, analyze your project with Polyspace Bug Finder on
your desktop or with Polyspace Bug Finder Server on a continuous integration (CI) server.

Some checkers that are not likely to find issues in a single-file analysis are completely disabled in
Polyspace as You Code. See “Checkers Deactivated in Polyspace as You Code Analysis” on page 11-
78.

Headers Included in Current File Not Analyzed
When you analyze a source file that #include-s a headers, that are in the same folder as the source
(or in subfolders), Polyspace also analyzes these headers and in the case of the Polyspace as You Code
extension in Visual Studio code, reports findings if it finds any. You can see which headers contain
findings in the HEADERS view of the extension. See “Open Additional Polyspace Views” on page 29-
7. All other header files are taken into account for compilation but not analyzed further.

 Analysis Scope of Polyspace as You Code

11-75

The reason for this default behavior is the following:

• Headers close to sources:

The underlying assumption is that headers in the source folders are more closely related to the
current source file and are therefore relevant for the analysis. A developer might want to fix issues
reported in these headers.

• Headers in non-source folders:

Headers in other folders typically come from third party libraries and are not analyzed.

You can change this default behavior using these options:

• Generate results for sources and (-generate-results-for): Use this option to
expand the scope of which headers must be analyzed.

• Do not generate results for (-do-not-generate-results-for): Use this option to
expand the scope of which headers must not be analyzed.

You can also see findings in header files by explicitly analyzing the headers.

11 Configure Polyspace as You Code

11-76

See Also

More About
• “Checkers Deactivated in Polyspace as You Code Analysis” on page 11-78

 Analysis Scope of Polyspace as You Code

11-77

Checkers Deactivated in Polyspace as You Code Analysis
Polyspace as You Code finds bugs and coding rule violations in the currently active file in your IDE. If
finding an issue requires multiple source files, the analysis cannot flag the issue by design. To help
you with the checkers selection strategy:

• Checkers that typically produce most results in a multi-file context are completely deactivated in
Polyspace as You Code.

• Some coding standard checkers cover both single and multi-file issues. These checkers are not
deactivated but have a reduced scope and show fewer issues in Polyspace as You Code compared
to a full integration analysis.

You can detect these multi-file issues by running an integration analysis on your project by using
Polyspace Bug Finder or Polyspace Bug Finder Server.

Checkers and Coding Rule Deactivated in Polyspace as You Code
Checkers corresponding to these issues are deactivated in a Polyspace as You Code analysis. Even if
you enable these checkers in your Polyspace as You Code IDE extension settings (or using the option
-checkers-activation-file), they are internally deactivated during analysis.

Deactivated Bug Finder Checkers

The Bug Finder checkers that are deactivated in the default Polyspace as You Code analysis include:

• Declaration mismatch
• Qualifier removed in conversion
• Typedef mismatch
• “Concurrency Defects”

Deactivated CERT C Rules

The CERT C coding rules that are deactivated in the default Polyspace as You Code analysis include:

• CERT C: Rule DCL40-C
• CERT C: Rec. DCL15-C

Deactivated Cert C++ Rules

The CERT C++ coding rules that are deactivated in the default Polyspace as You Code analysis
include:

• CERT C++: DCL40-C

Deactivated MISRA C:2004 and MISRA AC AGC Rules

The MISRA C:2004 and MISRA AC AGC coding rules that are deactivated in the default Polyspace as
You Code analysis include:

• MISRA C:2004 and MISRA AC AGC Rules 5.1, 5.4, 5.6, 8.4, 8.9, 8.10. See “Supported MISRA
C:2004 and MISRA AC AGC Rules” on page 17-9

11 Configure Polyspace as You Code

11-78

Deactivated MISRA C:2012 Rules

The MISRA C:2012 coding rules that are deactivated in the default Polyspace as You Code analysis
include:

• MISRA C:2012 Rule 2.3
• MISRA C:2012 Rule 2.4
• MISRA C:2012 Rule 2.5
• MISRA C:2012 Rule 5.1
• MISRA C:2012 Rule 5.6
• MISRA C:2012 Rule 5.8
• MISRA C:2012 Rule 5.9
• MISRA C:2012 Rule 8.3
• MISRA C:2012 Rule 8.6
• MISRA C:2012 Rule 8.7

Deactivated ISO/IEC TS 17961 Rules

The ISO/IEC TS 17961 coding rules that are deactivated in the default Polyspace as You Code analysis
include:

• ISO/IEC TS 17961 [funcdecl]

Deactivated MISRA C++:2008 Rules

The MISRA C++:2008 coding rules that are deactivated in the default Polyspace as You Code analysis
include:

• MISRA C++:2008 Rule 0-1-3
• MISRA C++:2008 Rule 2-10-5
• MISRA C++:2008 Rule 3-2-1
• MISRA C++:2008 Rule 3-2-2
• MISRA C++:2008 Rule 3-2-4
• MISRA C++:2008 Rule 15-4-1

Deactivated AUTOSAR C++14 Rules

The AUTOSAR C++14 coding rules that are deactivated in the default Polyspace as You Code analysis
include:

• AUTOSAR C++14 Rule M0-1-3
• AUTOSAR C++14 Rule M3-2-1
• AUTOSAR C++14 Rule M3-2-2
• AUTOSAR C++14 Rule M3-2-4

Deactivated JSF C++ Coding Rules

The JSF C++ coding rules that are deactivated in the default Polyspace as You Code analysis include:

 Checkers Deactivated in Polyspace as You Code Analysis

11-79

• JSF C++ Rule 46,137. See “Supported JSF C++ Coding Rules” on page 17-100.

Checkers with Reduced Scope in Polyspace as You Code
The checkers that finds fewer issues in the default Polyspace as You Code analysis are listed in the
table. The issues that are not found are related to multiple-file analysis.

Checker Behavior in the default Polyspace as You
Code Analysis

CERT C: Rule EXP37-C Does not check for “Function declaration
mismatch”.

CERT C++: EXP37-C Does not check for “Function declaration
mismatch”.

CERT C++: DCL60-CPP Does not check for “Nonidentical Definitions of
Function or Object Across Modules”.

CERT C: Rec. DCL19-C Does not check for “Function or object declared
without static specifier and referenced in only
one file”.

CERT C: Rec. DCL23-C Does not check for “External identifiers not
distinct”.

AUTOSAR C++14 Rule A0-1-3 Does not check for “Private Member Function
Not Used”.

ISO/IEC TS 17961 [argcomp] Does not check for “Conflicting declarations or
conflicting declaration and definition”.

See Also

More About
• “Analysis Scope of Polyspace as You Code” on page 11-75
• “Polyspace Bug Finder Defects Checkers Enabled by Default” on page 18-65

11 Configure Polyspace as You Code

11-80

Troubleshoot Failed Analysis or Unexpected Results in
Polyspace as You Code

Issue
After installing and configuring Polyspace as You Code in your IDE, you should see analysis results as
source code markers within a few seconds of starting the analysis (slightly longer for C++ files). If
you do not see results, it could mean that the analysis did not find any issue or the analysis failed to
complete or even failed to start.

If you run Polyspace as You Code on each save, some of the runs might fail because a file does not
compile yet. If you do not see results despite successful compilation, you might have to investigate
further and change the analysis options or extension settings. (Note that you can enable the checker
File does not compile so that you always see at least one result, even when the file does not
compile.)

Possible Solutions
If you do not see results, first confirm that the analysis reached completion. If the analysis completed
but did not find any issue, on the IDE pane that shows the full list of results, you see a status message
indicating completion. For instance, in Visual Studio, on the Polyspace Results List pane, you see
this message:

If the analysis failed to complete, you also see a status message indicating failure. For further
diagnosis, check the analysis log within the IDE. For instance, in Visual Studio, open the Output
pane, select Polyspace from the Show output from drop-down list, and check the messages. You
might have to scroll up a bit to see the root cause of the failure.

For more information on how to follow analysis progress in specific IDEs, see:

• “Run Polyspace as You Code in Visual Studio and Review Results” on page 29-2
• “Run Polyspace as You Code in Visual Studio Code and Review Results” on page 29-6
• “Run Polyspace as You Code in Eclipse and Review Results” on page 29-15

 Troubleshoot Failed Analysis or Unexpected Results in Polyspace as You Code

11-81

Check if Build Analysis is Outdated

The most common cause of an analysis failure is a compilation error. If a file compiles with your
compiler but fails with Polyspace, it means that the analysis requires more information to emulate
your compiler. In the most common scenario, the error indicates that you have to reanalyze your
build.

If you specify in your extension settings that the analysis must use options extracted from a build
command, a build task or a JSON compilation database, you must analyze your build command first
and then run Polyspace as You Code. The build analysis must run on a command or task that performs
a full build of your project or workspace and not an incremental build.

If you add a new file to your project or workspace but forget to rerun build analysis, you might see
compilation errors when trying to analyze the new file. The most common error is that include files
cannot be found. To fix the issue, simply rerun your build analysis and then run Polyspace as You
Code. For details, see “Analyzing Build in Polyspace as You Code”.

Check for Mistakes in Options File

If you specify an options file in your extension settings, the analysis appends options from this file to
the underlying run command. If an option is incorrectly written, for instance, refers to a nonexistent
file or uses an incorrect argument, the analysis can fail.

You can see all errors and warnings related to options in the analysis log. To see a more detailed log,
use the analysis option -no-quiet. You can enter this option in the same options file that contains
your other options. See “Options Files for Polyspace Analysis” on page 12-5.

Check for Incorrect Path to Analysis Engine

In Visual Studio Code, you can change the extension setting that points to the Polyspace installation
folder. If you enter an incorrect path in this setting, the Polyspace as You Code extension fails to start.
You see a message indicating that the internal server, Polyspace Connector, attempted to start and
then failed.

Check that the installation folder that you provided in your extension settings indeed contains a
Polyspace installation. The path must contain a subfolder polyspace\bin, that contains the
polyspace-bug-finder-access executable.

See Also

Related Examples
• “Run Polyspace as You Code in Visual Studio and Review Results” on page 29-2
• “Run Polyspace as You Code in Visual Studio Code and Review Results” on page 29-6
• “Run Polyspace as You Code in Eclipse and Review Results” on page 29-15
• “Run Polyspace as You Code from Command Line and Export Results” on page 29-21

11 Configure Polyspace as You Code

11-82

Configuration Workflows Common to
All Platforms

83

Configure Polyspace Analysis

• “Specify Polyspace Analysis Options” on page 12-2
• “Options Files for Polyspace Analysis” on page 12-5

12

Specify Polyspace Analysis Options
You can change the default options associated with a Polyspace analysis. For instance, you can:

• Change the set of defects that Bug Finder looks for.

See Find defects (-checkers -disable-checkers).
• Change the default behavior of run-time checkers in Code Prover.

See, for instance, Overflow mode for unsigned integer (-unsigned-integer-
overflows).

For the full list of analysis options, see “Complete List of Polyspace Bug Finder Analysis Engine
Options”.

Depending on how you run Polyspace, you can configure the analysis options accordingly.

Polyspace User Interface
In the Polyspace user interface, you create a project for the analysis. The project can have one or
more modules. Click the Configuration node in a module. On the Configuration pane, change
options as needed.

For more information, see the tooltip on each option. Click the More help link for context-sensitive
help on the options.

For more information, see “Run Analysis in Polyspace Desktop User Interface” on page 3-2.

Windows or Linux Scripts
Provide the options to the polyspace-bug-finder or polyspace-code-prover command. See
also:

12 Configure Polyspace Analysis

12-2

• polyspace-bug-finder
• polyspace-code-prover

For instance:

polyspace-code-prover -sources file_name \
 -main-generator main-generator-writes-variables all

You can also provide the options in a text file. See “Run Polyspace Analysis from Command Line” on
page 4-2.

MATLAB Scripts
Create a polyspace.Project object and set the options through the Configuration property of
the object. See also:

• polyspace.Project
• polyspace.Project.Configuration Properties

For instance:

proj = polyspace.Project;
proj.Configuration.CodingRulesCodeMetrics.EnableMisraC3 = true;
proj.Configuration.BugFinderAnalysis.EnableCheckers = false;

See also “Run Polyspace Analysis by Using MATLAB Scripts” on page 5-9.

Eclipse and Eclipse-based IDEs
Select Polyspace > Configure Project. Set the options in the Configuration window.

Some Target & Compiler options are automatically extracted from your Eclipse project. See “Run
Polyspace Analysis on Eclipse Projects” on page 10-2.

Simulink
In your Simulink model, specify the basic options through Simulink Configuration Parameters. On the
Apps tab, select Polyspace and then on the Polyspace tab, select Settings.

To navigate to Polyspace analysis options related to the generated code, on the Polyspace tab, see
Settings > Project Settings.

See:

• “Run Polyspace Analysis on Code Generated with Embedded Coder” on page 6-2
• “Configure Polyspace Options in Simulink” on page 6-53

MATLAB Coder App
In the MATLAB Coder app, after code generation, specify the basic options through the Polyspace
pane. From this window, you can navigate to the full set of Polyspace analysis options.

See:

 Specify Polyspace Analysis Options

12-3

• “Run Polyspace on C/C++ Code Generated from MATLAB Code” on page 7-2
• “Configure Advanced Polyspace Options in MATLAB Coder App” on page 7-7

12 Configure Polyspace Analysis

12-4

Options Files for Polyspace Analysis
To adapt the Polyspace analysis configuration to your development environment and requirements,
you have to modify the default configuration through command-line options such as -compiler.
Options files are a convenient way to collect multiple options together and reuse them across
projects.

What are Options Files
Options files are text files with one option per line. For instance, the content of an options file can
look like this:
Options for Polyspace analysis
Options apply to all projects in Controller module
-compiler visual16.x
-D _WIN32
-code-behavior-specifications "Z:\utils\polyspace\forbiddenfunctions.xml"

The lines starting with # represent comments for better readability. These lines are ignored during
analysis.

Specifying Options Files
Depending on the platform where you run analysis, you can specify an options file in one of the
following ways.

Command Line

At the command line (and in scripts), specify an options file as argument to the option -options-
file.

For instance, instead of the command:

polyspace-bug-finder -sources file.c -compiler visual16.x -D _WIN32
 -code-behavior-specifications "Z:\utils\polyspace\forbiddenfunctions.xml"

Save this content:

-compiler visual16.x
-D _WIN32
-code-behavior-specifications "Z:\utils\polyspace\forbiddenfunctions.xml"

In a file options.txt in the path Z:\utils\polyspace\ and shorten the command to:

polyspace-bug-finder -sources file.c -options-file "Z:\utils\polyspace\options.txt"

You can use options files with these Polyspace commands:

• polyspace-bug-finder
• polyspace-bug-finder-server
• polyspace-bug-finder-access
• polyspace-code-prover
• polyspace-code-prover-server

 Options Files for Polyspace Analysis

12-5

IDEs

If you run Polyspace as You Code using IDE extensions, you typically specify three groups of options
differently:

Options Group Extension Settings
Build options: You can
extract build options from
existing artifacts such as
build commands and JSON
compilation database.

You can also collect all build
options in an options file
and specify the option file
path in the appropriate
extension setting.

• Visual Studio Code — Analysis Options > Manual Setup > Build
Setting : Polyspace Build Options File

• Visual Studio — Get from Polyspace build options file (in section
Build Configuration)

• Eclipse — Get from Polyspace build options file (in section
Build Configuration)

Checkers: You can select
checkers using a checkers
selection wizard.

See “Setting Checkers in Polyspace as You Code”.

Other remaining options: All
remaining options can be
collected in a second
options file that goes into
the appropriate extension
setting.

• Visual Studio Code — Analysis Options > Manual Setup: Other
Analysis Options

• Visual Studio — Analysis configuration > Analysis options file
• Eclipse — Analysis options file

If you use options files both for build options and other options, the result is the same as specifying a
single options file with the other options appended to the build options. See also “Specifying Multiple
Options Files” on page 12-6.

For more information on IDE extensions, see:

• “Configure Polyspace as You Code Extension in Visual Studio” on page 11-2
• “Configure Polyspace as You Code Extension in Visual Studio Code” on page 11-8
• “Configure Polyspace as You Code Plugin in Eclipse” on page 11-19

Polyspace User Interface

In the user interface of the Polyspace desktop products, you typically do not require an options file.
Most options can be specified on the Configuration pane in the Polyspace user interface.

However, some options are available only at the command line and do not have a counterpart in the
user interface. If you have to specify multiple command-line-only options, you can collect them in an
options file, for instance commandLineStyleOptions.txt. On the Configuration pane, under the
Advanced Settings node, specify the absolute path of the options file in the Other field:

-options-file C:\psconfig\commandLineStyleOptions.txt

Specifying Multiple Options Files
You can specify multiple options files in an analysis. For instance, at the command line, you can enter:

12 Configure Polyspace Analysis

12-6

polyspace-bug-finder -sources file.c -options-file opts1.txt -options-file opts2.txt

When you specify multiple options files in an analysis, all options from the options files are appended
to the analysis command. For instance, the preceding command has the same effect as using a single
options file that places the content of opts1.txt above opts2.txt.

If an option appears in multiple files with conflicting arguments, the argument in the last options file
prevails. For instance, in the preceding command, if opts1.txt contains:

-checkers all
-misra3 all

And opts2.txt contains:

-misra3 single-unit-rules

The analysis uses only the argument single-unit-rules for the option -misra3.

You can use this stacking of options files to override options. For instance, suppose you use a read-
only options file that applies to your entire team but want to override some of the options in the file.
You can override the options by using a second options file that you create and specifying your
options file after the team-wide options file.

You can also specify the option -options-file within an options file and aggregate several options
files in this way.

See Also
-options-file

Related Examples
• “Run Polyspace Analysis from Command Line” on page 4-2
• “Run Polyspace Bug Finder on Server and Upload Results to Web Interface”
• “Run Polyspace as You Code from Command Line and Export Results” on page 29-21
• “Complete List of Polyspace Bug Finder Analysis Engine Options”

 Options Files for Polyspace Analysis

12-7

Configure Target and Compiler Options

13

Specify Target Environment and Compiler Behavior
Before verification, specify your source code language (C or C++), target processor, and the compiler
that you use for building your code. In certain cases, to emulate your compiler behavior, you might
have to specify additional options.

Using your specification, the verification determines the sizes of fundamental types, considers certain
macros as defined, and interprets compiler-specific extensions of the Standard. If the options do not
correspond to your run-time environment, you can encounter:

• Compilation errors
• Verification results that might not apply to your target

If you use a build command such as gmake to build your code and the build command meets certain
restrictions, you can extract the options from the build command after executing the command.
Otherwise, specify the options explicitly.

Extract Options from Build Command
If you use build automation scripts to build your source code, you can set up a Polyspace project from
your scripts. The options associated with your compiler are specified in that project.

In the Polyspace desktop products, for information on how to trace your build command from the:

• Polyspace user interface, see “Add Source Files for Analysis in Polyspace Desktop User Interface”
on page 2-2.

• DOS or UNIX command line, see polyspace-configure.

13 Configure Target and Compiler Options

13-2

• MATLAB command line, see polyspaceConfigure.

In the Polyspace server products, for information on how to trace your build command, see “Create
Polyspace Analysis Configuration from Build Command (Makefile)” on page 13-22.

For Polyspace project creation, your build automation script (makefile) must meet certain
requirements. See “Requirements for Project Creation from Build Systems” on page 13-24.

Specify Options Explicitly
If you cannot trace your build command and therefore manually create a project, you have to specify
the options explicitly.

• In the user interface of the Polyspace desktop products, select a project configuration. On the
Configuration pane, select Target & Compiler. Specify the options.

• At the DOS or UNIX command line, specify flags with the polyspace-bug-finder, polyspace-
code-prover, polyspace-bug-finder-server or polyspace-code-prover-server
command.

• At the MATLAB command line, specify arguments with the polyspaceBugFinder,
polyspaceCodeProver, polyspaceBugFinderServer or polyspaceCodeProverServer
function.

Specify the options in this order.

• Required options:

• Source code language (-lang): If all files have the same extension .c or .cpp, the
verification uses the extension to determine the source code language. Otherwise, explicitly
specify the option.

• Compiler (-compiler): Select the compiler that you use for building your source code. If
you cannot find your compiler, use an option that closely matches your compiler.

• Target processor type (-target): Specify the target processor on which you intend to
execute your code. For some processors, you can change the default specifications. For
instance, for the processor hc08, you can change the size of types double and long double
from 32 to 64 bits.

If you cannot find your target processor, you can create your own target and specify the sizes
of fundamental types, default signedness of char, and endianness of the target machine. See
Generic target options.

• Language-specific options:

• C standard version (-c-version): The default C language standard depends on your
compiler specification. If you do not specify a compiler explicitly, the default analysis uses the
C99 standard. Specify an earlier standard such as C90 or a later standard such as C11.

• C++ standard version (-cpp-version): The default C++ language standard depends on
your compiler specification. If you do not specify a compiler explicitly, the default analysis uses
the C++03 standard. Specify later standards such as C++11 or C++14.

• Compiler-specific options:

Whether these options are available or not depends on your specification for Compiler (-
compiler). For instance, if you select a visual compiler, the option Pack alignment value

 Specify Target Environment and Compiler Behavior

13-3

(-pack-alignment-value) is available. Using the option, you emulate the compiler option /Zp
that you use in Visual Studio.

For all compiler-specific options, see “Target and Compiler”.
• Advanced options:

Using these options, you can modify the verification results. For instance, if you use the option
Division round down (-div-round-down), the verification considers that quotients from
division or modulus of negative numbers are rounded down. Use these options only if you use
similar options when compiling your code.

For all advanced options, see “Target and Compiler”.
• Compiler header files:

If you specify the diab, tasking or greenhills compiler, you must specify the path to your
compiler header files. See “Provide Standard Library Headers for Polyspace Analysis” on page 13-
20.

If you still see compilation errors after running analysis, you might have to specify other options:

• Define macros: Sometimes, a compilation error occurs because the analysis considers a macro as
undefined. Explicitly define these macros. See Preprocessor definitions (-D).

• Specify include files: Sometimes, a compilation error occurs because your compiler defines
standard library functions differently from Polyspace and you do not provide your compiler include
files. Explicitly specify the path to your compiler include files. See “Provide Standard Library
Headers for Polyspace Analysis” on page 13-20.

See Also
Source code language (-lang) | Compiler (-compiler) | Target processor type (-
target) | C standard version (-c-version) | C++ standard version (-cpp-version) |
Preprocessor definitions (-D)

More About
• “C/C++ Language Standard Used in Polyspace Analysis” on page 13-5
• “Provide Standard Library Headers for Polyspace Analysis” on page 13-20

13 Configure Target and Compiler Options

13-4

C/C++ Language Standard Used in Polyspace Analysis
The Polyspace analysis adheres to a specific language standard for code compilation. The language
standard, along with your compiler specification, defines the language elements that you can use in
your code. For instance, if the Polyspace analysis uses the C99 standard, C11 features such as use of
the thread support library from threads.h causes compilation errors.

Supported Language Standards
The Polyspace analysis supports these standards:

• C: C90, C99, C11, C17

The default standard depends on your compiler specification. If you do not specify a compiler
explicitly, the default analysis uses the C99 standard. To change the language standard, use the
option C standard version (-c-version).

• C++: C++03, C++11, C++14

The default standard depends on your compiler specification. If you do not specify a compiler
explicitly, the default analysis uses the C++03 standard. To change the language standard, use the
option C++ standard version (-cpp-version).

Default Language Standard
The default language standard depends on your specification for the option Compiler (-
compiler).

GCC compilers

Compiler C Standard C++ Standard
gnu3.4, gnu4.6, gnu4.7,
gnu4.8, gnu4.9

C99 C++03

gnu5.x C11 C++03
gnu6.x C11 C++14
gnu7.x C11 C++14
gnu8.x C17 C++14
gnu9.x C17 C++14
gnu10.x C17 C++14
gnu11.x C17 C++17
gnu12.x C17 C++17

 C/C++ Language Standard Used in Polyspace Analysis

13-5

Clang compilers

Compiler C Standard C++ Standard
clang3.x C99 C++03

The analysis accepts some C+
+11 extensions.

clang4.x C99 C++03

The analysis accepts C++14
extensions.

clang5.x C99 C++03

The analysis accepts C++14
extensions.

clang6.x C99 C++14
clang7.x C99 C++14
clang8.x C99 C++14
clang9.x C99 C++14
clang10.x C99 C++14
clang11.x C17 C++14
clang12.x C17 C++14
clang13.x C17 C++14

Visual Studio compilers

Compiler C Standard C++ Standard
visual9.0

visual10.0

visual11.0

visual12.0

C99 C++03

visual14.0 C99 C++14
visual15.x C99 C++14
visual16.x C99 C++14

Other Compilers

Compiler C Standard C++ Standard
armcc C99 C++03
armclang C11 C++03
codewarrior C99 C++03
cosmic C99 Not supported

13 Configure Target and Compiler Options

13-6

Compiler C Standard C++ Standard
diab C99 C++03
generic C99 C++03
greenhills C99 C++03
iar C99 C++03
iar-ew C99 C++03
intel C11 C++14
keil C99 C++03
microchip C99 Not supported
renesas C99 C++03
tasking C99 C++03
ti C99 C++03

See Also
Compiler (-compiler) | C standard version (-c-version) | C++ standard version (-
cpp-version)

More About
• “C11 Language Elements Supported in Polyspace” on page 13-8
• “C++11 Language Elements Supported in Polyspace” on page 13-10
• “C++14 Language Elements Supported in Polyspace” on page 13-13
• “C++17 Language Elements Supported in Polyspace” on page 13-16

 C/C++ Language Standard Used in Polyspace Analysis

13-7

C11 Language Elements Supported in Polyspace
This table provides a partial list of C language elements that have been introduced since C11 and the
corresponding Polyspace support. If your code contains non-supported constructions, Polyspace
reports a compilation error.

C11 Language Element Supported
alignas and alignof convenience macros Yes
aligned_alloc function Yes
noreturn convenience macros Yes
Generic selection Yes
Thread support library (threads.h) Yes
Atomic operations library (stdatomic.h) Yes
Atomic types with _Atomic Yes.

If you use the Clang compiler, see limitations
book for limitations on atomic data types. See
“Limitations of Polyspace Verification” (Polyspace
Code Prover).

UTF-16 and UTF-32 character utilities Yes
Bound-checking interfaces or alternative versions
of standard library functions that check for buffer
overflows (Annex K of C11)

For instance, strcpy_s is an alternative to
strcpy that checks for certain errors in the
string copy.

No.

Polyspace checks for certain run-time errors in
use of standard library functions. The checking
does not extend to these alternatives.

Anonymous structures and unions Yes
Static assert declaration Yes
Features related to error handling such as
errno_t and rsize_t typedef-s

No.

If you see compilation errors from use of these
typedef-s, explicitly specify the path to your
compiler headers. See “Provide Standard Library
Headers for Polyspace Analysis” on page 13-20.

quick_exit and at_quick_exit Yes.

In Bug Finder, functions registered with
at_quick_exit appear as uncalled.

CMPLX, CMPLXF and CMPLXL macros Yes

See Also
C standard version (-c-version)

13 Configure Target and Compiler Options

13-8

More About
• “C/C++ Language Standard Used in Polyspace Analysis” on page 13-5

 C11 Language Elements Supported in Polyspace

13-9

C++11 Language Elements Supported in Polyspace
This table provides a partial list of C++ language elements that have been introduced since C++11
and its corresponding Polyspace support. If your code contains nonsupported constructions,
Polyspace reports a compilation error.

C++11 Std Ref Description Supported
C++2011-DR226 Default template arguments for function templates Yes
C++2011-DR339 Solving the SFINAE problem for expressions Yes
C++2011-N1610 Initialization of class objects by rvalues Yes
C++2011-N1653 C99 preprocessor Yes
C++2011-N1720 Static assertions Yes
C++2011-N1737 Multi-declarator auto Yes
C++2011-N1757 Right angle brackets Yes
C++2011-N1791 Extended friend declarations No
C++2011-N1811 long long Yes
C++2011-N1984 auto-typed variables Yes
C++2011-N1986 Delegating constructors Yes
C++2011-N1987 Extern templates Yes
C++2011-N1988 Extended integral types Yes
C++2011-N2118 Rvalue references Yes
C++2011-N2170 Universal character name literals Yes
C++2011-N2179 Concurrency: Propagating exceptions No
C++2011-N2235 Generalized constant expressions Yes
C++2011-N2239 Concurrency: Sequence points No new syntax/

keyword is
introduced and
therefore does not
affect Polyspace
support for C++11.

C++2011-N2242 Variadic templates Yes
C++2011-N2249 New character types Yes
C++2011-N2253 Extending sizeof Yes
C++2011-N2258 Template aliases Yes
C++2011-N2340 __func__ predefined identifier Yes
C++2011-N2341 Alignment support Yes
C++2011-N2342 Standard Layout Types Yes
C++2011-N2343 Declared type of an expression Yes
C++2011-N2346 Defaulted and deleted functions Yes
C++2011-N2347 Strongly typed enums Yes

13 Configure Target and Compiler Options

13-10

C++11 Std Ref Description Supported
C++2011-N2427 Concurrency: Atomic operations No
C++2011-N2429 Concurrency: Memory model No new syntax/

keyword is
introduced and
therefore does not
affect Polyspace
support for C++11.

C++2011-N2431 Null pointer constant Yes
C++2011-N2437 Explicit conversion operators Yes
C++2011-N2439 Rvalue references for *this Yes
C++2011-N2440 Concurrency: Abandoning a process and at_quick_exit Yes
C++2011-N2442 Unicode string literals Yes
C++2011-N2442 Raw string literals Yes
C++2011-N2535 Inline namespaces Yes
C++2011-N2540 Inheriting constructors Yes
C++2011-N2541 New function declarator syntax Yes
C++2011-N2544 Unrestricted unions Yes
C++2011-N2546 Removal of auto as a storage-class specifier Yes
C++2011-N2547 Concurrency: Allow atomics use in signal handlers No
C++2011-N2555 Extending variadic template template parameters Yes
C++2011-N2657 Local and unnamed types as template arguments Yes
C++2011-N2659 Concurrency: Thread-local storage No
C++2011-N2660 Concurrency: Dynamic initialization and destruction with

concurrency
Yes

C++2011-N2664 Concurrency: Data-dependency ordering: atomics and
memory model

No

C++2011-N2672 Initializer lists Yes
C++2011-N2748 Concurrency: Strong Compare and Exchange No
C++2011-N2752 Concurrency: Bidirectional Fences No
C++2011-N2756 Nonstatic data member initializers Yes
C++2011-N2761 Generalized attributes Yes
C++2011-N2764 Forward declarations for enums Yes
C++2011-N2765 User-defined literals Yes
C++2011-N2927 New wording for C++0x lambdas Yes
C++2011-N2928 Explicit virtual overrides Yes
C++2011-N2930 Range-based for Yes
C++2011-N3050 Allowing move constructors to throw [noexcept] Yes
C++2011-N3053 Defining move special member functions Yes

 C++11 Language Elements Supported in Polyspace

13-11

C++11 Std Ref Description Supported
C++2011-N3276 decltype and call expressions Yes

See Also
C++ standard version (-cpp-version)

More About
• “C/C++ Language Standard Used in Polyspace Analysis” on page 13-5
• “C++14 Language Elements Supported in Polyspace” on page 13-13
• “C++17 Language Elements Supported in Polyspace” on page 13-16

13 Configure Target and Compiler Options

13-12

C++14 Language Elements Supported in Polyspace
This table provides a partial list of C++ language elements that have been introduced since C++14
and its corresponding Polyspace support. If your code contains nonsupported constructions,
Polyspace reports a compilation error.

C++14 Std Ref Description Supported
C++2014-N3323 Implicit conversion from class

type in certain contexts such as
delete or switch statement.

This C++14 feature allows
implicit conversion from class
type in certain contexts. No new
syntax/keyword is introduced
and therefore does not affect
Polyspace support for C++14.

C++2014-N3462 More SFINAE-friendly
std::result_of

Yes

C++2014-N3472 Binary literals, for instance,
0b100.

Yes

C++2014-N3545 operator() in
integral_constant template
of constexpr type

Yes

C++2014-N3637 Relation between std::async
and destructor of std::future

No new syntax/keyword is
introduced and therefore does
not affect Polyspace support for
C++14.

C++2014-N3638 Automatic deduction of return
type for functions where an
explicit return type is not
specified

Yes.

In some cases, Code Prover can
show compilation errors.

C++2014-N3642 Suffixes for user-defined literals
indicating time (h, min, s, ms,
us, ns) and strings (s)

Yes

C++2014-N3648 Initialization of captured
members in lambda functions

Yes.

In some cases, during
initialization, Code Prover can
call the corresponding
constructors more number of
times than necessary.

C++2014-N3649 Generic (polymorphic) lambda
expressions:

• Using auto type-specifier for
parameter and return type

• Conversion of generic
capture-less lambda
expressions to pointer-to-
function.

Yes

 C++14 Language Elements Supported in Polyspace

13-13

C++14 Std Ref Description Supported
C++2014-N3651 Variable templates Yes
C++2014-N3652 Declarations, conditions and

loops in constexpr functions.
Yes

C++2014-N3653 Initialization of aggregate
classes with fewer initializers
than members

For instance, this initialization
has fewer initializers than
members. The member c is
initialized with the value 0 and d
is initialized with the value s.
struct S {
 int a;
 const char* b;
 int c;
 int d = b[a];};
S ss = { 1, "asdf" };

Yes

C++2014-N3654 std::quoted Yes
C++2014-N3656 std::make_unique Yes
C++2014-N3658 std::integer_sequence Yes
C++2014-N3658 std::shared_lock No.

The use of std::shared_lock
does not cause compilation
errors but the construct is not
semantically supported.

C++2014-N3664 Calling new and delete
operators in batches.

This C++14 feature clarifies
how successive calls to the new
operator are implemented. No
new syntax/keyword is
introduced and therefore does
not affect Polyspace support for
C++14.

C++2014-N3668 std::exchange Partially supported.
C++2014-N3670 Using std::get with a data

type to get one element in an
std::tuple (provided there is
only one element of the type in
the tuple)

Yes

C++2014-N3671 Overloads for std::equal,
std::mismatch and
std::is_permutation
function templates that accept
two separate ranges

Yes

C++2014-N3733 Removal of std::gets from
<cstdio>

Yes

13 Configure Target and Compiler Options

13-14

C++14 Std Ref Description Supported
C++2014-N3776 Wording change for destructor

of std::future
No new syntax/keyword is
introduced and therefore does
not affect Polyspace support for
C++14.

C++2014-N3779 std::complex literals
representing pure imaginary
numbers with suffix i, if or il

Yes

C++2014-N3781 Use of single quotation mark as
digit separator, for instance,
1'000.

Yes

C++2014-N3786 Prohibiting "out of thin air'
results in C++14

No new syntax/keyword is
introduced and therefore does
not affect Polyspace support for
C++14.

C++2014-N3910 Synchronizing behavior of signal
handlers

No new syntax/keyword is
introduced and therefore does
not affect Polyspace support for
C++14.

C++2014-N3924 Discouraging use of rand() No new syntax/keyword is
introduced and therefore does
not affect Polyspace support for
C++14.

C++2014-N3927 Lock-free executions No new syntax/keyword is
introduced and therefore does
not affect Polyspace support for
C++14.

See Also
C++ standard version (-cpp-version)

More About
• “C/C++ Language Standard Used in Polyspace Analysis” on page 13-5
• “C++11 Language Elements Supported in Polyspace” on page 13-10
• “C++17 Language Elements Supported in Polyspace” on page 13-16

 C++14 Language Elements Supported in Polyspace

13-15

C++17 Language Elements Supported in Polyspace
This table provides a partial list of C++ language elements that have been introduced since C++17
and its corresponding Polyspace support. If your code contains nonsupported constructions,
Polyspace reports a compilation error.

C++17 Std Ref Description Supported
C++2017-N3921 std::string-view: Observe the content of an

std::string object without owning the resource
Yes

C++2017-N3922 • When used in copy-list-initialization, auto
deduces the type to be an
std::initializer_list if the elements of the
initializer list have an identical type. Otherwise,
the auto deduction is ill-formed.

• When using direct list-initialization with a braced
initializer list containing a single element, auto
deduces the type from that element.

• When using direct list-initialization with a braced
initializer list containing more than a single
element, auto deduction of type is ill-formed.

Yes

C++2017-N3928 The static_assert declaration no longer requires
a second argument. Invoking static_assert with
no message is now allowed: static_assert(N >
0);

Yes

C++2017-N4051 C++ has templates that are not class templates,
such as a template that takes templates as an
argument. Previously, declaring such template-
template parameters required the use of the class
keyword. In C++17, you can use typename when
declaring template-template parameters , such as:

template <template <typename> typename Tmpl> struct X;

Yes

C++2017-N4086 Starting in C++17, trigraphs are no longer
supported.

No

C++2017-N4230 Starting in C++17, use a qualified name in a
namespace definition to define several nested
namespaces at once. For instance, these code
snippets are equivalent:

• namespace base::derived{
//..
}

• namespace {
 namespace derived{
 //...
 }
}

Yes

13 Configure Target and Compiler Options

13-16

C++17 Std Ref Description Supported
C++2017-N4259 The function std::uncaught_exceptions is

introduced in C++17, which returns the number of
exceptions in your code that are not handled. The
function std:uncaught_exception, which returns
a Boolean value, is deprecated.

Yes

C++2017-N4266 Starting in C++17, namespaces and enumerators
can be annotated with attributes to allows clearer
communication of developer intention.

Yes

C++2017-N4267 Starting in C++17, the prefix u8 is supported. This
prefix creates a UTF-8 character literal. The value of
the UTF-8 character literal is equal to its ISO 10646
code point value if the code point value is in the C0
Controls and Basic Latin Unicode block.

Yes

C++2017-N4268 Allow constant evaluation of nontype template
arguments.

Yes

C++2017-N4295 Allow fold expressions Yes
C++2017-N4508 Allow untimed std::shared_mutex The use of

std::shared_mutex does
not cause a compilation
error. Polyspace does not
support sharing mutex
objects by using
std::shared_mutex.

C++2017-
P0001R1

Remove the use of the register keyword Yes

C++2017-
P0002R1

Remove operator++(bool) Yes

C++2017-
P0003R5

Remove deprecated exception specifications by
using throw(<>)

Bug Finder removes the
exception specification
specified by using throw()
statements. Code Prover
raises a compilation error
when throw() statements
are present in C++17 code.

C++2017-
P0012R1

Make exception specifications part of the type
system

Yes

C++2017-
P0017R1

Aggregate initialization of classes with base classes Yes

C++2017-
P0018R3

Allow capturing the pointer *this in Lambda
expressions

Yes

C++2017-
P0024R2

Standardization of the C++ technical specification
for Extension for Parallelism

Polyspace supports this
feature when you use the
Visual 15.x and Intel C++
18.0 compilers.

 C++17 Language Elements Supported in Polyspace

13-17

C++17 Std Ref Description Supported
C++2017-
P002842

Using attribute namespaces without repetition Yes

C++2017-
P0035R4

Dynamic memory allocation for over-aligned data Yes

C++2017-
P0036R0

Unary fold expressions and empty parameter packs Yes

C++2017-
P0061R1

Use of __has_include in preprocessor conditionals Yes

C++2017-
P0067R5

Elementary string conversions No

C++2017-
P0083R3

Splicing maps and sets Polyspace supports this
feature when the compiler
you use also supports this
feature. For instance,
Polyspace supports this
feature when you use g++
as compiler.

C++2017-
P0088R3

std::variant Partially supported.

C++2017-
P0091R3

Template argument deduction for class templates Partially supported.

C++2017-
P0127R2

Non-type template parameters that have auto type Yes

C++2017-
P0135R1

Guaranteed copy elision Partially supported.

C++2017-
P0136R1

New specification for inheriting constructors No

C++2017-
P0137R1

Replacement of class objects containing reference
members

Yes

C++2017-
P0138R2

Direct-list-initialization of enumerations Yes

C++2017-
P0145R3

Stricter expression evaluation order No new syntax/keyword is
introduced and therefore
does not affect Polyspace
support for C++17.

C++2017-
P0154R1

Hardware interference size Supported with Visual
Studio Compiler

C++2017-
P0170R1

constexpr Lambda expressions Partially supported

C++2017-
P018R0

Differing begin and end types in range-based for
loops

Yes

C++2017-
P0188R1

[[fallthrough]] attribute Yes

13 Configure Target and Compiler Options

13-18

C++17 Std Ref Description Supported
C++2017-
P0189R1

[[nodiscard]] attribute Yes

C++2017-
P0195R2

Pack expansions in using-declarations Yes

C++2017-
P0212R1

[[maybe_unused]] attribute Yes

C++2017-
P0217R3

Structured Bindings Polyspace does not support
binding by using an rvalue.

C++2017-
P0218R1

std::filesystem No

C++2017-
P0220R1

std::any Yes

C++2017-
P0220R1

std::optional Bug Finder supports the
syntax. The semantics are
partially supported. Code
Prover does not support this
feature.

C++2017-
P0226R1

Mathematical special functions No

C++2017-
P0245R1

Hexadecimal floating-point literals Yes

C++2017-
P0283R2

Ignore unknown attributes Yes

C++2017-
P0292R2

constexpr if statements Yes

C++2017-
P0298R3

std::byte Yes

C++2017-
P0305R1

init-statements for if and switch Yes

C++2017-
P0386R2

Inline variables No

C++2017-
P0522R0

Invoke partial ordering to determine when a
template template-argument is a valid match for a
template-parameter

Partially supported

See Also
C++ standard version (-cpp-version)

More About
• “C/C++ Language Standard Used in Polyspace Analysis” on page 13-5
• “C++11 Language Elements Supported in Polyspace” on page 13-10
• “C++14 Language Elements Supported in Polyspace” on page 13-13

 C++17 Language Elements Supported in Polyspace

13-19

Provide Standard Library Headers for Polyspace Analysis
Before Polyspace analyzes the code for bugs and run-time errors, it compiles your code. Even if the
code compiles with your compiler, you can see compilation errors with Polyspace. If the error comes
from a standard library function, it usually indicates that Polyspace is not using your compiler
headers. To work around the errors, provide the path to your compiler headers.

If you create a Polyspace project or options file from your build command using polyspace-
configure, the header paths are automatically added to this project or options file. Otherwise, you
have to explicitly add these paths. This topic shows how to locate the standard library headers from
your compiler. The code examples cause a compilation error that shows the location of the headers.

• To locate the folder containing your C compiler system headers, compile this C code by using your
compilation toolchain:

float fopen(float f);
#include <stdio.h>

The code does not compile because the fopen declaration conflicts with the declaration inside
stdio.h. The compilation error shows the location of your compiler implementation of stdio.h.
Your C standard library headers are all likely to be in that folder.

• To locate the folder containing your C++ compiler system headers, compile this C++ code by
using your compilation toolchain:

namespace std {
 float cin;
}
#include <iostream>

The code does not compile because the cin declaration conflicts with the declaration inside
iostream.h. The compilation error shows the location of your compiler implementation of
iostream.h. Your C++ standard library headers are all likely to be in that folder.

After you locate the path to your compiler's header files, specify the path for the Polyspace analysis.
For C++ code, specify the paths to both your C and C++ headers.

• In the user interface (Polyspace desktop products), add the folder to your project.

For more information, see “Add Source Files for Analysis in Polyspace Desktop User Interface” on
page 2-2.

• At the command line, use the flag -I with one of these commands:

• polyspace-bug-finder
• polyspace-bug-finder-server
• polyspace-code-prover
• polyspace-code-prover-server

For more information, see -I.

13 Configure Target and Compiler Options

13-20

See Also

More About
• “Fix Errors from Use of Polyspace Header Files” on page 32-42

 Provide Standard Library Headers for Polyspace Analysis

13-21

Create Polyspace Analysis Configuration from Build Command
(Makefile)

To run Polyspace with scripts at regular intervals, for instance, on a server during continuous
integration, you must configure all analysis options beforehand so that the analysis completes without
errors. These options must be updated as necessary to keep up with new code submissions. If you use
existing artifacts such as a build command (makefile) to build new code submissions, you can reuse
the build command to configure a Polyspace analysis and stay updated with new submissions. With
the polyspace-configure command, you can monitor the execution of a build command and
create an options file for analysis with Polyspace.

This topic shows a simple tutorial illustrating how to create an options file from a build command and
use the file for the subsequent analysis. The topic uses a Linux makefile and the GCC compiler, but
you can adapt the commands to other operating systems such as Windows and other compilers such
as Microsoft Visual Studio.

1 Copy the demo source files from polyspaceserverroot\polyspace\examples\cxx
\Bug_Finder_Example\sources to a folder with write permissions. Here,
polyspaceserverroot is the root installation folder of the Polyspace server products, for
instance, C:\Program Files\Polyspace Server\R2019a.

2 Create a simple makefile that compiles the demo source files. Save the makefile in the same
folder as the source files.

For instance, create a file named makefile and add this content:

CC := gcc
SOURCES := $(wildcard *.c)

all: $(CC) -c $(SOURCES)

Check that the makefile builds the source files successfully. Open a command terminal, navigate
to the folder (using cd) and enter:

make -B

The make command should complete execution without errors.

The -B option ensures that all targets in the makefile are built. Typically, build commands such
as make are set up to only build sources that have changed since the previous build. However,
polyspace-configure requires a full build to determine which sources to add to a Polyspace
project or options file.

3 Trace the build command with polyspace-configure and create an options file
compile_opts.

polyspace-configure -output-options-file compile_opts make -B

4 Create a second options file with additional options. For instance, create a file run_opts with
this content:

-checkers numerical
-report-template BugFinder
-output-format pdf

13 Configure Target and Compiler Options

13-22

The options run all numerical checkers in Bug Finder and creates a PDF report after analysis
using the BugFinder template.

5 Run a Bug Finder analysis with the two options files: compile_opts created from your build
command and run_opts created manually.

Polyspace Bug Finder:

polyspace-bug-finder -options-file compile_opts -options-file run_opts

Polyspace Bug Finder Server:

polyspace-bug-finder-server -options-file compile_opts -options-file run_opts

The analysis should complete without errors. You can open the results in the Polyspace user
interface or upload the results to the Polyspace Access web interface (using the polyspace-
access command).

To run Code Prover instead of Bug Finder, use the polyspace-code-prover-server command
instead of the polyspace-bug-finder-server command.

You can run a similar analysis using MATLAB scripts. Replace polyspace-bug-finder with the
polyspaceBugFinder function and polyspace-configure with the function
polyspaceConfigure.

See Also
polyspace-configure | polyspace-bug-finder-server

See Also

More About
• “Specify Target Environment and Compiler Behavior” on page 13-2
• “Select Files for Polyspace Analysis Using Pattern Matching” on page 4-11
• “Modularize Polyspace Analysis by Using Build Command” on page 4-5

 Create Polyspace Analysis Configuration from Build Command (Makefile)

13-23

Requirements for Project Creation from Build Systems
For automatic project creation from build systems, your build commands or makefiles must meet
certain requirements.

Compiler Requirements
• Your compiler must be called locally.

If you use a compiler cache such as ccache or a distributed build system such as distmake, the
software cannot trace your build. You must deactivate them.

• Your compiler must perform a clean build.

If your compiler performs only an incremental build, use appropriate options to build all your
source files. For example, if you use gmake, append the -B or -W makefileName option to force a
clean build. For the list of options allowed with the GNU® make, see make options.

• Your compiler configuration must be available to Polyspace. The compilers currently supported
include the following:

• Arm Keil.
• ARM® v5. See also ARM v5 Compiler (-compiler armcc).
• ARM v6. See also ARM v6 Compiler (-compiler armclang).
• Clang. For a list of supported versions, see “Clang Compilers”.
• Cosmic. See also Cosmic Compiler (-compiler cosmic).
• Wind River® Diab. See also Diab Compiler (-compiler diab).
• Green Hills®. See also Green Hills Compiler (-compiler greenhills).
• GNU C/C++. For a list of supported versions, see “GCC Compilers”.
• IAR Embedded Workbench. See also IAR Embedded Workbench Compiler (-compiler

iar-ew) .
• IAR systems.
• Intel® C++ Compiler Classic (icc/icl) compiler. See also Intel C++ Compiler Classic

(icc/icl) (-compiler intel).
• Microsoft Visual C++®. For a list of supported versions, see “Visual Studio Compilers”.
• MPLAB XC8 C. See also MPLAB XC8 C Compiler (-compiler microchip).
• NXP CodeWarrior®. See also NXP CodeWarrior Compiler (-compiler codewarrior).
• Renesas®. See also Renesas Compiler (-compiler renesas).
• Altium® Tasking. See also TASKING Compiler (-compiler tasking).
• Texas Instruments®. See also Texas Instruments Compiler (-compiler ti).
• tcc - Tiny C Compiler

If your compiler configuration is not available to Polyspace:

• Write a compiler configuration file for your compiler in a specific format. For more information,
see “Create Polyspace Projects from Build Systems That Use Unsupported Compilers” on page
32-11.

13 Configure Target and Compiler Options

13-24

https://www.gnu.org/software/make/manual/html_node/Options-Summary.html

• Contact MathWorks Technical Support. For more information, see “Contact Technical Support
About Issues with Running Polyspace” on page 32-6.

• If you build your code in Cygwin™, use versions 2.x or 3.x of Cygwin for Polyspace project
creation from your build system (for instance, Cygwin version 2.10 or 3.0).

• With the TASKING compiler, if you use an alternative sfr file with extension .asfr, Polyspace
might not be able to locate your file. If you encounter an error, explicitly #include your .asfr
file in the preprocessed code using the option Include (-include).

Typically, you use the statement #include __SFRFILE__(__CPU__) along with the compiler
option --alternative-sfr-file to specify an alternative sfr file. The path to the file is
typically Tasking_C166_INSTALL_DIR\include\sfr\regCPUNAME.asfr. For instance, if your
TASKING compiler is installed in C:\Program Files\Tasking\C166-VX_v4.0r1\ and you use
the CPU-related flag -Cxc2287m_104f or --cpu=xc2287m_104f, the path is C:\Program
Files\Tasking\C166-VX_v4.0r1\include\sfr\regxc2287m.asfr.

Build Command Requirements
• Your build command must run to completion without any user interaction.
• In Linux, only UNIX shell (sh) commands must be used. If your build uses advanced commands

such as commands supported only by bash, tcsh or zsh, Polyspace cannot trace your build.

In Windows, only DOS commands must be used. If your build uses advanced commands such as
commands supported only by PowerShell or Cygwin, Polyspace cannot trace your build. To see if
Polyspace supports your build command, run the command from cmd.exe in Windows. For more
information, see “Check if Polyspace Supports Build Scripts” on page 32-18.

• Your build command must not contain lines where several sources are compiled in a single line
using wildcard characters, for instance:

cl.exe *.c

• If you use statically linked libraries, Polyspace cannot trace your build. In Linux, you can install
the full Linux Standard Base (LSB) package to allow dynamic linking. For example, on Debian®

systems, install LSB with the command apt-get install lsb.
• Your build command must not use aliases.

The alias command is used in Linux to create an alternate name for commands. If your build
command uses those alternate names, Polyspace cannot recognize them.

• Your build process must not use the LD_PRELOAD mechanism.
• Your build command must be executable completely on the current machine and must not require

privileges of another user.

If your build uses sudo to change user privileges or ssh to remotely log in to another machine,
Polyspace cannot trace your build.

• If your build command uses redirection with the > or | character, the redirection occurs after
Polyspace traces the command. Therefore, Polyspace does not handle the redirection.

For example, if your command occurs as

command1 | command2

And you enter

 Requirements for Project Creation from Build Systems

13-25

https://www.mathworks.com/support/?s_tid=gn_supp

polyspace-configure command1 | command2

When tracing the build, Polyspace traces the first command only.
• If the System Integrity Protection (SIP) feature is active on the operating system macOS El

Capitan (10.11) or a later macOS version, you can use polyspace-configure to generate a
project or build options file only if your build system supports the generation of a compilation
database file that you pass to polyspace-configure. See “Create Polyspace Options File from
JSON Compilation Database”. If your build system does not support the generation of compilation
database file and the SIP feature is enabled, Polyspace cannot trace your build command.
Alternatively, before tracing your build command, disable the SIP feature. You can reenable this
feature after tracing the build command.

Similar considerations apply to other security applications such as security-related products from
CylanceProtect, Avecto and Tanium.

• If your computer hibernates during the build process, Polyspace might not be able to trace your
build.

• When creating projects from build commands in the Polyspace User Interface, you might
encounter errors such as libcurl.so.4: version 'CURL_OPENSSL_3' not found. In such
cases, create the Polyspace project by using the command polyspace-configure in the system
command line interface, using the build command as the argument. See polyspace-configure.

Note Your environment variables are preserved when Polyspace traces your build command.

See Also
polyspace-configure

Related Examples
• “Add Source Files for Analysis in Polyspace Desktop User Interface” on page 2-2
• “Create Polyspace Analysis Configuration from Build Command (Makefile)” on page 13-22

13 Configure Target and Compiler Options

13-26

Supported Keil or IAR Language Extensions
Polyspace analysis can interpret a subset of common C/C++ language constructs and extended
keywords by default. For compiler-specific keywords, you must specify your choice of compiler. If you
specify keil or iar for Compiler (-compiler), the Polyspace verification allows language
extensions specific to the Keil or IAR compilers.

Special Function Register Data Type
Embedded control applications frequently read and write port data, set timer registers, and read
input captures. To deal with these requirements without using assembly language, some
microprocessor compilers define special data types such as sfr and sbit. Typical declarations are:

sfr A0 = 0x80;
sfr A1 = 0x81;
sfr ADCUP = 0xDE;
sbit EI = 0x80;

The declarations reside in header files such as regxx.h for the basic 80Cxxx micro processor. The
declarations customize the compiler to the target processor.

You access a register or a port by using the sfr and sbit data as follows. However, these data types
are not part of the C99 Standard.

int status,P0;

void main (void) {
 ADCUP = 0x08; /* Write data to register */
 A1 = 0xFF; /* Write data to Port */
 status = P0; /* Read data from Port */
 EI = 1; /* Set a bit (enable all interrupts) */
}

To analyze this type of code, use these options:

• Compiler (-compiler): Specify keil or iar.
• Sfr type support (-sfr-types): Specify the data type and size in bits.

For example, depending on how you define the sbit data type, you use these options:

• sbit ADST = ADCUP^7;

Use options: -compiler keil -sfr-type sfr=8
• sbit ADST = ADCUP.7;

Use options: -compiler iar -sfr-type sfr=8

The analysis then supports the Keil or IAR language extensions even if some structures, keywords,
and syntax are not part of the C99 standard.

 Supported Keil or IAR Language Extensions

13-27

Keywords Removed During Preprocessing
Once you specify the Keil or IAR compiler, the analysis recognizes compiler-specific keywords in your
code. If a keyword is not relevant for the analysis, it is removed from the source code during
preprocessing.

If you disable the keyword and use it as an identifier instead, you can encounter a compilation error
when you compile your code with Polyspace. See “Fix Polyspace Compilation Errors Related to Keil or
IAR Compiler” on page 32-34.

These keywords are removed during preprocessing:

• Keil: bdata, far, idata, huge, sdata
• IAR: saddr, reentrant, reentrant_idata, non_banked, plm, bdata, idata, pdata, code,

xdata, xhuge, interrupt, __interrupt, __intrinsic

The data keyword is not removed.

13 Configure Target and Compiler Options

13-28

Remove or Replace Keywords Before Compilation
The Polyspace compiler strictly follows the ANSI® C99 Standard (ISO/IEC 9899:1999). If your
compiler allows deviation from the Standard, the Polyspace compilation using default options cannot
emulate your compiler. For instance, your compiler can allow certain non-ANSI keyword, which
Polyspace does not recognize by default.

To emulate your compiler closely, you specify the Target & Compiler options. If you still get
compilation errors from unrecognized keywords, you can remove or replace them only for the
purposes of verification. The option Preprocessor definitions (-D) allows you to make simple
substitutions. For complex substitutions, for instance to remove a group of space-separated keywords
such as a function attribute, use the option Command/script to apply to preprocessed
files (-post-preprocessing-command).

Remove Unrecognized Keywords
You can remove unsupported keywords from your code for the purposes of analysis. For instance,
follow these steps to remove the far and 0x keyword from your code (0x precedes an absolute
address).

1 Save the following template as C:\Polyspace\myTpl.pl.

Content of myTpl.pl
#!/usr/bin/perl

##
Post Processing template script
#
##
Usage from GUI:
#
1) Linux: /usr/bin/perl PostProcessingTemplate.pl
2) Windows: polyspaceroot\sys\perl\win32\bin\perl.exe <pathtoscript>\
PostProcessingTemplate.pl
#
##

$version = 0.1;

$INFILE = STDIN;
$OUTFILE = STDOUT;

while (<$INFILE>)
{

 # Remove far keyword
 s/far//;

 # Remove "@ 0xFE1" address constructs
 s/\@\s0x[A-F0-9]*//g;

 # Remove "@0xFE1" address constructs
 s/\@0x[A-F0-9]*//g;

 # Remove "@ ((unsigned)&LATD*8)+2" type constructs
 s/\@\s\(\(unsigned\)\&[A-Z0-9]+*8\)\+\d//g;

 # DON'T DELETE LINE BELOW: Print the current processed line
 print $OUTFILE $_;
}

For reference, see a summary of Perl regular expressions.

Perl Regular Expressions
###
Metacharacter What it matches

 Remove or Replace Keywords Before Compilation

13-29

###
Single Characters
. Any character except newline
[a-z0-9] Any single character in the set
[^a-z0-9] Any character not in set
\d A digit same as
\D A non digit same as [^0-9]
\w An Alphanumeric (word) character
\W Non Alphanumeric (non-word) character
#
Whitespace Characters
\s Whitespace character
\S Non-whitespace character
\n newline
\r return
\t tab
\f formfeed
\b backspace
#
Anchored Characters
\B word boundary when no inside []
\B non-word boundary
^ Matches to beginning of line
$ Matches to end of line
#
Repeated Characters
x? 0 or 1 occurrence of x
x* 0 or more x's
x+ 1 or more x's
x{m,n} Matches at least m x's and no more than n x's
abc All of abc respectively
to|be|great One of "to", "be" or "great"
#
Remembered Characters
(string) Used for back referencing see below
\1 or $1 First set of parentheses
\2 or $2 First second of parentheses
\3 or $3 First third of parentheses
##
Back referencing
#
e.g. swap first two words around on a line
red cat -> cat red
s/(\w+) (\w+)/$2 $1/;
#
##

2 On the Configuration pane, select Environment Settings.
3

To the right of Command/script to apply to preprocessed files, click .
4 Use the Open File dialog box to navigate to C:\Polyspace.
5 In the File name field, enter myTpl.pl.
6 Click Open. You see C:\Polyspace\myTpl.pl in the Command/script to apply to

preprocessed files field.

13 Configure Target and Compiler Options

13-30

Remove Unrecognized Function Attributes
You can remove unsupported function attributes from your code for the purposes of analysis.

If you run verification on this code specifying a generic compiler, you can see compilation errors from
the noreturn attribute. The code compiles using a GNU compiler.

void fatal () __attribute__ ((noreturn));

void fatal (/* ... */)
{
 /* ... */ /* Print error message. */ /* ... */
 exit (1);
}

If the software does not recognize an attribute and the attribute does not affect the code analysis, you
can remove it from your code for the purposes of verification. For instance, you can use this Perl
script to remove the noreturn attribute.

while ($line = <STDIN>)
{

__attribute__ ((noreturn))

 # Remove far keyword
 $line =~ s/__attribute__\ \(\(noreturn\)\)//g;

 # Print the current processed line to STDOUT
 print $line;
}

Specify the script using the option Command/script to apply to preprocessed files (-
post-preprocessing-command).

See Also
Polyspace Analysis Options
Command/script to apply to preprocessed files (-post-preprocessing-command) |
Preprocessor definitions (-D)

Related Examples
• “Troubleshoot Compilation Errors”

 Remove or Replace Keywords Before Compilation

13-31

Gather Compilation Options Efficiently
Polyspace verification can sometimes stop in the compilation or linking phase due to the following
reasons:

• The Polyspace compiler strictly follows a C or C++ Standard (depending on your choice of
compiler). See “C/C++ Language Standard Used in Polyspace Analysis” on page 13-5. If your
compiler allows deviation from the Standard, the Polyspace compilation using default options
cannot emulate your compiler.

• Your compiler declares standard library functions with argument or return types different from
the standard types. Unless you also provide the function definition, for efficient verification,
Polyspace uses its own definitions of standard library functions, which have the usual prototype.
The mismatch in types causes a linking error.

You can easily work around the compilation and standard library function errors. To work around the
errors, you typically specify certain analysis options. In some cases, you might have to add a few lines
to your code. For instance:

• To emulate your compiler behavior more closely, you specify the Target & Compiler options. If you
still face compilation errors, you might have to remove or replace certain unrecognized keywords
using the option Preprocessor definitions (-D). However, the option allows only simple
substitution of a string with another string. For more complex replacements, you might have to
add #define statements to your code.

• To avoid errors from stubbing standard library functions, you might have to #define certain
Polyspace-specific macros so that Polyspace does not use its own definition of standard library
functions.

Instead of adding these modifications to your original code, create a single polyspace.h file that
contains all modifications. Use the option Include (-include) to force inclusion of the
polyspace.h file in all source files under verification.

Benefits of this approach include:

• The error detection is much faster since it will be detected during compilation rather than in the
link or subsequent phases.

• There will be no need to modify original source files.
• The file is automatically included as the very first file in the original .c files.
• The file is reusable for other projects developed under the same environment.

Example 13.1. Example

This is an example of a file that can be used with the option Include (-include).

// The file may include (say) a standard include file implicitly
// included by the cross compiler

#include <stdlib.h>
#include "another_file.h"

// Workarounds for compilation errors
#define far
#define at(x)

13 Configure Target and Compiler Options

13-32

// Workarounds for errors due to redefining standard library functions

#define POLYSPACE_NO_STANDARD_STUBS // use this flag to prevent the
 //automatic stubbing of std functions
#define __polyspace_no_sscanf
#define __polyspace_no_fgetc
void sscanf(int, char, char, char, char, char);
void fgetc(void);

See Also

More About
• “Troubleshoot Compilation Errors”

 Gather Compilation Options Efficiently

13-33

Configure Inputs and Stubbing Options

14

Specify External Constraints for Polyspace Analysis
Polyspace products analyzes C/C++ code and checks for issues such as defects (bugs) or run-time
errors. The analysis uses the code that you provide to make assumptions about items such as variable
ranges and allowed buffer size for pointers. Sometimes the assumptions are broader than what you
expect because:

• You have not provided the complete code. For example, you did not provide some of the function
definitions.

• Some of the information about variables is available only at run time. For example, some variables
in your code obtain values from the user at run time.

Because of these broad assumptions:

• Code Prover can consider more execution paths than those paths that occur at run time. If an
operation fails along one of the execution paths, Polyspace places an orange check on the
operation. If that execution path comes from an assumption that is too broad, the orange check
might indicate a false positive.

• Bug Finder can sometimes produce false positives.

To reduce the number of such false positives, you can specify additional constraints on global
variables, function inputs, and return values and modifiable arguments of stubbed functions. This
example shows how to specify these external constraints (also known as data range specifications or
DRS). You save the constraints as an XML file to use them for subsequent analyses. If your source
code changes, you can update the previous constraints. You do not have to create a new constraint
template.

Create Constraint Template
User Interface (Desktop Products Only)

1 Open the project configuration. On the Configuration pane, select Inputs & Stubbing.
2 To the right of Constraint setup, click the Edit button to open the Constraint Specification

window.

14 Configure Inputs and Stubbing Options

14-2

3 In the Constraint Specification dialog box, create a blank constraint template. The template
contains a list of all variables on which you can provide constraints. To create a new template,

click . The software compiles your project and creates a template. The new template
is stored in a file Module_number_Project_name_drs_template.xml in your project folder.

4 Specify your constraints and save the template as an XML file. For more information, see
“External Constraints for Polyspace Analysis” on page 14-6.

5 Click OK.

You see the full path to the template XML file in the Constraint setup field. If you run an
analysis, Polyspace uses this template for extracting variable constraints.

Command Line

Use the option Constraint setup (-data-range-specifications) to specify the constraints
XML file.

To specify constraints in the XML file:

1 First, create a blank XML template. The template lists all global variables, function inputs and
modifiable arguments and return values of stubbed functions without specifying any constraints
on them.

To create a blank template, run an analysis only up to the compilation phase. In Bug Finder,
disable checking of defects. Use the option Find defects (-checkers). In Code Prover,
check for source compliance only. Use the argument compile for the option Verification
level (-to). After the analysis, a blank template XML drs-template.xml is created in the
results folder.

For C++ projects, to create a blank constraints template, you have to use the argument cpp-
normalize for the option Verification level (-to).

2 Edit the XML file to specify your constraints.

For examples, see:

• “Constrain Global Variable Range for Polyspace Analysis” on page 14-12
• “Constrain Function Inputs for Polyspace Analysis” on page 14-14

Create Constraint Template from Code Prover Analysis Results
You can constrain variable ranges based on their expected range in real-world applications. For
instance, if a variable represents vehicle speed, you can set a maximum possible value. You can also
constrain variable ranges only if they cause too many orange checks from overapproximation.

A Code Prover analysis shows all global variables, function inputs and stubbed functions that lead to
orange checks from possible overapproximation. You can constrain only these variables for a more
precise analysis.

1 Open Code Prover results in the Polyspace user interface or Polyspace Access web interface.
2 Open the Orange Sources pane. Do one of the following:

 Specify External Constraints for Polyspace Analysis

14-3

•
Select an orange check. If the software can trace an orange check to a root cause, a icon
appears on the Result Details pane. Click this icon to open the Orange Sources pane.

• In the Polyspace user interface, select Window > Show/Hide View > Orange Sources. In
the Polyspace Access web interface, select Window > Orange Sources.

You see the full list of variables (function inputs or return values of stubbed functions) that can
cause orange checks. Constrain the ranges of these variables.

In the details for individual orange checks, you often see a message similar to this:

If appropriate, applying DRS to stubbed function random_float in example.c
line 44 may remove this orange.

The message is an indication that the stubbed function is a possible source of the orange check. You
can apply external constraints on the function to enforce more precise assumptions and possibly
remove the orange check (in case it came from the broader assumptions).

Update Existing Template
With new code submissions, you might have to specify additional constraints. You can update an
existing template to add global variables, function inputs and stubbed functions that come from the
new code submissions.

Additionally, if you remove some variables or functions from your code, constraints on them are not
applicable any more. Instead of regenerating a constraint template and respecifying the constraints,
you can update an existing template and remove the variables that are not present in your code.

User Interface (Desktop Products Only)

1 On the Configuration pane, select Inputs & Stubbing.
2 Open the existing template in one of the following ways:

• In the Constraint setup field, enter the path to the template XML file. Click Edit.
•

Click Edit. In the Constraint Specification dialog box, click the icon to navigate to your
template file.

3 Click Update.

a Variables that are no longer present in your source code appear under the Non Applicable
node. To remove an entry under the Non Applicable node or the node itself, right-click and
select Remove This Node.

b Specify your new constraints for any of the other variables.

Command Line

In a continuous integration workflow, you can use the constraints XML file from the previous run. If
new code submissions require additional constraints:

1 Specify constraints on variables from new code submissions in a constraints XML file. See Create
Constraint Template: Command Line on page 14-3.

2 Merge the constraints XML file with the new constraints and the constraints XML file from the
previous run.

14 Configure Inputs and Stubbing Options

14-4

Specify Constraints in Code
Specifying constraints outside your code allows for more precise analysis. However, you must use the
code within the specified constraints because the constraints are outside your code. Otherwise, the
results might not apply. For example, if you use function inputs outside your specified range, a run-
time error can occur on an operation even though checks on the operation are green.

To specify constraints inside your code, you can use:

• Appropriate error handling tests in your code.

Polyspace checks to determine if the errors can actually occur. If they do not occur, the test blocks
appear as Unreachable code.

• The unchecked_assert macro. For example, to constrain a variable var in the range [0,10], you
can use assert(var >= 0 && var <=10);.

See “Constrain Variable Ranges for Polyspace Analysis Using Manual Stubs and Manual main()
Function” (Polyspace Code Prover).

See Also
Constraint setup (-data-range-specifications)

Related Examples
• “External Constraints for Polyspace Analysis” on page 14-6
• “Constrain Global Variable Range for Polyspace Analysis” on page 14-12
• “Constrain Function Inputs for Polyspace Analysis” on page 14-14
• “XML File Format for Polyspace Analysis Constraints” on page 14-17

 Specify External Constraints for Polyspace Analysis

14-5

External Constraints for Polyspace Analysis
Polyspace uses the code that you provide to make assumptions about items such as variable ranges
and allowed buffer size for pointers. Sometimes the assumptions that Polyspace makes are broader
than what you expect, which might result in Bug Finder false positives or more Code Prover orange
checks. To reduce such false positives or orange checks, you can specify external constraints on:

• Global variables.
• User-defined functions.
• Stubbed functions.

For more information, see “Specify External Constraints for Polyspace Analysis” on page 14-2. For a
partial list of limitations, see “Constraint Specification Limitations” on page 14-11.

Effect of External Constraints
Consider the following function:

int getFlooredNumber(int total, int size) {
 return total/size;
}

Since the input size is unknown, if you analyze this function:

• With Polyspace Code Prover, you see an orange Division by zero check. The orange check
indicates that Code Prover suspects a possible division by zero error, but this error does not occur
on all execution paths.

• With Polyspace Bug Finder, if you use the option Run stricter checks considering all
values of system inputs (-checks-using-system-input-values), you see an Integer
division by zero defect along with one possible input value leading to the defect (in this case, a
size of 0).

In more sophisticated examples, for instance, if the division occurs inside a condition, a defect
appears from unknown inputs even without using the option.

In both cases, the analysis determines possible values of the input variable size from its data type.
Since the variable size has data type int, on targets where int has a size of 32 bits, the variable is
assumed to have values in the range [-231, 231-1].

If you know that an input has values only within a certain range, you can specify an external
constraint on the input (also known as Data Range Specification or DRS). For instance, in the above
example, if you specify a range on size that excludes zero:

• Code Prover no longer shows the orange Division by zero check.
• Bug Finder no longer shows the Integer division by zero defect.

You can specify external constraints to emulate design constraints that live outside your code. For
instance, if an input variable represents a physical quantity such as vehicle speed, you can constrain
the variable values to speeds for which the vehicle is designed.

14 Configure Inputs and Stubbing Options

14-6

Constraint Specification
In the user interface of the Polyspace desktop products, you can specify the constraints through a
Constraint Specification window. The constraints are saved in an XML file that you can reuse for
other projects.

This table describes the various columns in the Constraint Specification window. If you directly edit
the constraint XML file to specify a constraint (for instance, in the Polyspace Server products), this
table also shows the correspondence between columns in the user interface and entries in the XML
file. The XML entry highlighted in bold appears in the corresponding column of the Constraint
Specification window.

Column Settings
Name Displays the list of variables and functions in your Project for which you can

specify data ranges.

This Column displays three expandable menu items:

• Globals – Displays global variables in the project.
• User defined functions – Displays user-defined functions in the project.

Expand a function name to see its inputs.
• Stubbed functions – Displays a list of stub functions in the project. Expand

a function name to see the inputs and return values.
XML File Entry:

<function name = "funcName" ...>

<scalar name = "arg1" ...>

<pointer name = "arg2" ...>

File Displays the name of the source file containing the variable or function.
XML File Entry:

<file name = "C:\Project1\Sources\file.c" ...>

Attributes Displays information about the variable or function.

For example, static variables display static. Uncalled functions display
unused.

 External Constraints for Polyspace Analysis

14-7

Column Settings
XML File Entry:

<function name="funcName" attributes="unused" ...>

Data Type Displays the variable type.
XML File Entry:

<scalar name="arg1" complete_type="int32" ...>

Main Generator
Called

Applicable only for user-defined functions.

Specifies whether the main generator calls the function:

• MAIN GENERATOR – Main generator may call this function, depending on
the value of the -functions-called-in-loop (C) or -main-
generator-calls (C++) parameter.

• NO – Main generator will not call this function.
• YES – Main generator will call this function.
XML File Entry:

<function name="funcName" main_generator_called="MAIN_GENERATOR" ...>

Init Mode Specifies how the software assigns a range to the variable:

• MAIN GENERATOR – Variable range is assigned depending on the settings of
the main generator options -main-generator-writes-variables and -
no-def-init-glob.

• IGNORE – Variable is not assigned to any range, even if a range is specified.
• INIT – Variable is assigned to the specified range only at initialization, and

keeps the range until first write.
• PERMANENT – Variable is permanently assigned to the specified range. If the

variable is assigned outside this range during the program, no warning is
provided. Use the globalassert mode if you need a warning.

User-defined functions support only INIT mode.

Stub functions support only PERMANENT mode.

For C verifications, global pointers support MAIN GENERATOR, IGNORE, or
INIT mode.

• MAIN GENERATOR – Pointer follows the options of the main generator.
• IGNORE – Pointer is not initialized
• INIT – Specify if the pointer is NULL, and how the pointed object is

allocated (Initialize Pointer and Init Allocated options).
XML File Entry:

<scalar name="arg1" init_mode="INIT" ...>

14 Configure Inputs and Stubbing Options

14-8

Column Settings
Init Range Specifies the minimum and maximum values for the variable.

You can use the keywords min and max to denote the minimum and maximum
values of the variable type. For example, for the type long, min and max
correspond to -2^31 and 2^31-1 respectively.

You can also use hexadecimal values. For example: 0x12..0x100

For enum variables, you cannot specify ranges directly using the enumerator
constants. Instead use the values represented by the constants.

For enum variables, you can also use the keywords enum_min and enum_max
to denote the minimum and maximum values that the variable can take. For
example, for an enum variable of the type defined below, enum_min is 0 and
enum_max is 5:

enum week{ sunday, monday=0, tuesday,
 wednesday, thursday, friday, saturday};

XML File Entry:

<scalar name="arg1" init_range="-1..0"...>

Initialize Pointer Applicable only to pointers. Enabled only when you specify Init Mode:INIT.

Specifies whether the pointer should be NULL:

• May-be NULL – The pointer could potentially be a NULL pointer (or not).
• Not Null – The pointer is never initialized as a null pointer.
• Null – The pointer is initialized as NULL.

Note Not applicable for C++ projects. See “Constraint Specification
Limitations” on page 14-11.
XML File Entry:

<pointer name="arg1" initialize_pointer="Not NULL"...>

Init Allocated Applicable only to pointers. Enabled only when you specify Init Mode:INIT.

Specifies how the pointed object is allocated:

• MAIN GENERATOR – The pointed object is allocated by the main generator.
• None – Pointed object is not written.
• SINGLE – Write the pointed object or the first element of an array. (This

setting is useful for stubbed function parameters.)
• MULTI – All objects (or array elements) are initialized.

Note Not applicable for C++ projects. See “Constraint Specification
Limitations” on page 14-11.

 External Constraints for Polyspace Analysis

14-9

Column Settings
XML File Entry:

<pointer name="arg1" init_pointed="MAIN_GENERATOR"...>

Allocated
Objects

Applicable only to pointers.

Specifies how many objects are pointed to by the pointer (the pointed object is
considered as an array).

The Init Allocated parameter specifies how many allocated objects are
actually initialized. For instance, consider this code:

void func(int *ptr) {
 assert(ptr[0]==1);
 assert(ptr[1]==1);
}

If you specify these constraints:

• ptr has Init Allocated set to MULTI and # Allocated Objects set to 2,
• *ptr has Init Range set to 1..1,

both assertions are green. However, if you specify these constraints:

• ptr has Init Allocated set to SINGLE
• *ptr has Init Range set to 1..1,

the second assertion is orange. Only the first object that ptr points to
initialized to 1. Objects beyond the first can be potentially full range.

Use the keyword "max" to specify that a pointer can point to anywhere within a
very large array of unknown file size. In your analysis results, you see very
large offsets and buffer sizes for the pointer. The offset and buffer sizes depend
on the pointer size and other characteristics of the target processor type used.
The largest object Polyspace creates using this method is a buffer of 2^27-1
bytes (134217726 bytes).

Note Not applicable for C++ projects. See “Constraint Specification
Limitations” on page 14-11.
XML File Entry:

<pointer name="arg1" number_allocated="10"...>

Global Assert Specifies whether to perform an assert check on the variable at global
initialization, and after each assignment.
XML File Entry:

<scalar name="glob" global_assert="YES"...>

Global Assert
Range

Specifies the minimum and maximum values for the range you want to check.
XML File Entry:

<scalar name="glob" assert_range="0..200"...>

14 Configure Inputs and Stubbing Options

14-10

Column Settings
Comment Remarks that you enter, for example, justification for your DRS values.

XML File Entry:

<scalar name="glob" comment="Speed Range"...>

Constraint Specification Limitations
You cannot specify the following types of constraints using the constraint specification interface. To
work around some of these limitations, you can define your own stubs and main(). For details, see
“Constrain Variable Ranges for Polyspace Analysis Using Manual Stubs and Manual main() Function”
(Polyspace Code Prover).

The constraint specification interface does not support these kinds of constraints:

• In C++, you cannot constrain pointer or reference arguments of functions.

Because of polymorphism, a C++ pointer or reference can point to objects of multiple classes in a
class hierarchy and can require invoking different constructors. The pre-analysis for constraint
specification cannot determine which object type to constrain or which constructor to call.

• You cannot specify a constraint that relates the return value of a function to its inputs. You can
specify only a constant range for the constraints.

• You cannot specify multiple ranges for a constraint. For instance, you cannot specify that a
function argument has either the value -1 or a value in the range [1,100]. Instead, specify the
range [-1,100] or perform two separate analyses, once with the value -1 and once with the range
[1,100].

• You cannot specify separate constraints on different fields of a union.

See Also

More About
• “Specify External Constraints for Polyspace Analysis” on page 14-2

 External Constraints for Polyspace Analysis

14-11

Constrain Global Variable Range for Polyspace Analysis
You can impose external constraints (also known as data range specifications or DRS) on the range of
global variables in C/C++ code and check with Polyspace Code Prover whether write operations on
the variable violate the constraint. For the general workflow, see “Specify External Constraints for
Polyspace Analysis” on page 14-2.

User Interface (Desktop Products Only)
To constrain a global variable range and also check for violation of the constraint:

1
In your project configuration, select Inputs & Stubbing. Click the button next to the
Constraint setup field.

2
In the Constraint Specification window, click .

Under the Global Variables node, you see a list of global variables.

3 For the global variable that you want to constrain:

• From the drop-down list in the Global Assert column, select YES.
• In the Global Assert Range column, enter the range in the format min..max. min is the

minimum value and max the maximum value for the global variable.
4

To save your specifications, click the button.

In Save a Constraint File window, save your entries as an xml file.
5 Run a verification and open the results.

For every write operation on the global variable, you see a green, orange, or red Correctness
condition check. If the check is:

• Green, the variable is within the range that you specified.
• Orange, the variable can be outside the range that you specified.
• Red, the variable is outside the range that you specified.

14 Configure Inputs and Stubbing Options

14-12

When two or more tasks write to the same global variable, the Correctness condition check
can appear orange on all write operations to the variable even when only one write operation
takes the variable outside the Global Assert range.

Command Line
Use the option Constraint setup (-data-range-specifications) with an XML file
specifying your constraint.

For instance, for an analysis with Polyspace Code Prover Server, specify the option as follows:

polyspace-code-prover-server -sources filename
 -data-range-specifications "C:\Polyspace\drs_project1.xml"

Create a blank constraint XML template as described in “Specify External Constraints for Polyspace
Analysis” on page 14-2. In the XML file, locate and constrain the global variables. XML tags for global
variables appear directly within the file tag without an enclosing function tag. For instance, in
this constraint XML, PowerLevel and SHR are global variables:

<file name="\\\\home\\Polyspace_Workspace\\Examples\\Code_Prover_Example
 \\sources\\tasks1.c">
 <scalar name="PowerLevel" line="26" .. global_assert="YES" assert_range="0..10"/>
 <scalar name="SHR" line="30" ... global_assert="NO" assert_range="" />
 <function name="Tserver" line="73" .../>
 <function name="initregulate" line="47" .../>
 <function name="orderregulate" line="35" ...>
 <scalar name="return" ... global_assert="unsupported" assert_range="unsupported" />
 </function>
 <function name="proc1" line="101" .../>
</file>

To specify a constraint on a global variable and check during a Code Prover analysis if the constraint
is violated:

1 Set the global_assert attribute of the variable's scalar tag to YES.
2 Set the assert_range attribute to a range in the form min..max, for instance, 0..10.

In the preceding example, the variable PowerLevel is constrained this way.

See Also
Polyspace Analysis Options
Constraint setup (-data-range-specifications)

Polyspace Results
Correctness condition

More About
• “Specify External Constraints for Polyspace Analysis” on page 14-2
• “External Constraints for Polyspace Analysis” on page 14-6
• “Constrain Function Inputs for Polyspace Analysis” on page 14-14

 Constrain Global Variable Range for Polyspace Analysis

14-13

Constrain Function Inputs for Polyspace Analysis
If a program module analyzed with Polyspace Code Prover does not contain a main function, the
analysis by default starts effectively from all uncalled functions1. Since these functions are not called
within the code, Code Prover has to make assumptions about the function inputs based on their data
types. For a more precise Code Prover analysis, you can specify constraints (also known as data range
specifications or DRS) on these function inputs. Code Prover analyzes these functions for run-time
errors with respect to the constrained inputs. For the general workflow, see “Specify External
Constraints for Polyspace Analysis” on page 14-2.

For instance, for a function defined as follows, you can specify that the argument val has values in
the range [1..10]. You can also specify that the argument ptr points to a 3-element array where
each element is initialized:

int func(int val, int* ptr) {
 .
 .
}

A similar assumption about function inputs is seen in Bug Finder if you use the option Run stricter
checks considering all values of system inputs (-checks-using-system-input-
values). You can also constrain a Bug Finder analysis with external constraints.

Note that if a function is called within the code, the external constraints no longer apply. Code Prover
tracks the data flow within the code and analyzes a called function with actual arguments used in the
code.

User Interface (Desktop Products Only)
To specify constraints on function inputs:

1
In your project configuration, select Inputs & Stubbing. Click the button for
Constraint setup.

2
In the Constraint Specification window, click .

Under the User Defined Functions node, you see a list of functions whose inputs can be
constrained.

3 Expand the node for each function.

You see each function input on a separate row. The inputs have the syntax
function_name.arg1, function_name.arg2, etc.

4 Specify your constraints on one or more of the function inputs. For more information, see
“External Constraints for Polyspace Analysis” on page 14-6.

For example, in the preceding code:

• To constrain val to the range [1..10], select INIT for Init Mode and enter 1..10 for Init
Range.

1 The Code Prover analysis generates a main that calls all uncalled functions by default and starts analysis from this
main. You can change this default behavior using the option Functions to call (-main-generator-calls).

14 Configure Inputs and Stubbing Options

14-14

• To specify that ptr points to a 3-element array where each element is initialized, select
MULTI for Init Allocated and enter 3 for # Allocated Objects.

5 Run verification and open the results. On the Source pane, place your cursor on the function
inputs.

The tooltips display the constraints. For example, in the preceding code, the tooltip displays that
val has values in 1..10.

Command Line
Use the option Constraint setup (-data-range-specifications) with an XML file
specifying your constraint.

For instance, for an analysis with Polyspace Code Prover Server, specify the option as follows:

polyspace-code-prover-server -sources filename
 -data-range-specifications "C:\Polyspace\drs_project1.xml"

Create a blank constraint XML template as described in “Specify External Constraints for Polyspace
Analysis” on page 14-2. In the XML file, locate and constrain the function inputs. The function inputs
appear as a scalar or pointer tag in a function tag. The inputs are named as arg1, arg2 and so
on. For instance, for the preceding code, the XML structure for the inputs of func appear as follows:

<function name="func" line="1" attributes="unused"
 main_generator_called="MAIN_GENERATOR" comment="">
 <scalar name="arg1" line="1" base_type="int32"
 complete_type="int32" init_mode="INIT" init_range="1..10" />
 <pointer name="arg2" line="1" complete_type="int32 *"
 init_mode="INIT" initialize_pointer="Not NULL" number_allocated="3"
 init_pointed="MULTI">
 <scalar line="1" base_type="int32" complete_type="int32"
 init_mode="MAIN_GENERATOR" init_range=""/>
 </pointer>
 <scalar name="return" line="1" base_type="int32" complete_type="int32"
 init_mode="disabled" init_range="disabled"/>
</function>

To specify a constraint on a function input, set the attributes init_mode and init_range for scalar
variables, and init_pointed and number_allocated for pointer variables.

• To constrain val to the range [1..10], set the init_mode attribute of the tag with name arg1
to INIT and init_range to 1..10.

 Constrain Function Inputs for Polyspace Analysis

14-15

• To specify that ptr points to a 3-element array where each element is initialized, set the
init_mode attribute of the tag with name arg2 to INIT, init_pointed to MULTI and
number_allocated to 3.

See Also
Constraint setup (-data-range-specifications)

More About
• “Specify External Constraints for Polyspace Analysis” on page 14-2
• “External Constraints for Polyspace Analysis” on page 14-6
• “Constrain Global Variable Range for Polyspace Analysis” on page 14-12

14 Configure Inputs and Stubbing Options

14-16

XML File Format for Polyspace Analysis Constraints
For a more precise Polyspace analysis, you can specify constraints on global variables, function inputs
and stubbed functions. You can specify the constraints in the user interface of the Polyspace desktop
products or at the command line as an XML file. For the general workflow, see “Specify External
Constraints for Polyspace Analysis” on page 14-2.

This topic describes details of the constraint XML file schema. You typically require this information
only if you create a constraint XML from scratch. If you run a verification once, the software
automatically generates a template constraint file drs-template.xml in your results folder. Instead
of creating a constraint XML file from scratch, it is easier to edit this template XML file to specify
your constraints. For some examples, see:

• “Constrain Global Variable Range for Polyspace Analysis” on page 14-12
• “Constrain Function Inputs for Polyspace Analysis” on page 14-14

For another explanation of what the XML tags mean, see “External Constraints for Polyspace
Analysis” on page 14-6.

You can also see the information in this topic and the underlying XML schema in polyspaceroot
\polyspace\drs. Here, polyspaceroot is the Polyspace installation folder, for instance,
C:\Program Files\Polyspace\R2019a.

Syntax Description — XML Elements
The constraints file contains the following XML elements:

• <global> element — Declares the global scope, and is the root element of the XML file.
• <file> element — Declares a file scope. Must be enclosed in the <global> element. May

enclose any variable or function declaration. Static variables must be enclosed in a file element to
avoid conflicts.

• <scalar> element— Declares an integer or a floating point variable. May be enclosed in any
recognized element, but cannot enclose any element. Sets init/permanent/global asserts on
variables.

• <pointer> element — Declares a pointer variable. May enclose any other variable declarations
(including itself), to define the pointed objects. Specifies what value is written into pointer (NULL
or not), how many objects are allocated and how the pointed objects are initialized.

• <array> element — Declares an array variable. May enclose any other variable definition
(including itself), to define the members of the array.

• <struct> element — Declares a structure variable or object (instance of class). May enclose any
other variable definition (including itself), to define the fields of the structure.

• <function> element — Declares a function or class method scope. May enclose any variable
definition, to define the arguments and the return value of the function. Arguments should be
named arg1, arg2, …argn and the return value should be called return.

The following notes apply to specific fields in each XML element:

• (*) — Fields used only by the GUI. These fields are not mandatory for verification to accept the
ranges. The field line contains the line number where the variable is declared in the source code,
complete_type contains a string with the complete variable type, and base_type is used by the

 XML File Format for Polyspace Analysis Constraints

14-17

GUI to compute the min and max values. The field comment is used to add information about any
node.

• (**) — The field name is mandatory for scope elements <file> and <function> (except for
function pointers). For other elements, the name must be specified when declaring a root symbol
or a struct field.

• (***) — If more than one attribute applies to the variable, the attributes must be separated by a
space. Only the static attribute is mandatory, to avoid conflicts between static variables having the
same name. An attribute can be defined multiple times without impact.

• (****) — This element is used only by the GUI, to determine which init modes are allowed for
the current element (according to its type). The value works as a mask, where the following values
are added to specify which modes are allowed:

• 1: The mode “NO” is allowed.
• 2 : The mode “INIT” is allowed.
• 4: The mode “PERMANENT” is allowed.
• 8: The mode “MAIN_GENERATOR” is allowed.

For example, the value “10” means that modes “INIT” and “MAIN_GENERATOR” are allowed. To
see how this value is computed, refer to “Valid Modes and Default Values” on page 14-21.

• (*****) — A sub-element of a pointer (i.e. a pointed object) will be taken into account only if
init_pointed is equal to SINGLE, MULTI, SINGLE_CERTAIN_WRITE or
MULTI_CERTAIN_WRITE.

• (******) — SINGLE_CERTAIN_WRITE or MULTI_CERTAIN_WRITE are available for parameters
and return values of stubbed functions only if they are pointers. If the parameter or return value is
a structure and the structure has a pointer field, they are also available for the pointer field.

<file> Element

Field Syntax
name filepath_or_filename
comment string

<scalar> Element

Field Syntax
name (**) name
line (*) line
base_type (*) intx

uintx
floatx

Attributes (***) volatile
extern
static
const

complete_type (*) type

14 Configure Inputs and Stubbing Options

14-18

Field Syntax
init_mode MAIN_GENERATOR

IGNORE
INIT
PERMANENT
disabled
unsupported

init_modes_allowed (*) single value (****)
init_range range

disabled
unsupported

global_ assert YES
NO
disabled
unsupported

assert_range range
disabled
unsupported

comment(*) string

<pointer> Element

Field Syntax
Name (**) name
line (*) line
Attributes (***) volatile

extern
static
const

complete_type (*) type
init_mode MAIN_GENERATOR

IGNORE
INIT
PERMANENT
disabled
unsupported

init_modes_allowed (*) single value (****)
initialize_ pointer May be:

NULL
Not NULL
NULL

number_ allocated single value
disabled
unsupported

 XML File Format for Polyspace Analysis Constraints

14-19

Field Syntax
init_pointed (******) MAIN_GENERATOR

NONE

SINGLE

MULTI

SINGLE_CERTAIN_WRITE

MULTI_CERTAIN_WRITE

disabled
comment string

<array> and <struct> Elements

Field Syntax
Name (**) name
line (*) line
complete_type (*) type
attributes (***) volatile

extern
static
const

comment string

<function> Element

Field Syntax
Name (**) name
line (*) line
main_generator_called MAIN_GENERATOR

YES
NO
disabled

attributes (***) static
extern
unused

comment string

14 Configure Inputs and Stubbing Options

14-20

Valid Modes and Default Values
Scope Type Init modes Gassert

mode
Initialize
pointer

Init
allocated

Default

Global
variables

Base
type

Unqualified/
static/
const
scalar

MAIN_
GENERATOR
IGNORE
INIT

YES
NO

 Main
generator
dependent

PERMANENT disabled
Volatile
scalar

PERMANENT disabled PERMANENT
min..max

Extern
scalar

INIT YES
NO

 INIT min..max

PERMANENT disabled
Struct Struct field Refer to field type
Array Array

element
Refer to element type

Global
variables

Pointer Unqualified/
static/
const
scalar

MAIN_
GENERATOR
IGNORE
INIT

 May be
NULL
Not NULL
NULL

NONE
SINGLE
MULTI

Main
generator
dependent

Volatile
pointer

un-
supported

 un-
supported

un-
supported

Extern
pointer

IGNORE
INIT

 May be
NULL
Not NULL
NULL

NONE
SINGLE
MULTI

INIT May be
NULL max
MULTI

Pointed
volatile
scalar

un-
supported

un-
supported

Pointed
extern
scalar

INIT un-
supported

 INIT
min..max

Pointed
other
scalars

MAIN_
GENERATOR
INIT

un-
supported

 MAIN_
GENERATOR
dependent

Pointed
pointer

MAIN_
GENERATOR
INIT/

un-
supported

May be
NULL
Not NULL
NULL

NONE
SINGLE
MULTI

MAIN_
GENERATOR
dependent

Pointed
function

un-
supported

un-
supported

Function
parameters

Userdef
function

Scalar
parameters

MAIN_
GENERATOR
INIT

un-
supported

 INIT
min..max

 XML File Format for Polyspace Analysis Constraints

14-21

Scope Type Init modes Gassert
mode

Initialize
pointer

Init
allocated

Default

Pointer
parameters

MAIN_
GENERATOR
INIT

un-
supported

May be
NULL
Not NULL
NULL

NONE
SINGLE
MULTI

INIT May be
NULL max
MULTI

Other
parameters

Refer to parameter type

Stubbed
function

Scalar
parameter

disabled un-
supported

Pointer
parameters

disabled disabled NONE

SINGLE

MULTI

SINGLE_
CERTAIN_
WRITE

MULTI_
CERTAIN_
WRITE

MULTI

Pointed
parameters

PERMANENT un-
supported

 PERMANENT
min..max

Pointed
const
parameters

disabled un-
supported

Function
return

Userdef
function

Return disabled un-
supported

disabled disabled

Stubbed
function

Scalar
return

PERMANENT un-
supported

 PERMANENT
min..max

Pointer
return

PERMANENT un-
supported

May be
NULL
Not NULL
NULL

NONE

SINGLE

MULTI

SINGLE_
CERTAIN_
WRITE

MULTI_
CERTAIN_
WRITE

PERMANENT
May be NULL
max MULTI

14 Configure Inputs and Stubbing Options

14-22

See Also

More About
• “Specify External Constraints for Polyspace Analysis” on page 14-2
• “Constrain Global Variable Range for Polyspace Analysis” on page 14-12
• “Constrain Function Inputs for Polyspace Analysis” on page 14-14

 XML File Format for Polyspace Analysis Constraints

14-23

Configure Multitasking Analysis

15

Analyze Multitasking Programs in Polyspace
With Polyspace, you can analyze programs where multiple threads (tasks) run concurrently.

In addition to regular run-time checks, the analysis looks for issues specific to concurrent execution:

• Data races, deadlocks, consecutive or missing locks and unlocks (Bug Finder)
• Unprotected shared variables (Code Prover)

15 Configure Multitasking Analysis

15-2

Configure Analysis

If your code uses multitasking primitives from certain families, for instance, pthread_create for
thread creation:

• In Bug Finder, the analysis detects them and extracts your multitasking model from the code.
• In Code Prover, you must enable this automatic detection explicitly. See Enable automatic

concurrency detection for Code Prover (-enable-concurrency-detection).

See “Auto-Detection of Thread Creation and Critical Section in Polyspace” on page 15-7.

Alternatively, define your multitasking model through the analysis options. In the user interface of the
Polyspace desktop products, the options are on the Multitasking node in the Configuration pane.
Most options are common between Bug Finder and Code Prover. The multitasking analysis in Code
Prover is more exhaustive about finding potentially unprotected shared variables and therefore
follows a stricter model. Your code must be written in a specific format for Code Prover to
successfully complete a multitasking analysis. For instance, the functions that you specify as entry
points must be void(void) functions. However, if your code is not already written in this format,
you can work around the restrictions. For details, see “Configuring Polyspace Multitasking Analysis
Manually” on page 15-17.

 Analyze Multitasking Programs in Polyspace

15-3

Review Analysis Results
Bug Finder

A Bug Finder analysis can find many different kinds of concurrency defects including:

• Data races, when operations on a variable from different tasks interfere with each other.
• Deadlocks or double locks, because of incorrect placement of lock and unlock functions

For the complete list, see “Concurrency Defects”. However, the analysis makes certain assumptions
to avoid false positives, and might not find all data races. You can perform an initial check for data
races with Bug Finder, and make a more exhaustive pass later with Code Prover.

Code Prover

The Code Prover analysis exhaustively checks if shared global variables are protected from
concurrent access. The analysis reports variables that are definitely protected in green and variables
that might be unprotected in orange. See “Global Variables” (Polyspace Code Prover).

Review the results using the message on the Result Details pane. See a visual representation of

conflicting operations using the (graph) icon.

15 Configure Multitasking Analysis

15-4

Differences Between Bug Finder and Code Prover
The following table summarizes the differences between the multitasking analysis in Polyspace Bug
Finder and Polyspace Code Prover.

Configuration

 Bug Finder Code Prover
Auto-detection of concurrency
routines

Supported by default Supported on option Enable
automatic concurrency
detection for Code
Prover (-enable-
concurrency-detection)

Constraints on main function None The main function must
terminate. It cannot contain an
infinite loop or a run-time error.

For workarounds if there is an
intentional infinite loop in main,
see “Adapt Code for Code
Prover Multitasking Analysis”
(Polyspace Code Prover).

Atomic operations Depending on the target size,
certain operations are
considered as atomic (non-
interruptable).

To consider all operations as
non-atomic, use the option -
detect-atomic-data-race.
See also Define Atomic
Operations in
Multitasking Code.

All operations are considered as
non-atomic.

 Analyze Multitasking Programs in Polyspace

15-5

Results

 Bug Finder Code Prover
Concurrent unprotected access
on shared variables (data races)

Shown using one of these
results:

• Data race
• Data race on adjacent

bit fields
• Data race through

standard library
function call

Shown using the result
Potentially unprotected
variable.

Code Prover is more exhaustive
when keeping track of control
and data flows. Therefore, Code
Prover might detect probable
data races not detected with
Bug Finder.

Issues with concurrency
routines besides data race:

• Deadlocks, double locks,
missing unlocks, and so on.

• Improper thread creation,
joining or destruction.

• Memory escape from threads

Detected Not detected

See Also

More About
• “Auto-Detection of Thread Creation and Critical Section in Polyspace” on page 15-7
• “Configuring Polyspace Multitasking Analysis Manually” on page 15-17
• “Protections for Shared Variables in Multitasking Code” on page 15-21

15 Configure Multitasking Analysis

15-6

Auto-Detection of Thread Creation and Critical Section in
Polyspace

With Polyspace, you can analyze programs where multiple threads run concurrently. Polyspace can
analyze your multitasking code for data races, deadlocks and other concurrency defects, if the
analysis is aware of the concurrency model in your code. In some situations, Polyspace can detect
thread creation and critical sections in your code automatically. Bug Finder detects them by default.
In Code Prover, you enable automatic detection using the option Enable automatic concurrency
detection for Code Prover (-enable-concurrency-detection).

For the multitasking code analysis workflow, see “Analyze Multitasking Programs in Polyspace” on
page 15-2.

If your thread creation function is not detected automatically:

• You can also map the function to a thread-creation function that Polyspace can detect
automatically. Use the option -code-behavior-specifications.

• Otherwise, you must manually model your multitasking threads by using configuration options.
See “Configuring Polyspace Multitasking Analysis Manually” on page 15-17.

Multitasking Routines that Polyspace Can Detect
Polyspace can detect thread creation and critical sections if you use primitives from these groups.
Polyspace recognizes calls to these routines as the creation of a new thread or as the beginning or
end of a critical section.

POSIX

Thread creation: pthread_create

Critical section begins: pthread_mutex_lock

Critical section ends: pthread_mutex_unlock

VxWorks

Thread creation: taskSpawn

Critical section begins: semTake

Critical section ends: semGive

To activate automatic detection of concurrency primitives for VxWorks®, in the user interface of the
Polyspace desktop products, use the VxWorks template. For more information on templates, see
“Create Project in Polyspace Desktop User Interface Using Configuration Template” on page 2-13. At
the command-line, use these options:

-D1=CPU=I80386
-D2=__GNUC__=2
-D3=__OS_VXWORKS

Concurrency detection is possible only if the multitasking functions are created from an entry point
named main. If the entry point has a different name, such as vxworks_entry_point, do one of the
following:

 Auto-Detection of Thread Creation and Critical Section in Polyspace

15-7

• Provide a main function.
• Preprocessor definitions (-D): In preprocessor definitions, set

vxworks_entry_point=main.

Windows

Thread creation: CreateThread

Critical section begins: EnterCriticalSection

Critical section ends: LeaveCriticalSection

μC/OS II

Thread creation: OSTaskCreate

Critical section begins: OSMutexPend

Critical section ends: OSMutexPost

C++11

Thread creation: std::thread::thread

Critical section begins: std::mutex::lock

Critical section ends: std::mutex::unlock

For autodetection of C++11 threads, explicitly specify paths to your compiler header files or use
polyspace-configure.

For instance, if you use std::thread for thread creation, explicitly specify the path to the folder
containing thread.h.

See also “Limitations of Automatic Thread Detection” on page 15-12.

C11

Thread creation: thrd_create

Critical section begins: mtx_lock

Critical section ends: mtx_unlock

Example of Automatic Thread Detection
The following multitasking code models five philosophers sharing five forks. The example uses
POSIX® thread creation routines and illustrates a classic example of a deadlock. Run Bug Finder on
this code to see the deadlock.

15 Configure Multitasking Analysis

15-8

#include "pthread.h"
#include <stdio.h>
#include <unistd.h>

pthread_mutex_t forks[5];

void* philo1(void* args)
{
 while (1) {
 printf("Philosopher 1 is thinking\n");
 sleep(1);
 pthread_mutex_lock(&forks[0]);
 printf("Philosopher 1 takes left fork\n");
 pthread_mutex_lock(&forks[1]);
 printf("Philosopher 1 takes right fork\n");
 printf("Philosopher 1 is eating\n");
 sleep(1);
 pthread_mutex_unlock(&forks[1]);
 printf("Philosopher 1 puts down right fork\n");
 pthread_mutex_unlock(&forks[0]);
 printf("Philosopher 1 puts down left fork\n");
 }
 return NULL;
}

void* philo2(void* args)
{
 while (1) {
 printf("Philosopher 2 is thinking\n");
 sleep(1);
 pthread_mutex_lock(&forks[1]);
 printf("Philosopher 2 takes left fork\n");
 pthread_mutex_lock(&forks[2]);
 printf("Philosopher 2 takes right fork\n");
 printf("Philosopher 2 is eating\n");
 sleep(1);
 pthread_mutex_unlock(&forks[2]);
 printf("Philosopher 2 puts down right fork\n");
 pthread_mutex_unlock(&forks[1]);
 printf("Philosopher 2 puts down left fork\n");
 }
 return NULL;
}

void* philo3(void* args)
{
 while (1) {
 printf("Philosopher 3 is thinking\n");
 sleep(1);
 pthread_mutex_lock(&forks[2]);
 printf("Philosopher 3 takes left fork\n");
 pthread_mutex_lock(&forks[3]);
 printf("Philosopher 3 takes right fork\n");
 printf("Philosopher 3 is eating\n");
 sleep(1);
 pthread_mutex_unlock(&forks[3]);
 printf("Philosopher 3 puts down right fork\n");

 Auto-Detection of Thread Creation and Critical Section in Polyspace

15-9

 pthread_mutex_unlock(&forks[2]);
 printf("Philosopher 3 puts down left fork\n");
 }
 return NULL;
}

void* philo4(void* args)
{
 while (1) {
 printf("Philosopher 4 is thinking\n");
 sleep(1);
 pthread_mutex_lock(&forks[3]);
 printf("Philosopher 4 takes left fork\n");
 pthread_mutex_lock(&forks[4]);
 printf("Philosopher 4 takes right fork\n");
 printf("Philosopher 4 is eating\n");
 sleep(1);
 pthread_mutex_unlock(&forks[4]);
 printf("Philosopher 4 puts down right fork\n");
 pthread_mutex_unlock(&forks[3]);
 printf("Philosopher 4 puts down left fork\n");
 }
 return NULL;
}

void* philo5(void* args)
{
 while (1) {
 printf("Philosopher 5 is thinking\n");
 sleep(1);
 pthread_mutex_lock(&forks[4]);
 printf("Philosopher 5 takes left fork\n");
 pthread_mutex_lock(&forks[0]);
 printf("Philosopher 5 takes right fork\n");
 printf("Philosopher 5 is eating\n");
 sleep(1);
 pthread_mutex_unlock(&forks[0]);
 printf("Philosopher 5 puts down right fork\n");
 pthread_mutex_unlock(&forks[4]);
 printf("Philosopher 5 puts down left fork\n");
 }
 return NULL;
}

int main(void)
{
 pthread_t ph[5];
 pthread_create(&ph[0], NULL, philo1, NULL);
 pthread_create(&ph[1], NULL, philo2, NULL);
 pthread_create(&ph[2], NULL, philo3, NULL);
 pthread_create(&ph[3], NULL, philo4, NULL);
 pthread_create(&ph[4], NULL, philo5, NULL);

 pthread_join(ph[0], NULL);
 pthread_join(ph[1], NULL);
 pthread_join(ph[2], NULL);
 pthread_join(ph[3], NULL);
 pthread_join(ph[4], NULL);

15 Configure Multitasking Analysis

15-10

 return 1;
}

Each philosopher needs two forks to eat, a right and a left fork. The functions philo1, philo2,
philo3, philo4, and philo5 represent the philosophers. Each function requires two
pthread_mutex_t resources, representing the two forks required to eat. All five functions run at the
same time in five concurrent threads.

However, a deadlock occurs in this example. When each philosopher picks up their first fork (each
thread locks one pthread_mutex_t resource), all the forks are being used. So, the philosophers
(threads) wait for their second fork (second pthread_mutex_t resource) to become available.
However, all the forks (resources) are being held by the waiting philosophers (threads), causing a
deadlock.

Naming Convention for Automatically Detected Threads
If you use a function such as pthread_create() to create new threads (tasks), each thread is
associated with an unique identifier. For instance, in this example, two threads are created with
identifiers id1 and id2.

pthread_t* id1, id2;

void main()
{
 pthread_create(id1, NULL, start_routine, NULL);
 pthread_create(id2, NULL, start_routine, NULL);
}

If a data race occurs between the threads, the analysis can detect it. When displaying the results, the
threads are indicated as task_id, where id is the identifier associated with the thread. In the
preceding example, the threads are identified as task_id1 and task_id2.

If a thread identifier is:

• Local to a function, the thread name shows the function.

For instance, the thread created below appears as task_f:id

void f(void)
{
 pthread_t* id;
 pthread_create(id, NULL, start_routine, NULL);
}

• A field of a structure, the thread name shows the structure.

For instance, the thread created below appears as task_a#id

struct {pthread_t* id; int x;} a;
pthread_create(a.id,NULL,start_routine,NULL);

• An array member, the thread name shows the array.

For instance, the thread created below appears as task_tab[1].

 Auto-Detection of Thread Creation and Critical Section in Polyspace

15-11

pthread_t* tab[10];
pthread_create(tab[1],NULL,start_routine,NULL);

If you create two threads with distinct thread identifiers, but you use the same local variable name
for the thread identifiers, the name of the second thread is modified to distinguish it from the first
thread. For instance, the threads below appear as task_func:id and task_func:id:1.

void func()
{
 {
 pthread_t id;
 pthread_create(&id, NULL, &task, NULL);

 }
 {
 pthread_t id;
 pthread_create(&id, NULL, &task, NULL);

 }
}

Limitations of Automatic Thread Detection
The multitasking model extracted by Polyspace does not include some features. Polyspace cannot
model:

• Thread priorities and attributes — Ignored by Polyspace.
• Recursive semaphores.
• Unbounded thread identifiers, such as extern pthread_t ids[] — Warning.
• Calls to concurrency primitive through high-order calls — Warning.
• Aliases on thread identifiers — Polyspace over-approximates when the alias is used.
• Termination of threads — Polyspace ignores pthread_join and thrd_join. Polyspace replaces

pthread_exit and thrd_exit by a standard exit.
• (Polyspace Bug Finder only) Creation of multiple threads through multiple calls to the same

function with different pointer arguments.

Example

In this example, Polyspace considers that only one thread is created.

pthread_t id1, id2;
void start(pthread_t* id)
{
 pthread_create(id, NULL, start_routine, NULL);
}
void main()
{
 start(&id1);
 start(&id2);
}

• (Polyspace Code Prover only) Shared local variables — Only global variables are considered
shared. If a local variable is accessed by multiple threads, the analysis does not take into account
the shared nature of the variable.

15 Configure Multitasking Analysis

15-12

Example

In this example, the analysis does not take into account that the local variable x can be accessed
by both task1 and task2 (after the new thread is created).

#include <pthread.h>
#include <stdlib.h>

void* task2(void* args)
{
 int* x = (int*) args;
 *x = 1;
 return (void*)x;
}

void task1()
{
 int x;
 x = 2;
 pthread_t id;
 (void)pthread_create(&id, NULL, task2, (void*) &x);
 /* x (local var) passed to task2 */
 x = 3 ;

 /* Unknown thread priority means x = 1 OR x = 3.*/
 /* However, the analysis considers x = 3 */
 /* Assertion below is green */
 assert(x == 3);
}

int main(void)
{
 task1();
 return 0;
}

• (Polyspace Code Prover only) Shared dynamic memory — Only global variables are considered
shared. If a dynamically allocated memory region is accessed by multiple threads, the analysis
does not take into account its shared nature.

Example

In this example, the analysis does not take into account that lx points to a shared memory region.
The region can be accessed by both task1 and task2 (after the new thread is created). The Code
Prover analysis also reports lx as a non-shared variable.

 Auto-Detection of Thread Creation and Critical Section in Polyspace

15-13

#include <pthread.h>
#include <stdlib.h>

static int* lx;

void* task2(void* args)
{
 int* x = (int*) args;
 *x = 1;
 return (void*)x;
}

void task1()
{
 pthread_t id;
 lx = (int*)malloc(sizeof(int));

 if (lx == NULL) exit(1);

 (void)pthread_create(&id, NULL, task2, (void*) lx);

 *lx = 3 ;

 /* Unknown thread priority means *lx = 1 OR *lx = 3.*/
 /* However, the analysis considers *lx = 3 */
 /* Assertion below is green */
 assert(*lx == 3);
}

int main(void)
{
 task1();
 return 0;
}

• Number of tasks created with CreateThread when threadId is set to NULL— When you create
multiple threads that execute the same function, if the last argument of CreateThread is NULL,
Polyspace only detects one instance of this function, or task.

Example

In this example, Polyspace detects only one instance of thread_function1(), but 10 instances
of thread_function2().

15 Configure Multitasking Analysis

15-14

#include <windows.h>

#define MAX_LOOP_THREADS 10

DWORD WINAPI thread_function1(LPVOID data) {}
DWORD WINAPI thread_function2(LPVOID data) {}

HANDLE hds1[MAX_LOOP_THREADS];
HANDLE hds2[MAX_LOOP_THREADS];
DWORD threadId[MAX_LOOP_THREADS];

int main(void)
{
 for (int i = 0; i < MAX_LOOP_THREADS; i++) {

 hds1[i] = CreateThread(NULL, 0, thread_function1, NULL, 0, NULL);
 hds2[i] = CreateThread(NULL, 0, thread_function2, NULL, 0, &threadId[i]);
 }

 return 0;
}

• (C++11 only) If you use lambda expressions as start functions during thread creation, Polyspace
does not detect shared variables in the lambda expressions.

Example

In this example, Polyspace does not detect that the variable y used in the lambda expressions is
shared between two threads. As a result, Bug Finder, for instance, does not show a Data race
defect.

#include <thread>
int y;
int main() {
 std::thread t1([] {y++;});
 std::thread t2([] {y++;});
 t1.join();
 t2.join();
 return 0;
}

• (C++11 threads with Polyspace Code Prover only) String literals as thread function argument —
Code Prover shows a red Illegally dereferenced pointer error if the thread function has an
std::string& parameter and you pass a string literal argument.

Example

In this example, the thread function foo has an std::string& parameter. When starting a
thread, a string literal is passed as argument to this function, which undergoes an implicit
conversion to std::string type. Code Prover loses track of the original string literal in this
conversion. Therefore, a dashed red underline appears on operator<< in the body of foo and a
red Illegally dereferenced pointer check in the body of operator<<.

 Auto-Detection of Thread Creation and Critical Section in Polyspace

15-15

#include <iostream>
#include <thread>

using namespace std;

void foo(const std::string& f) {
 std::cout << f;
}

void main() {
 std::thread t1(foo,"foo_arg");
}

To work around this issue, assign the string literal to a temporary variable and pass the variable
as argument to the thread function.

#include <iostream>
#include <thread>

using namespace std;

void foo(const std::string& f) {
 std::cout << f;
}

void main() {
 std::string str = "foo_arg";
 std::thread t1(foo, str);
}

See Also
Enable automatic concurrency detection for Code Prover (-enable-concurrency-
detection) | -code-behavior-specifications

More About
• “Analyze Multitasking Programs in Polyspace” on page 15-2
• “Configuring Polyspace Multitasking Analysis Manually” on page 15-17

15 Configure Multitasking Analysis

15-16

Configuring Polyspace Multitasking Analysis Manually
With Polyspace, you can analyze programs where multiple threads run concurrently. In some
situations, Polyspace can detect thread creation and critical sections in your code automatically. See
“Auto-Detection of Thread Creation and Critical Section in Polyspace” on page 15-7.

If your code has functions that are intended for concurrent execution, but that cannot be detected
automatically, you must specify them before analysis. If these functions operate on a common
variable, you must also specify protection mechanisms for those operations.

For the multitasking code analysis workflow, see “Analyze Multitasking Programs in Polyspace” on
page 15-2.

Specify Options for Multitasking Analysis
Use these options to specify cyclic tasks, interrupts and protections for shared variables. In the user
interface of the Polyspace desktop products, the options are on the Multitasking node in the
Configuration pane. The following options can be used in both a Bug Finder and Code Prover
analysis:

• Tasks (-entry-points): Specify noncyclic entry point functions.

Do not specify main. Polyspace implicitly considers main as an entry point function.
• Critical section details (-critical-section-begin -critical-section-end):

Specify functions that begin and end critical sections.
• Temporally exclusive tasks (-temporal-exclusions-file): Specify groups of

functions that are temporally exclusive.

A Polyspace analysis supports four levels of task priorities. That is, the analysis can take into
consideration the fact that certain tasks cannot be interrupted by tasks with lower priorities. You can
use these options to indicate task priorities:

• Cyclic tasks (-cyclic-tasks): Specify functions that are scheduled at periodic intervals.
• Interrupts (-interrupts): Specify functions that can run asynchronously.
• -preemptable-interrupts: Specify functions that have lower priority than interrupts, but

higher priority than tasks (preemptable or non-preemptable).
• -non-preemptable-tasks: Specify functions that have higher priority than tasks, but lower

priority than interrupts (preemptable or non-preemptable).
• Disabling all interrupts (-routine-disable-interrupts -routine-enable-

interrupts): Specify functions that disable and reenable interrupts.

For an example of using priorities, see “Protections for Shared Variables in Multitasking Code” on
page 15-21.

Adapt Code for Code Prover Multitasking Analysis
The multitasking analysis in Code Prover is more exhaustive about finding potentially unprotected
shared variables and therefore follows a strict model.

Tasks and interrupts must be void(void) functions.

 Configuring Polyspace Multitasking Analysis Manually

15-17

Functions that you specify as tasks and interrupts must have the prototype:

void func(void);

Suppose you want to specify a function func that takes int arguments and has return type int:

int func(int);

Define a wrapper void-void function that calls func with a volatile value. Specify this wrapper
function as a task or interrupt.

void func_wrapper() {
 volatile int arg;
 (void)func(arg);
}

You can save the wrapper function definition along with a declaration of the original function in a
separate file and add this file to the analysis.

The main function must end.

Code Prover assumes that the main function ends before all tasks and interrupts begin. If the main
function contains an infinite loop or run-time error, the tasks and interrupts are not analyzed. If you
see that there are no checks in your tasks and interrupts, look for a token underlined in dashed red to
identify the issue in the main function. See “Reasons for Unchecked Code” (Polyspace Code Prover).

Suppose you want to specify the main function as a cyclic task.

void performTask1Cycle(void);
void performTask2Cycle(void);

void main() {
 while(1) {
 performTask1Cycle();
 }
}

void task2() {
 while(1) {
 performTask2Cycle();
 }
}

Replace the definition of main with:

#ifdef POLYSPACE
void main() {
}
void task1() {
 while(1) {
 performTask1Cycle();
 }
}

#else
void main() {
 while(1) {
 performTask1Cycle();

15 Configure Multitasking Analysis

15-18

 }
}
#endif

The replacement defines an empty main and places the content of main into another function task1
if a macro POLYSPACE is defined. Define the macro POLYSPACE using the option Preprocessor
definitions (-D) and specify task1 for the option Tasks (-entry-points).

This assumption does not apply to automatically detected threads. For instance, a main function can
create threads using pthread_create.

The Polyspace multitasking analysis assumes that a task or interrupt cannot interrupt itself.

All tasks and interrupts can run any number of times in any sequence.

The Code Prover analysis considers that all tasks and interrupts can run any number of times in any
sequence.

Suppose in this example, you specify reset and inc as cyclic tasks. The analysis shows an overflow
on the operation var+=2.

void reset(void) {
 var=0;
}

void inc(void) {
 var+=2;
}

Suppose you want to model a scheduling of tasks such that reset executes after inc has executed
five times. Write a wrapper function that implements this sequence. Specify this new function as a
cyclic task instead of reset and inc.

void task() {
 volatile int randomValue = 0;
 while(randomValue) {
 inc();
 inc();
 inc();
 inc();
 inc();
 reset();
 }
 }

Suppose you want to model a scheduling of tasks such that reset executes after inc has executed
zero to five times. Write a wrapper function that implements this sequence. Specify this new function
as a cyclic task instead of reset and inc.

void task() {
 volatile int randomValue = 0;
 while(randomValue) {
 if(randomValue)
 inc();
 if(randomValue)
 inc();
 if(randomValue)

 Configuring Polyspace Multitasking Analysis Manually

15-19

 inc();
 if(randomValue)
 inc();
 if(randomValue)
 inc();
 reset();
 }
 }

See Also

More About
• “Analyze Multitasking Programs in Polyspace” on page 15-2
• “Auto-Detection of Thread Creation and Critical Section in Polyspace” on page 15-7

15 Configure Multitasking Analysis

15-20

Protections for Shared Variables in Multitasking Code
If your code is intended for multitasking, tasks in your code can access a common shared variable. To
prevent data races, you can protect read and write operations on the variable. This topic shows the
various protection mechanisms that Polyspace can recognize.

Detect Unprotected Access

You can detect an unprotected access using either Bug Finder or Code Prover. Code Prover is more
exhaustive and proves if a shared variable is protected from concurrent access.

• Bug Finder detects an unprotected access using the result Data race. See Data race.
• Code Prover detects an unprotected access using the result Shared unprotected global

variable. See Potentially unprotected variable.

Suppose you analyze this code, specifying signal_handler_1 and signal_handler_2 as cyclic
tasks. Use the analysis option Cyclic tasks (-cyclic-tasks).

#include <limits.h>
int shared_var;

void inc() {
 shared_var+=2;
}

void reset() {
 shared_var = 0;
}

void signal_handler_1(void) {
 reset();
 inc();
 inc();
}

void signal_handler_2(void) {
 shared_var = INT_MAX;
}

 void main() {
}

 Protections for Shared Variables in Multitasking Code

15-21

Bug Finder shows a data race on shared_var. Code Prover shows that shared_var is a potentially
unprotected shared variable. Code Prover also shows that the operation shared_var += 2 can
overflow. The overflow occurs if the call to inc in signal_handler_1 immediately follows the
operation shared_var = INT_MAX in signal_handler_2.

Protect Using Critical Sections
One possible solution is to protect operations on shared variables using critical sections.

In the preceding example, modify your code so that operations on shared_var are in the same
critical section. Use the functions take_semaphore and give_semaphore to begin and end the
critical sections. To specify these functions that begin and end critical sections, use the analysis
options Critical section details (-critical-section-begin -critical-section-
end).

#include <limits.h>
int shared_var;

void inc() {
 shared_var+=2;
}

void reset() {
 shared_var = 0;
}

/* Declare lock and unlock functions */
void take_semaphore(void);
void give_semaphore(void);

void signal_handler_1() {
 /* Begin critical section */
 take_semaphore();
 reset();
 inc();
 inc();
 /* End critical section */
 give_semaphore();

}

void signal_handler_2() {
 /* Begin critical section */
 take_semaphore();
 shared_var = INT_MAX;
 /* End critical section */
 give_semaphore();

}

void main() {
}

You do not see the data race in Bug Finder. Code Prover proves that the shared variable is protected.
You also do not see the overflow because the call to reset() in signal_handler_1 always
precedes calls to inc().

15 Configure Multitasking Analysis

15-22

You can also use primitives such as the POSIX functions pthread_mutex_lock and
pthread_mutex_unlock to begin and end critical sections. For a list of primitives that Polyspace
can detect automatically, see “Auto-Detection of Thread Creation and Critical Section in Polyspace” on
page 15-7.

Protect Using Temporally Exclusive Tasks
Another possible solution is to specify a group of tasks as temporally exclusive. Temporally exclusive
tasks cannot interrupt each other.

In the preceding example, specify that signal_handler_1 and signal_handler_2 are temporally
exclusive. Use the option Temporally exclusive tasks (-temporal-exclusions-file).

You do not see the data race in Bug Finder. Code Prover proves that the shared variable is protected.
You also do not see the overflow because the call to reset() in signal_handler_1 always
precedes calls to inc().

Protect Using Priorities
Another possible solution is to specify that one task has higher priority over another.

In the preceding example, specify that signal_handler_1 is an interrupt. Retain
signal_handler_2 as a cyclic task. Use the options Cyclic tasks (-cyclic-tasks) and
Interrupts (-interrupts).

Bug Finder does not show the data race defect anymore. The reason is this:

• The operation shared_var = INT_MAX in signal_handler_2 is atomic. Therefore, the
operations in signal_handler_1 cannot interrupt it.

• The operations in signal_handler_1 cannot be interrupted by the operation in
signal_handler_2 because signal_handler_1 has higher priority.

You can specify up to four different priorities with these options (with highest priority listed first):

• Interrupts (-interrupts)
• -preemptable-interrupts
• -non-preemptable-tasks
• Cyclic tasks (-cyclic-tasks)

A task with higher priority is atomic with respect to a task with lower priority. Note that if you use the
option -detect-atomic-data-race, the analysis ignores the difference in priorities and continues
to show the data race. See also “Define Task Priorities for Data Race Detection in Polyspace” on page
15-28.

Code Prover does not consider atomicity of operations, so it continues to show shared_var as a
potentially unprotected variable (the operations in signal_handler_1 can still interrupt the
operations in signal_handler_2). Code Prover shows shared_var as protected only when you
specify both signal_handler_1 and signal_handler_2 as interrupts.

 Protections for Shared Variables in Multitasking Code

15-23

Protect By Disabling Interrupts
In a Bug Finder analysis, you can protect a group of operations by disabling all tasks and interrupts
other than the current one.

Use the option Disabling all interrupts (-routine-disable-interrupts -routine-
enable-interrupts) to specify a routine that disables all interruption when called, and a routine
that reenables them. The disabling routine disables preemption by all:

• Non-cyclic tasks.

See Tasks (-entry-points).
• Cyclic tasks.

See Cyclic tasks (-cyclic-tasks).
• Interrupts.

See Interrupts (-interrupts).

In other words, the analysis considers that the body of operations between the disabling routine and
the enabling routine is atomic and not interruptible at all.

After you call a routine to disable interrupts, all subsequent operations are atomic until you call the
other routine to reenable interrupts. The operations are atomic with respect to operations in all other
tasks.

See Also

More About
• “Analyze Multitasking Programs in Polyspace” on page 15-2
• “Define Atomic Operations in Multitasking Code” on page 15-25

15 Configure Multitasking Analysis

15-24

Define Atomic Operations in Multitasking Code
In code with multiple threads, you can use Polyspace Bug Finder to detect data races or Polyspace
Code Prover to list potentially unprotected shared variables.

To determine if a variable shared between multiple threads is protected against concurrent access,
Polyspace checks if the operations on the variable are atomic.

Nonatomic Operations
If an operation is nonatomic, Polyspace considers that the operation involves multiple steps. These
steps do not need to occur together and can be interrupted by operations in other threads.

For instance, consider these two operations in two different threads:

• Thread 1: var++;

This operation is nonatomic because it takes place in three steps: reading var, incrementing var,
and writing back var.

• Thread 2: var = 0;

This operation is atomic if the size of var is less than the word size on the target. See details
below for how Polyspace determines the word size.

If the two operations are not protected (by using, for instance, critical sections), the operation in the
second thread can interrupt the operation in the first thread. If the interruption happens after var is
incremented in the first thread but before the incremented value is written back, you can see
unexpected results.

What Polyspace Considers as Nonatomic
Code Prover considers all operations as nonatomic unless you protect them, for instance, by using
critical sections. See “Define Specific Operations as Atomic” on page 15-26.

Bug Finder considers an operation as nonatomic if it can translate into more than one machine
instruction. For instance:

• The operation can involve both a read and write operation. For example, var++ involves reading
the value of var, increasing the value by one and writing the increased value back to var.

• The operation can involve a 64-bit variable on a 32-bit target. For example, the operation

long long var1, var2;
var1=var2;

involves two steps in copying the content of var2 to var1 on certain targets.

Polyspace uses the Pointer size for your Target processor type as the threshold to compute
atomicity. For instance, if you use i386 as your Target processor type, the Pointer size is 32
bits and Long long and Double sizes are both 64 bits. Therefore, Polyspace considers copying
one long long or double variable to another as nonatomic.

See also Target processor type (-target).

 Define Atomic Operations in Multitasking Code

15-25

• The operation can involve writing the return value of a function call to a shared variable. For
example, the operation x=func() involves calling func and writing the return value of func to x.

To detect data races where at least one of the two interrupting operations is nonatomic, enable the
Bug Finder checker Data race. To remove this constraint on the checker, use the option -detect-
atomic-data-race.

Define Specific Operations as Atomic
You might want to define a group of operations as atomic. This group of operations cannot be
interrupted by operations in another thread or task.

Use one of these techniques:

• Critical sections

Protect a group of operations with critical sections.

A critical section begins and ends with calls to specific functions. You can use a predefined set of
primitives to begin or end critical sections, or use your own functions.

A group of operations in a critical section are atomic with respect to another group of operations
that are in the same critical section (that is, having the same beginning and ending function).

Specify critical sections using the option Critical section details (-critical-
section-begin -critical-section-end).

• Temporally exclusive tasks

Protect a group of operations by specifying certain tasks as temporally exclusive.

If a group of tasks are temporally exclusive, all operations in one task are atomic with respect to
operations in the other tasks.

Specify temporal exclusion using the option Temporally exclusive tasks (-temporal-
exclusions-file).

• Task priorities

Protect a group of operations by specifying that certain tasks have higher priorities. For instance,
interrupts have higher priorities over cyclic tasks.

You can specify up to four different priorities with these options (with highest priority listed first):

• Interrupts (-interrupts)
• -preemptable-interrupts
• -non-preemptable-tasks
• Cyclic tasks (-cyclic-tasks)

All operations in a task with higher priority are atomic with respect to operations in tasks with
lower priorities. See also “Define Task Priorities for Data Race Detection in Polyspace” on page
15-28.

• Routine disabling interrupts (Bug Finder only)

15 Configure Multitasking Analysis

15-26

Protect a group of operations by disabling all interrupts. Use the option Disabling all
interrupts (-routine-disable-interrupts -routine-enable-interrupts).

After you call a routine to disable interrupts, all subsequent operations are atomic until you call
another routine to reenable interrupts. The operations are atomic with respect to operations in all
other tasks.

For a tutorial, see “Protections for Shared Variables in Multitasking Code” on page 15-21.

See Also
Cyclic tasks (-cyclic-tasks) | Interrupts (-interrupts) | Critical section
details (-critical-section-begin -critical-section-end) | Temporally exclusive
tasks (-temporal-exclusions-file)

More About
• “Analyze Multitasking Programs in Polyspace” on page 15-2
• “Protections for Shared Variables in Multitasking Code” on page 15-21

 Define Atomic Operations in Multitasking Code

15-27

Define Task Priorities for Data Race Detection in Polyspace
Bug Finder detects data races between concurrent tasks. One of the ways you can fix data races is by
specifying that certain tasks have higher priorities over others. A task with higher priority is atomic
with respect to tasks with lower priority and cannot be interrupted by those tasks.

Emulating Task Priorities
You can specify up to four different priorities with these options (with highest priority listed first):

• Interrupts (nonpreemptable): Use option Interrupts (-interrupts).
• Interrupts (preemptable): Use options Interrupts (-interrupts) and -preemptable-

interrupts.
• Cyclic tasks (nonpreemptable): Use options Cyclic tasks (-cyclic-tasks) and -non-

preemptable-tasks.

You can also define preemptable noncyclic tasks with the option Tasks (-entry-points) and -
non-preemptable-tasks.

• Cyclic tasks (preemptable): Use option Cyclic tasks (-cyclic-tasks).

You can also define noncyclic tasks with the option Tasks (-entry-points).

For instance, interrupts have the highest priority and cannot be preempted by other tasks. To define a
class of interrupts that can be preempted, lower their priority by making them preemptable.

Examples of Task Priorities
Consider this example with three tasks. A variable var is shared between the two tasks task1 and
task2 without any protection such as a critical section. Depending on the priorities of task1 and
task2, Bug Finder shows a data race. The third task is not relevant for the example (and is added
only to include a critical section, otherwise data race detection is disabled).

int var;

void begin_critical_section(void);
void end_critical_section(void);

void task1(void) {
 var++;
}

void task2(void) {
 var = 0;
}

void task3(void){
 begin_critical_section();
 /* Some atomic operation */
 end_critical_section();
}

Adjust the priorities of task1 and task2 and see whether a data race is detected. For instance:

15 Configure Multitasking Analysis

15-28

1 Configure these multitasking options:

• Interrupts (-interrupts): Specify task1 and task2 as interrupts.
• Cyclic tasks (-cyclic-tasks): Specify task3 as a cyclic task.
• Critical section details (-critical-section-begin -critical-section-

end): Specify begin_critical_section as a function beginning a critical section and
end_critical_section as a function ending a critical section.

2 Run Bug Finder.

You do not see a data race. Since task1 and task2 are nonpreemptable interrupts, the shared
variable cannot be accessed concurrently.

3 Change task1 to a preemptable interrupt by using the option -preemptable-interrupts.
4 Run Bug Finder again. You now see a data race on the shared variable var.

Further Explorations
Modify this example in the following ways and see the effect of the modification:

• Change the priorities of task1 and task2.

For instance, you can leave task1 as a nonpreemptable interrupt but change task2 to a
preemptable interrupt by using the option -preemptable-interrupts.

The data race disappears. The reason is:

• task1 has higher priority and cannot be interrupted by task2.
• The operation in task2 is atomic and cannot be interrupted by task1.

• Specify the option -detect-atomic-data-race.

You see the data race again. The checker considers all operations as potentially nonatomic and the
operation in task2 can now be interrupted by the higher priority operation in task1.

Try other modifications to the analysis options and see the result of the checkers.

Effect of Task Priorities in Code Prover
The options to specify task priorities are also accepted in Code Prover. However, Code Prover
considers all operations as potentially non-atomic and interruptible. This overapproximation can lead
to situations where the task priority specifications appear to be ignored.

For instance, in the preceding example, if you run Code Prover, the overapproximation can lead to
false positives.

• If you specify both task1 and task2 as nonpreemptable interrupts, the shared variable var
appears as a green Shared protected global variable. This is a sound result since both tasks
cannot be interrupted.

• If you specify that task1 has lower priority than task2, the shared variable var appears as an
orange Potentially unprotected variable. This is a sound and precise result since the operation
var++ in task1 is nonatomic and involves more than one machine instruction. The operation can
be interrupted by the operation var = 0 in task2.

 Define Task Priorities for Data Race Detection in Polyspace

15-29

• If you specify that task1 has higher priority than task2, the shared variable var still appears as
an orange Potentially unprotected variable. This is a sound but imprecise result:

• The operation var++ in task1 cannot be interrupted because of the higher priority of task1.
• The operation var = 0 in task2 cannot be interrupted because it is atomic.

However, because Code Prover considers all operations as potentially non-atomic, it considers var
= 0 in task2 as interruptible and therefore continues to show var as potentially unprotected.

See Also
Polyspace Analysis Options
Interrupts (-interrupts) | -preemptable-interrupts | -non-preemptable-tasks |
Cyclic tasks (-cyclic-tasks)

Polyspace Results
Data race | Potentially unprotected variable | Shared variable

More About
• “Analyze Multitasking Programs in Polyspace” on page 15-2
• “Protections for Shared Variables in Multitasking Code” on page 15-21
• “Define Atomic Operations in Multitasking Code” on page 15-25

15 Configure Multitasking Analysis

15-30

Define Critical Sections with Functions That Take Arguments
When verifying multitasking code, Polyspace considers that a critical section lies between calls to a
lock and unlock function.

lock();
/* Critical section code */
unlock();

A group of operations in a critical section are atomic with respect to another group of operations that
are in the same critical section (that is, having the same lock and unlock function). See also “Define
Atomic Operations in Multitasking Code” on page 15-25.

Polyspace Assumption on Functions Defining Critical Sections
Polyspace ignores arguments to functions that begin and end critical sections.

For instance, Polyspace treats the two code sections below as the same critical section if you specify
my_task_1 and my_task_2 as entry points, my_lock as the lock function and my_unlock as the
unlock function.

int shared_var;

void my_lock(int);
void my_unlock(int);

void my_task_1() {
 my_lock(1);
 /* Critical section code */
 shared_var=0;
 my_unlock(1);
}

void my_task_2() {
 my_lock(2);
 /* Critical section code */
 shared_var++;
 my_unlock(2);
}

As a result, the analysis considers that these two sections are protected from interrupting each other
even though they might not be protected. For instance, Bug Finder does not detect the data race on
shared_var.

Often, the function arguments can be determined only at run time. Since Polyspace models the
critical sections prior to the static analysis and run-time error checking phase, the analysis cannot
determine if the function arguments are different and ignores the arguments.

Adapt Polyspace Analysis to Lock and Unlock Functions with
Arguments
When the arguments to the functions defining critical sections are compile-time constants, you can
adapt the analysis to work around the Polyspace assumption.

 Define Critical Sections with Functions That Take Arguments

15-31

For instance, you can use Polyspace analysis options so that the code in the preceding example
appears to Polyspace as shown here.

int shared_var;

void my_lock_1(void);
void my_lock_2(void);
void my_unlock_1(void);
void my_unlock_2(void);

void my_task_1() {
 my_lock_1();
 /* Critical section code */
 shared_var=0;
 my_unlock_1();
}

void my_task_2() {
 my_lock_2();
 /* Critical section code */
 shared_var++;
 my_unlock_2();
}

If you then specify my_lock_1 and my_lock_2 as the lock functions and my_unlock_1 and
my_unlock_2 as the unlock functions, the analysis recognizes the two sections of code as part of
different critical sections. For instance, Bug Finder detects a data race on shared_var.

To adapt the analysis for lock and unlock functions that take compile-time constants as arguments:

1 In a header file common_polyspace_include.h, convert the function arguments into
extensions of the function name with #define-s. In addition, provide a declaration for the new
functions.

For instance, for the preceding example, use these #define-s and declarations:

#define my_lock(X) my_lock_##X()
#define my_unlock(X) my_unlock_##X()

void my_lock_1(void);
void my_lock_2(void);
void my_unlock_1(void);
void my_unlock_2(void);

2 Specify the file name common_polyspace_include.h as argument for the option Include (-
include).

The analysis considers this header file as #include-d in all source files that are analyzed.
3 Specify the new function names as functions beginning and ending critical sections. Use the

options Critical section details (-critical-section-begin -critical-section-
end).

See Also
Critical section details (-critical-section-begin -critical-section-end)

15 Configure Multitasking Analysis

15-32

More About
• “Protections for Shared Variables in Multitasking Code” on page 15-21

 Define Critical Sections with Functions That Take Arguments

15-33

Configure Coding Rules Checking and
Code Metrics Computation

16

Check for and Review Coding Standard Violations
With Polyspace, you can check your C/C++ code for violations of coding rules such as MISRA C:2012
rules. Adhering to coding rules can reduce the number of defects and improve the quality of your
code.

Polyspace can detect coding rule violations for these standards:

• MISRA C:2004
• MISRA C:2012
• MISRA C++
• JSF AV C++
• AUTOSAR C++14 (Bug Finder only)
• CERT C (Bug Finder only)
• CERT C++ (Bug Finder only)
• CWE™ (Bug Finder only)
• ISO®/IEC TS 17961 (Bug Finder only)
• Guidelines (Bug Finder only)

Configure Coding Rules Checking

16 Configure Coding Rules Checking and Code Metrics Computation

16-2

Specify Standard and Predefined Checker Subsets

Specify the coding rules through Polyspace analysis options. When you run Bug Finder, the analysis
looks for coding rule violations in addition to other checks. You can disable the other checks and look
for coding rule violations only.

In the Polyspace user interface (desktop products), the options are on the Configuration pane under
the Coding Standards & Code Metrics node.

For C code, use one of these options:

• Check MISRA C:2004 (-misra2)

For generated code, enable the option specific to generated code.
• Check MISRA C:2012 (-misra3)

For generated code, enable the option specific to generated code.
• Check SEI CERT-C (-cert-c)
• Check ISO/IEC TS 17961 (-iso-17961)
• Check guidelines (-guidelines)
• Check CWE (-cwe)

For C++ code, use one of these options:

• Check MISRA C++:2008 (-misra-cpp)
• Check JSF AV C++ rules (-jsf-coding-rules)
• Check AUTOSAR C++ 14 (-autosar-cpp14)
• Check SEI CERT-C++ (-cert-cpp)
• Check guidelines (-guidelines)
• Check CWE (-cwe)

You can specify a predefined subset of rules, for instance, mandatory for MISRA C:2012. These
subsets are typically defined by the standard.

You can also define naming conventions for identifiers using regular expressions. See “Create Custom
Coding Rules” on page 16-48.

Customize Checker Subsets

Instead of the predefined subsets, you can specify your own subset of rules from a coding standard.

User Interface (Desktop Products Only)

1 Select the coding standard. From the drop-down list for the subset of rules, select from-file.
Click Edit.

2 In the Checkers selection window, the coding standard is highlighted on the left pane. On the
right pane, select the rules that you want to include in your analysis.

• When selecting Guidelines > Software Complexity checkers, review their thresholds. If the
default thresholds are not acceptable, specify a suitable threshold in the Threshold column.
See Check guidelines (-guidelines).

 Check for and Review Coding Standard Violations

16-3

• When selecting Custom rules, review the Pattern and Convention for the rules. See Check
custom rules (-custom-rules).

When you save the rule selections, the configuration is saved in an XML file that you can reuse for
multiple analyses. The same file contains rules selected for all coding standards. You can reuse this
file across multiple projects to enforce common coding standards in a team or organization. To reuse
this file in another project in the Polyspace user interface:

• Choose a coding standard in the project configuration. From the drop-down list for the subset of
rules, select from-file.

• Click Edit and browse to the file location. Alternatively, enter the file name as argument for the
option Set checkers by file (-checkers-selection-file).

Command Line

With the Polyspace desktop products, you can create a coding standard XML file in the user interface
and then use this file for command-line analysis. Provide this XML file with the option Set checkers
by file (-checkers-selection-file).

16 Configure Coding Rules Checking and Code Metrics Computation

16-4

With the Polyspace Server products, you have to create a coding standard XML from scratch.
Depending on the standard that you want to enable, make a writeable copy of one of the files in
polyspaceserverroot\help\toolbox\bugfinder\examples\coding_standards_XML and
turn off rules using entries in the XML file (all rules from a standard are enabled in the template).
Here, polyspaceserverroot is the root installation folder for the Polyspace Server products, for
instance, C:\Program Files\Polyspace Server\R2023a.

For instance, to turn off MISRA C:2012 rule 8.1, use this entry in a copy of the file
misra_c_2012_rules.xml:

<standard name="MISRA C:2012">
 ...
 <section name="8 Declarations and definitions">
 ...
 <check id="8.1" state="off">
 </check>
 ...
 </section>
 ...
</standard>

When using the Guideline checkers, specify their threshold between the threshold tags. For
instance, to activates the checker Cyclomatic complexity exceeds threshold and set the
threshold for the checker to five, use this entry in a copy of the guidelines.xml:

<check id="SC18" state="on">
 <threshold>5</threshold>
</check>

To use the XML file for a MISRA C:2012 analysis in Bug Finder, enter:

polyspace-bug-finder -sources filename -misra3 from-file
 -checkers-selection-file misra_c_2012_rules.xml

For full list of rule id-s and section names, see:

• “AUTOSAR C++14 Rules”
• “CERT C Rules and Recommendations”
• “CERT C++ Rules”
• “ISO/IEC TS 17961 Rules”
• “Custom Coding Rules”
• “Common Weakness Enumeration (CWE)”
• “JSF C++ Rules”
• “MISRA C:2004 Rules”
• “MISRA C:2012 Directives and Rules”
• “MISRA C++:2008 Rules”
• “Guidelines”

Note The XML format of the checker configuration file can change in future releases.

 Check for and Review Coding Standard Violations

16-5

Check for Coding Standards Only

A Bug Finder analysis checks C/C++ code for:

• A default set of defects (bugs)
• Adherence to any coding standard that you specify.

To check for coding standards only, disable defect checking entirely. Specify none for the option Find
defects (-checkers).

Review Coding Rule Violations

After analysis, you see the coding standard violations on the Results List pane. Select a violation to
see further details on the Result Details pane and the source code on the Source pane.

16 Configure Coding Rules Checking and Code Metrics Computation

16-6

Violations of coding standards are indicated in the source code with the icon.

For further steps, see “Review Analysis Results” or “Review Polyspace Bug Finder Results in Web
Browser”.

Generate Reports
You can generate reports using templates that are explicitly defined for coding standards. Use the
CodingStandards template. This template:

• Reports only coding standard violations in your analysis results, and omits other types of results
such as defects, run-time errors or code metrics.

• Creates a separate chapter in the report for each coding standard. the chapter provides an
overview of all violations of the standard and then lists each violation.

To specify a report template, use the option Bug Finder and Code Prover report (-report-
template).

See Also

More About
• “Interpret Bug Finder Results in Polyspace Desktop User Interface” on page 21-2
• “Interpret Bug Finder Results in Polyspace Access Web Interface” on page 25-2
• “Address Results in Polyspace User Interface Through Bug Fixes or Justifications” on page 22-

2
• “Filter and Group Results in Polyspace Desktop User Interface” on page 23-2
• “Generate Reports from Polyspace Results” on page 24-2

 Check for and Review Coding Standard Violations

16-7

Avoid Violations of MISRA C:2012 Rules 8.x
MISRA C:2012 rules 8.1-8.14 enforce good coding practices surrounding declarations and definitions.
If you follow these practices, you are less likely to have conflicting declarations or to unintentionally
modify variables.

If you do not follow these practices during coding, your code might require major changes later to be
MISRA C-compliant. You might have too many MISRA C violations. Sometimes, in fixing a violation,
you might violate another rule. Instead, keep these rules in mind when coding. Use the MISRA
C:2012 checker to spot any issues that you might have missed.

• Explicitly specify all data types in declarations.

Avoid implicit data types like this declaration of k:

extern void foo (char c, const k);

Instead use:

extern void foo (char c, const int k);

That way, you do not violate MISRA C:2012 Rule 8.1.
• When declaring functions, provide names and data types for all parameters.

Avoid declarations without parameter names like these declarations:

extern int func(int);
extern int func2();

Instead use:

extern int func(int arg);
extern int func2(void);

That way, you do not violate MISRA C:2012 Rule 8.2.
• If you want to use an object or function in multiple files, declare the object or function

once in only one header file.

To use an object in multiple source files, declare it as extern in a header file. Include the header
file in all the source files where you need the object. In one of those source files, define the object.
For instance:

/* header.h */
extern int var;

/* file1.c */
#include "header.h"
/* Some usage of var */

/* file2.c */
#include "header.h"
int var=1;

To use a function in multiple source files, declare it in a header file. Include the header file in all
the source files where you need the function. In one of those source files, define the function.

16 Configure Coding Rules Checking and Code Metrics Computation

16-8

That way, you do not violate MISRA C:2012 Rule 8.3, MISRA C:2012 Rule 8.4, MISRA
C:2012 Rule 8.5, or MISRA C:2012 Rule 8.6.

• If you want to use an object or function in one file only, declare and define the object or
function with the static specifier.

Make sure that you use the static specifier in all declarations and the definition. For instance,
this function func is meant to be used only in the current file:

static int func(void);
static int func(void){
}

That way, you do not violateMISRA C:2012 Rule 8.7 and MISRA C:2012 Rule 8.8.
• If you want to use an object in one function only, declare the object in the function body.

Avoid declaring the object outside the function.

For instance, if you use var in func only, do declare it outside the body of func:

int var;
void func(void) {
 var=1;
}

Instead use:

void func(void) {
 int var;
 var=1;
}

That way, you do not violate MISRA C:2012 Rule 8.7 and MISRA C:2012 Rule 8.9.
• If you want to inline a function, declare and define the function with the static
specifier.

Every time you add inline to a function definition, add static too:

static inline double func(int val);
static inline double func(int val) {
}

That way, you do not violate MISRA C:2012 Rule 8.10.
• When declaring arrays, explicitly specify their size.

Avoid implicit size specifications like this:

extern int32_t array[];

Instead use:

#define MAXSIZE 10
extern int32_t array[MAXSIZE];

That way, you do not violate MISRA C:2012 Rule 8.11.
• When declaring enumerations, try to avoid mixing implicit and explicit specifications.

 Avoid Violations of MISRA C:2012 Rules 8.x

16-9

Avoid mixing implicit and explicit specifications. You can specify the first enumeration constant
explicitly, but after that, use either implicit or explicit specifications. For instance, avoid this type
of mix:

enum color {red = 2, blue, green = 3, yellow};

Instead use:

enum color {red = 2, blue, green, yellow};

That way, you do not violate MISRA C:2012 Rule 8.12.
• When declaring pointers, point to a const-qualified type unless you want to use the

pointer to modify an object.

Point to a const-qualified type by default unless you intend to use the pointer for modifying the
pointed object. For instance, in this example, ptr is not used to modify the pointed object:

char last_char(const char * const ptr){
}

That way, you do not violate MISRA C:2012 Rule 8.13.

16 Configure Coding Rules Checking and Code Metrics Computation

16-10

Reduce Software Complexity by Using Polyspace Checkers
Software complexity refers to various quantifiable metrics of a software module or source files, such
as number of lines, number of paths, number of functions, or the complexity of the function call tree.
The Polyspace software complexity checkers are raised when these metrics exceeds a threshold. High
software complexity might indicate that your code is difficult to read, understand, and debug. It is
more efficient to maintain the acceptable level of software complexity during development instead of
refactoring complex projects later on. Use the software complexity checkers to detect complex
modules early in the development cycle to reduce later refactoring efforts.

You can also calculate the absolute values of code complexity metrics for all files and functions. See
“Compute Code Complexity Metrics Using Polyspace” on page 16-51.

Configure Thresholds for Software Complexity Checkers
Each software complexity checker corresponds to a complexity metric. Polyspace raises a software
complexity checker when the corresponding code complexity metric exceeds a threshold.

The default thresholds of these checkers follow the Hersteller Initiative Software (HIS) Code
Complexity standard. See “HIS Code Complexity Metrics” on page 16-54. For checkers that are not
present in the HIS standard, the default thresholds are high enough that the code complexity metrics
of your code might always be below the threshold. To use these checkers effectively, specify an
appropriate threshold for them.

Determine an appropriate set of thresholds for these checkers depending on the best practice for
your use case. For instance, when analyzing new projects or newly developed code, you might want to
reduce the use of GOTO statements by setting the threshold of Number of goto statements
exceeds threshold to zero. When analyzing modules containing legacy libraries, you might want
to set the threshold to a higher number.

Depending on your Polyspace product, use the user interface or the command-line interface to specify
the threshold. For instance:

• In Polyspace desktop or Server products, in the Checkers selection window, navigate to
Guidelines > Software Complexity and specify the threshold. In the command line, use the
analysis option Check guidelines (-guidelines). See “Check for and Review Coding
Standard Violations” on page 16-2.

• In Polyspace as You Code extension, start the Checkers selection window and specify the
thresholds in the Guidelines > Software Complexity node.

• In Eclipse, open the Checkers selection window from the Configure Project window. See
“Configure Checkers for Polyspace as You Code in Eclipse” on page 11-60.

• In Visual Studio, open the Checkers selection window from the Polyspace > Project node of
the Options window. See “Configure Checkers for Polyspace as You Code in Visual Studio” on
page 11-63.

• In Visual Studio Code, open the Checkers selection window from the command palette. See
“Configure Checkers for Polyspace as You Code in Visual Studio Code” on page 11-66.

• At the command line, open the Checkers selection window by running the command
polyspace-checkers-selection. See “Configure Checkers for Polyspace as You Code at
the Command Line” on page 11-70.

 Reduce Software Complexity by Using Polyspace Checkers

16-11

Identify and Reduce Software Complexity
Identify Software Complexity by Running Bug Finder Analysis

To identify software complexity, configure the thresholds of the checkers. For instance, set the
thresholds of the checkers listed in this table.

Checker Threshold
Comment density below threshold 20
Call tree complexity exceeds threshold 10
Number of call occurrences exceeds
threshold

10

Language scope exceeds threshold 400

The thresholds indicate the acceptable level of software complexity. To identify issues in your code
that might lead to a higher level of complexity, after configuring the software complexity checkers,
run a Polyspace Bug Finder analysis. Consider this code:

 long long power(double x, int n){
 long long BN = 1;
 for(int i = 0; i<n;++i){
 BN*=x;
 }
 return BN;
 }

 double AppxIndex(double m, double f){//Noncompliant
 double U = (power(m,2) - 1)/(power(m,2)+2);
 double V = (power(m,4) + 27*power(m,2)+38)/(2*power(m,2)+3);
 return (1+2*f*power(U,2)*(1+power(m,2)*U*V+ power(m,3)
 /power(m,3)*(U-V)))/((1-2*f*power(U,2)*(1+power(m,2)*U*V
 + power(m,3)/power(m,3)*(U-V))));
 }

The function AppxIndex appears complex. It is not obvious how you might reduce the complexity.
The software complexity checkers help you identify the sources of complexity.

After the Bug Finder analysis, the configured checkers are raised:

• Comment density below threshold: The functions in the code contain no explanatory
comments.

• Call tree complexity exceeds threshold and Number of call occurrences
exceeds threshold: There are too many function calls compared to the number of function
definitions. These checks indicate that you can package some of the expressions into separate
functions.

• Language scope exceeds threshold: The same operand is repeated several times. You can
reduce some of the repetition. For instance, the function power is called with the same arguments
several times.

These checks indicate that the function AppxIndex might make the code difficult to read,
understand, and debug. To reduce the complexity of the code, address the raised checks.

16 Configure Coding Rules Checking and Code Metrics Computation

16-12

Reduce Software Complexity

Reduce the complexity of your code by addressing the identified issues. In this case, the root cause of
the raised checks is that the function AppxIndex performs several tasks instead of performing one
single task. For instance, the function first calculates U, then it calculates V, and finally it evaluates a
lengthy expression containing both U and V. To address these issues, refactor the function
AppxIndex so that each task is delegated to a separate function. You might break down the lengthy
expression into smaller parts. For instance:

// This code calculates effective index of materials as described in
// the formula in 10.1364...
// power(x,n) returns the nth power of x (x^n)
// n is an integer
// x is a double
// return type is long long

long long power(double x, int n){//Compliant
 long long BN = 1;
 for(int i = 0; i<n;++i){
 BN*=x;
 }
 return BN;
}
// CalculateU(m) calculates the first intermediate variable
// required to calculate polarization
// m is the relative refractive index
// return type is double;

double CalculateU(double m){//Compliant
 return (power(m,2) - 1)/(power(m,2)+2);
}
// CalculateV(m) calculates the second intermediate variable
// required to calculate polarization
// m is the relative refractive index
// return type is double;

double CalculateV(double m){//Compliant
 return (power(m,4) + 27*power(m,2)+38)/(2*power(m,2)+3);
}
// CalculateMid(m,f) calculates the large term present
// in both numerator and denominator
// of the effective index calculation
// m is the relative refractive index
// f is the fillfactor
// return type is double;

double CalculateMid(double m, double f){//Compliant
 double U = CalculateU(m);
 double V = CalculateU(m);
 return 2*f*power(U,2)*(1+power(m,2)*U*V + power(m,3)/power(m,3)*(U-V));
}
//AppxIndex(m,f) calculates the approximate effective index
// m is the relative refractive index
// f is the fillfactor
//return type is double
double AppxIndex(double m, double f){//Compliant

 Reduce Software Complexity by Using Polyspace Checkers

16-13

 return (1+CalculateMid(m,f))/((1-CalculateMid(m,f)));
}

In this code, none of the software complexity checkers is raised, which indicates that you reduced the
complexity of this code to an acceptable level. To reduce the software complexity:

1 Document the code with sufficient comments.
2 Break down the The large complex task performed by AppxIndex into smaller and simpler tasks,

which are then delegated to individual functions such as CalculateU, CalculateV and
CalculateMid. The function power is now called less frequently. If you later implement a
different function to calculate a power and want to use the new function instead of the current
one, you have to make fewer replacements.

3 Write the new functions to perform one specific task with as little overlap of their functionalities
as possible. As a result, these functions contain less repetition of the same operands.

For details about addressing a software complexity check, see the documentation of the checker.

In cases when you are unable to refactor the code, address the checks through code annotations. For
instance, if you are using a complex library, you might choose to annotate the checks that are raised
on the library. See “Annotate Code and Hide Known or Acceptable Results” on page 30-2. When you
annotate a file or function code metric, the corresponding software complexity checker is also
annotated by the same comment.

See Also

More About
• “Guidelines”

16 Configure Coding Rules Checking and Code Metrics Computation

16-14

Software Quality Objective Subsets (C:2004)

In this section...
“Rules in SQO-Subset1” on page 16-15
“Rules in SQO-Subset2” on page 16-16

Rules in SQO-Subset1
The SQO subset1 consists of these rules:

Rule number Description
5.2 Identifiers in an inner scope shall not use the same name as an identifier in an

outer scope, and therefore hide that identifier.
8.11 The static storage class specifier shall be used in definitions and declarations of

objects and functions that have internal linkage.
8.12 When an array is declared with external linkage, its size shall be stated

explicitly or defined implicitly by initialisation.
11.2 Conversion shall not be performed between a pointer to an object and any type

other than an integral type, another pointer to object type or a pointer to void.
11.3 A cast should not be performed between a pointer type and an integral type.
12.12 The underlying bit representations of floating-point values shall not be used.
13.3 Floating-point expressions shall not be tested for equality or inequality.
13.4 The controlling expression of a for statement shall not contain any objects of

floating type.
13.5 The three expressions of a for statement shall be concerned only with loop

control.
14.4 The goto statement shall not be used.
14.7 A function shall have a single point of exit at the end of the function.
16.1 Functions shall not be defined with variable numbers of arguments.
16.2 Functions shall not call themselves, either directly or indirectly.
16.7 A pointer parameter in a function prototype should be declared as pointer to

const if the pointer is not used to modify the addressed object.
17.3 >, >=, <, <= shall not be applied to pointer types except where they point to

the same array.
17.4 Array indexing shall be the only allowed form of pointer arithmetic.
17.5 The declaration of objects should contain no more than 2 levels of pointer

indirection.
17.6 The address of an object with automatic storage shall not be assigned to an

object that may persist after the object has ceased to exist.
18.4 Unions shall not be used.
20.4 Dynamic heap memory allocation shall not be used.

 Software Quality Objective Subsets (C:2004)

16-15

Rules in SQO-Subset2
Good design practices generally lead to less code complexity. The following set of coding rules
enforce good design practices. The SQO-subset2 option checks the rules in SQO-subset1 and some
additional rules.

Rule number Description
5.2 Identifiers in an inner scope shall not use the same name as an identifier in an

outer scope, and therefore hide that identifier.
6.3 Typedefs that indicate size and signedness should be used in place of the basic

types.
8.7 Objects shall be defined at block scope if they are only accessed from within a

single function.
8.11 The static storage class specifier shall be used in definitions and declarations

of objects and functions that have internal linkage.
8.12 When an array is declared with external linkage, its size shall be stated

explicitly or defined implicitly by initialisation.
9.2 Braces shall be used to indicate and match the structure in the non-zero

initialisation of arrays and structures.
9.3 In an enumerator list, the '=' construct shall not be used to explicitly initialise

members other than the first, unless all items are explicitly initialised.
10.3 The value of a complex expression of integer type may only be cast to a type

that is narrower and of the same signedness as the underlying type of the
expression.

10.5 If the bitwise operator ~ and << are applied to an operand of underlying
type unsigned char or unsigned short, the result shall be immediately cast to
the underlying type of the operand.

11.1 Conversion shall not be performed between a pointer to a function and any
type other than an integral type.

11.2 Conversion shall not be performed between a pointer to an object and any type
other than an integral type, another pointer to object type or a pointer to void.

11.3 A cast should not be performed between a pointer type and an integral type.
11.5 A cast shall not be performed that removes any const or volatile qualification

from the type addressed by a pointer.
12.1 Limited dependence should be placed on C's operator precedence rules in

expressions.
12.2 The value of an expression shall be the same under any order of evaluation that

the standard permits.
12.5 The operands of a logical && or || shall be primary-expressions.
12.6 The operands of a logical operators (&&, || and !) should be effectively

Boolean. Expressions that are effectively Boolean should not be used as
operands to operators other than (&&, || and !).

12.9 The unary minus operator shall not be applied to an expression whose
underlying type is unsigned.

16 Configure Coding Rules Checking and Code Metrics Computation

16-16

Rule number Description
12.10 The comma operator shall not be used.
12.12 The underlying bit representations of floating-point values shall not be used.
13.1 Assignment operators shall not be used in expressions that yield a Boolean

value.
13.2 Tests of a value against zero should be made explicit, unless the operand is

effectively Boolean.
13.3 Floating-point expressions shall not be tested for equality or inequality.
13.4 The controlling expression of a for statement shall not contain any objects of

floating type.
13.5 The three expressions of a for statement shall be concerned only with loop

control.
13.6 Numeric variables being used within a for loop for iteration counting should

not be modified in the body of the loop.
14.4 The goto statement shall not be used.
14.7 A function shall have a single point of exit at the end of the function.
14.8 The statement forming the body of a switch, while, do ... while or for statement

shall be a compound statement.
14.10 All if ... else if constructs should contain a final else clause.
15.3 The final clause of a switch statement shall be the default clause.
16.1 Functions shall not be defined with variable numbers of arguments.
16.2 Functions shall not call themselves, either directly or indirectly.
16.3 Identifiers shall be given for all of the parameters in a function prototype

declaration.
16.7 A pointer parameter in a function prototype should be declared as pointer to

const if the pointer is not used to modify the addressed object.
16.8 All exit paths from a function with non-void return type shall have an explicit

return statement with an expression.
16.9 A function identifier shall only be used with either a preceding &, or with a

parenthesised parameter list, which may be empty.
17.3 >, >=, <, <= shall not be applied to pointer types except where they

point to the same array.
17.4 Array indexing shall be the only allowed form of pointer arithmetic.
17.5 The declaration of objects should contain no more than 2 levels of pointer

indirection.
17.6 The address of an object with automatic storage shall not be assigned to an

object that may persist after the object has ceased to exist.
18.4 Unions shall not be used.
19.4 C macros shall only expand to a braced initialiser, a constant, a parenthesised

expression,a type qualifier, a storage class specifier, or a do-while-zero
construct.

 Software Quality Objective Subsets (C:2004)

16-17

Rule number Description
19.9 Arguments to a function-like macro shall not contain tokens that look like pre-

processing directives.
19.10 In the definition of a function-like macro each instance of a parameter shall be

enclosed in parentheses unless it is used as the operand of # or ##.
19.11 All macro identifiers in preprocessor directives shall be defined before use,

except in #ifdef and #ifndef preprocessor directives and the defined() operator.
19.12 There shall be at most one occurrence of the # or ## pre-processor operators

in a single macro definition.
20.3 The validity of values passed to library functions shall be checked.
20.4 Dynamic heap memory allocation shall not be used.

Note Polyspace software does not check MISRA rule 20.3 directly.

However, you can check this rule by writing manual stubs that check the validity of values. For
example, the following code checks the validity of an input being greater than 1:

int my_system_library_call(int in) {assert (in>1); if random \
return -1 else return 0; }

See Also
Check MISRA C:2004 (-misra2)

More About
• “Check for and Review Coding Standard Violations” on page 16-2

16 Configure Coding Rules Checking and Code Metrics Computation

16-18

Software Quality Objective Subsets (AC AGC)
In this section...
“Rules in SQO-Subset1” on page 16-19
“Rules in SQO-Subset2” on page 16-20

Rules in SQO-Subset1
The SQO subset1 consists of these rules:

Rule number Description
5.2 Identifiers in an inner scope shall not use the same name as an identifier in an

outer scope, and therefore hide that identifier
8.11 The static storage class specifier shall be used in definitions and declarations

of objects and functions that have internal linkage
8.12 When an array is declared with external linkage, its size shall be stated

explicitly or defined implicitly by initialisation
11.2 Conversion shall not be performed between a pointer to an object and any type

other than an integral type, another pointer to object type or a pointer to void
11.3 A cast should not be performed between a pointer type and an integral type
12.12 The underlying bit representations of floating-point values shall not be used
13.4 The controlling expression of a for statement shall not contain any objects of

floating type
13.5 The three expressions of a for statement shall be concerned only with loop

control
14.4 The goto statement shall not be used
14.7 A function shall have a single point of exit at the end of the function
16.1 Functions shall not be defined with variable numbers of arguments
16.2 Functions shall not call themselves, either directly or indirectly
16.7 A pointer parameter in a function prototype should be declared as pointer to

const if the pointer is not used to modify the addressed object
17.3 >, >=, <, <= shall not be applied to pointer types except where they point to

the same array
17.4 Array indexing shall be the only allowed form of pointer arithmetic
17.5 The declaration of objects should contain no more than 2 levels of pointer

indirection
17.6 The address of an object with automatic storage shall not be assigned to an

object that may persist after the object has ceased to exist
18.4 Unions shall not be used
20.4 Dynamic heap memory allocation shall not be used

For more information about these rules, see MISRA AC AGC Guidelines for the Application of MISRA-
C:2004 in the Context of Automatic Code Generation.

 Software Quality Objective Subsets (AC AGC)

16-19

Rules in SQO-Subset2
Good design practices generally lead to less code complexity. The following set of coding rules
enforce good design practices. The SQO-subset2 option checks the rules in SQO-subset1 and some
additional rules.

Rule number Description
5.2 Identifiers in an inner scope shall not use the same name as an identifier in an

outer scope, and therefore hide that identifier
6.3 Typedefs that indicate size and signedness should be used in place of the basic

types
8.7 Objects shall be defined at block scope if they are only accessed from within a

single function
8.11 The static storage class specifier shall be used in definitions and declarations

of objects and functions that have internal linkage
8.12 When an array is declared with external linkage, its size shall be stated

explicitly or defined implicitly by initialisation
9.2 Braces shall be used to indicate and match the structure in the non-zero

initialisation of arrays and structures
9.3 In an enumerator list, the '=' construct shall not be used to explicitly initialise

members other than the first, unless all items are explicitly initialised
10.3 The value of a complex expression of integer type may only be cast to a type

that is narrower and of the same signedness as the underlying type of the
expression

10.5 If the bitwise operator ~ and << are applied to an operand of underlying type
unsigned char or unsigned short, the result shall be immediately cast to the
underlying type of the operand

11.1 Conversion shall not be performed between a pointer to a function and any
type other than an integral type

11.2 Conversion shall not be performed between a pointer to an object and any type
other than an integral type, another pointer to object type or a pointer to void

11.3 A cast should not be performed between a pointer type and an integral type
11.5 A cast shall not be performed that removes any const or volatile qualification

from the type addressed by a pointer
12.1 Limited dependence should be placed on C's operator precedence rules in

expressions
12.2 The value of an expression shall be the same under any order of evaluation that

the standard permits
12.5 The operands of a logical && or || shall be primary-expressions
12.6 The operands of a logical operators (&&, || and !) should be effectively

Boolean. Expressions that are effectively Boolean should not be used as
operands to operators other than (&&, || and !)

12.9 The unary minus operator shall not be applied to an expression whose
underlying type is unsigned

16 Configure Coding Rules Checking and Code Metrics Computation

16-20

Rule number Description
12.10 The comma operator shall not be used
12.12 The underlying bit representations of floating-point values shall not be used
13.1 Assignment operators shall not be used in expressions that yield a Boolean

value
13.2 Tests of a value against zero should be made explicit, unless the operand is

effectively Boolean
13.4 The controlling expression of a for statement shall not contain any objects of

floating type
13.5 The three expressions of a for statement shall be concerned only with loop

control
13.6 Numeric variables being used within a for loop for iteration counting should

not be modified in the body of the loop
14.4 The goto statement shall not be used
14.7 A function shall have a single point of exit at the end of the function
14.8 The statement forming the body of a switch, while, do ... while or for statement

shall be a compound statement
14.10 All if ... else if constructs should contain a final else clause
16.1 Functions shall not be defined with variable numbers of arguments
16.2 Functions shall not call themselves, either directly or indirectly
16.3 Identifiers shall be given for all of the parameters in a function prototype

declaration
16.7 A pointer parameter in a function prototype should be declared as pointer to

const if the pointer is not used to modify the addressed object
16.8 All exit paths from a function with non-void return type shall have an explicit

return statement with an expression
16.9 A function identifier shall only be used with either a preceding &, or with a

parenthesised parameter list, which may be empty
17.3 >, >=, <, <= shall not be applied to pointer types except where they point to

the same array
17.4 Array indexing shall be the only allowed form of pointer arithmetic
17.5 The declaration of objects should contain no more than 2 levels of pointer

indirection
17.6 The address of an object with automatic storage shall not be assigned to an

object that may persist after the object has ceased to exist
18.4 Unions shall not be used
19.4 C macros shall only expand to a braced initialiser, a constant, a parenthesised

expression,a type qualifier, a storage class specifier, or a do-while-zero
construct

19.9 Arguments to a function-like macro shall not contain tokens that look like pre-
processing directives

 Software Quality Objective Subsets (AC AGC)

16-21

Rule number Description
19.10 In the definition of a function-like macro each instance of a parameter shall be

enclosed in parentheses unless it is used as the operand of # or ##
19.11 All macro identifiers in preprocessor directives shall be defined before use,

except in #ifdef and #ifndef preprocessor directives and the defined() operator
19.12 There shall be at most one occurrence of the # or ## pre-processor operators

in a single macro definition
20.3 The validity of values passed to library functions shall be checked
20.4 Dynamic heap memory allocation shall not be used

Note Polyspace software does not check MISRA rule 20.3 directly.

However, you can check this rule by writing manual stubs that check the validity of values. For
example, the following code checks the validity of an input being greater than 1:

int my_system_library_call(int in) {assert (in>1); if random \
return -1 else return 0; }

For more information about these rules, see MISRA AC AGC Guidelines for the Application of MISRA-
C:2004 in the Context of Automatic Code Generation.

See Also
Check MISRA AC AGC (-misra-ac-agc)

More About
• “Check for and Review Coding Standard Violations” on page 16-2

16 Configure Coding Rules Checking and Code Metrics Computation

16-22

Software Quality Objective Subsets (C:2012)

In this section...
“Guidelines in SQO-Subset1” on page 16-23
“Guidelines in SQO-Subset2” on page 16-24

These subsets of MISRA C:2012 guidelines can have a direct or indirect impact on the precision of
your Polyspace results. When you set up coding rules checking, you can select these subsets.

Guidelines in SQO-Subset1
The SQO subset1 consists of these rules:

Rule Description
D1.1 Any implementation-defined behaviour on which the output of the program

depends shall be documented and understood.
5.3 An identifier declared in an inner scope shall not hide an identifier declared in an

outer scope.
8.8 The static storage class specifier shall be used in all declarations of objects and

functions that have internal linkage.
8.11 When an array with external linkage is declared, its size should be explicitly

specified.
8.13 A pointer should point to a const-qualified type whenever possible.
11.1 Conversions shall not be performed between a pointer to a function and any other

type.
11.2 Conversions shall not be performed between a pointer to an incomplete type and

any other type.
11.4 A conversion should not be performed between a pointer to object and an integer

type.
11.5 A conversion should not be performed from pointer to void into pointer to object.
11.6 A cast shall not be performed between pointer to void and an arithmetic type.
11.7 A cast shall not be performed between pointer to object and a non-integer

arithmetic type.
14.1 A loop counter shall not have essentially floating type.
14.2 A for loop shall be well-formed.
15.1 The goto statement should not be used.
15.2 The goto statement shall jump to a label declared later in the same function.
15.3 Any label referenced by a goto statement shall be declared in the same block, or

in any block enclosing the goto statement.
15.5 A function should have a single point of exit at the end.
17.1 The features of <stdarg.h> shall not be used.
17.2 Functions shall not call themselves, either directly or indirectly.

 Software Quality Objective Subsets (C:2012)

16-23

Rule Description
18.3 The relational operators >, >=, < and <= shall not be applied to objects of

pointer type except where they point into the same object.
18.4 The +, -, += and -= operators should not be applied to an expression of pointer

type.
18.5 Declarations should contain no more than two levels of pointer nesting.
18.6 The address of an object with automatic storage shall not be copied to another

object that persists after the first object has ceased to exist.
19.2 The union keyword should not be used.
21.3 The memory allocation and deallocation functions of <stdlib.h> shall not be used.

Guidelines in SQO-Subset2
Good design practices generally lead to less code complexity. The following set of coding rules
enforce good design practices. The SQO-subset2 option checks the rules in SQO-subset1 and some
additional rules.

Rule Description
D1.1 Any implementation-defined behaviour on which the output of the program

depends shall be documented and understood.
D4.6 typedefs that indicate size and signedness should be used in place of the basic

numerical types.
D4.11 The validity of values passed to library functions shall be checked.
5.3 An identifier declared in an inner scope shall not hide an identifier declared in an

outer scope.
8.2 Function types shall be in prototype form with named parameters.
8.8 The static storage class specifier shall be used in all declarations of objects and

functions that have internal linkage.
8.9 An object should be defined at block scope if its identifier only appears in a single

function.
8.11 When an array with external linkage is declared, its size should be explicitly

specified.
8.12 Within an enumerator list, the value of an implicitly-specified enumeration

constant shall be unique.
8.13 A pointer should point to a const-qualified type whenever possible.
9.2 The initializer for an aggregate or union shall be enclosed in braces.
9.3 Arrays shall not be partially initialized.
10.1 Operands shall not be of an inappropriate essential type.
10.8 The value of a composite expression shall not be cast to a different essential type

category or a wider essential type.
11.1 Conversions shall not be performed between a pointer to a function and any other

type.

16 Configure Coding Rules Checking and Code Metrics Computation

16-24

Rule Description
11.2 Conversions shall not be performed between a pointer to an incomplete type and

any other type.
11.4 A conversion should not be performed between a pointer to object and an integer

type.
11.5 A conversion should not be performed from pointer to void into pointer to object.
11.6 A cast shall not be performed between pointer to void and an arithmetic type.
11.7 A cast shall not be performed between pointer to object and a non-integer

arithmetic type.
11.8 A cast shall not remove any const or volatile qualification from the type pointed to

by a pointer.
12.1 The precedence of operators within expressions should be made explicit.
12.3 The comma operator should not be used
13.2 The value of an expression and its persistent side effects shall be the same under

all permitted evaluation orders.
13.4 The result of an assignment operator should not be used.
14.1 A loop counter shall not have essentially floating type.
14.2 A for loop shall be well-formed.
14.4 The controlling expression of an if statement and the controlling expression of an

iteration-statement shall have essentially Boolean type.
15.1 The goto statement should not be used.
15.2 The goto statement shall jump to a label declared later in the same function.
15.3 Any label referenced by a goto statement shall be declared in the same block, or

in any block enclosing the goto statement.
15.5 A function should have a single point of exit at the end.
15.6 The body of an iteration-statement or a selection-statement shall be a compound-

statement.
15.7 All if ... else if constructs shall be terminated with an else statement.
16.4 Every switch statement shall have a default label.
16.5 A default label shall appear as either the first or the last switch label of a switch

statement.
17.1 The features of <stdarg.h> shall not be used.
17.2 Functions shall not call themselves, either directly or indirectly.
17.4 All exit paths from a function with non-void return type shall have an explicit

return statement with an expression.
18.3 The relational operators >, >=, < and <= shall not be applied to objects of

pointer type except where they point into the same object.
18.4 The +, -, += and -= operators should not be applied to an expression of pointer

type.
18.5 Declarations should contain no more than two levels of pointer nesting.

 Software Quality Objective Subsets (C:2012)

16-25

Rule Description
18.6 The address of an object with automatic storage shall not be copied to another

object that persists after the first object has ceased to exist.
19.2 The union keyword should not be used.
20.4 A macro shall not be defined with the same name as a keyword.
20.6 Tokens that look like a preprocessing directive shall not occur within a macro

argument.
20.7 Expressions resulting from the expansion of macro parameters shall be enclosed

in parentheses.
20.9 All identifiers used in the controlling expression of #if or #elif preprocessing

directives shall be #define'd before evaluation.
20.11 A macro parameter immediately following a # operator shall not immediately be

followed by a ## operator.
21.3 The memory allocation and deallocation functions of <stdlib.h> shall not be used.

See Also
Check MISRA C:2012 (-misra3)

More About
• “Check for and Review Coding Standard Violations” on page 16-2

16 Configure Coding Rules Checking and Code Metrics Computation

16-26

Software Quality Objective Subsets (C++)

In this section...
“SQO Subset 1 – Direct Impact on Selectivity” on page 16-27
“SQO Subset 2 – Indirect Impact on Selectivity” on page 16-28

SQO Subset 1 – Direct Impact on Selectivity
The SQO subset 1 consists of these MISRA C++:2008 rules:

MISRA C++ Rule Description
2-10-2 Identifiers declared in an inner scope shall not hide an identifier declared in an outer

scope.
3-1-3 When an array is declared, its size shall either be stated explicitly or defined implicitly

by initialization.
3-3-2 If a function has internal linkage then all re-declarations shall include the static storage

class specifier.
3-9-3 The underlying bit representations of floating-point values shall not be used.
5-0-15 Array indexing shall be the only form of pointer arithmetic.
5-0-18 >, >=, <, <= shall not be applied to objects of pointer type, except where they point to

the same array.
5-0-19 The declaration of objects shall contain no more than two levels of pointer indirection.
5-2-8 An object with integer type or pointer to void type shall not be converted to an object

with pointer type.
5-2-9 A cast should not convert a pointer type to an integral type.
6-2-2 Floating-point expressions shall not be directly or indirectly tested for equality or

inequality.
6-5-1 A for loop shall contain a single loop-counter which shall not have floating type.
6-5-2 If loop-counter is not modified by -- or ++, then, within condition, the loop-counter shall

only be used as an operand to <=, <, > or >=.
6-5-3 The loop-counter shall not be modified within condition or statement.
6-5-4 The loop-counter shall be modified by one of: --, ++, -=n, or +=n ; where n remains

constant for the duration of the loop.
6-6-1 Any label referenced by a goto statement shall be declared in the same block, or in a

block enclosing the goto statement.
6-6-2 The goto statement shall jump to a label declared later in the same function body.
6-6-4 For any iteration statement there shall be no more than one break or goto statement

used for loop termination.
6-6-5 A function shall have a single point of exit at the end of the function.
7-5-1 A function shall not return a reference or a pointer to an automatic variable (including

parameters), defined within the function.

 Software Quality Objective Subsets (C++)

16-27

MISRA C++ Rule Description
7-5-2 The address of an object with automatic storage shall not be assigned to another object

that may persist after the first object has ceased to exist.
7-5-4 Functions should not call themselves, either directly or indirectly.
8-4-1 Functions shall not be defined using the ellipsis notation.
9-5-1 Unions shall not be used.
10-1-2 A base class shall only be declared virtual if it is used in a diamond hierarchy.
10-1-3 An accessible base class shall not be both virtual and non-virtual in the same hierarchy.
10-3-1 There shall be no more than one definition of each virtual function on each path through

the inheritance hierarchy.
10-3-2 Each overriding virtual function shall be declared with the virtual keyword.
10-3-3 A virtual function shall only be overridden by a pure virtual function if it is itself

declared as pure virtual.
15-0-3 Control shall not be transferred into a try or catch block using a goto or a switch

statement.
15-1-3 An empty throw (throw;) shall only be used in the compound- statement of a catch

handler.
15-3-3 Handlers of a function-try-block implementation of a class constructor or destructor

shall not reference non-static members from this class or its bases.
15-3-5 A class type exception shall always be caught by reference.
15-3-6 Where multiple handlers are provided in a single try-catch statement or function-try-

block for a derived class and some or all of its bases, the handlers shall be ordered most-
derived to base clas s.

15-3-7 Where multiple handlers are provided in a single try-catch statement or function-try-
block, any ellipsis (catch-all) handler shall occur last.

15-4-1 If a function is declared with an exception-specification, then all declarations of the
same function (in other translation units) shall be declared with the same set of type-ids.

15-5-1 A class destructor shall not exit with an exception.
15-5-2 Where a function's declaration includes an exception-specification, the function shall

only be capable of throwing exceptions of the indicated type(s).
18-4-1 Dynamic heap memory allocation shall not be used.

SQO Subset 2 – Indirect Impact on Selectivity
Good design practices generally lead to less code complexity. The following set of coding rules may
help to address design issues in your code. The SQO-subset2 option checks the rules in SQO-
subset1 and SQO-subset2.

MISRA C++ Rule Description
2-10-2 Identifiers declared in an inner scope shall not hide an identifier declared in an outer

scope.
3-1-3 When an array is declared, its size shall either be stated explicitly or defined implicitly

by initialization.

16 Configure Coding Rules Checking and Code Metrics Computation

16-28

MISRA C++ Rule Description
3-3-2 If a function has internal linkage then all re-declarations shall include the static storage

class specifier.
3-4-1 An identifier declared to be an object or type shall be defined in a block that minimizes

its visibility.
3-9-2 Typedefs that indicate size and signedness should be used in place of the basic

numerical types.
3-9-3 The underlying bit representations of floating-point values shall not be used.
4-5-1 Expressions with type bool shall not be used as operands to built-in operators other

than the assignment operator =, the logical operators &&, ||, !, the equality operators
== and !=, the unary & operator, and the conditional operator.

5-0-1 The value of an expression shall be the same under any order of evaluation that the
standard permits.

5-0-2 Limited dependence should be placed on C++ operator precedence rules in
expressions.

5-0-7 There shall be no explicit floating-integral conversions of a cvalue expression.
5-0-8 An explicit integral or floating-point conversion shall not increase the size of the

underlying type of a cvalue expression.
5-0-9 An explicit integral conversion shall not change the signedness of the underlying type

of a cvalue expression.
5-0-10 If the bitwise operators ~ and << are applied to an operand with an underlying type of

unsigned char or unsigned short, the result shall be immediately cast to the underlying
type of the operand.

5-0-13 The condition of an if-statement and the condition of an iteration-statement shall have
type bool.

5-0-15 Array indexing shall be the only form of pointer arithmetic.
5-0-18 >, >=, <, <= shall not be applied to objects of pointer type, except where they point to

the same array.
5-0-19 The declaration of objects shall contain no more than two levels of pointer indirection.
5-2-1 Each operand of a logical && or || shall be a postfix-expression.
5-2-2 A pointer to a virtual base class shall only be cast to a pointer to a derived class by

means of dynamic_cast.
5-2-5 A cast shall not remove any const or volatile qualification from the type of a pointer or

reference.
5-2-6 A cast shall not convert a pointer to a function to any other pointer type, including a

pointer to function type.
5-2-7 An object with pointer type shall not be converted to an unrelated pointer type, either

directly or indirectly.
5-2-8 An object with integer type or pointer to void type shall not be converted to an object

with pointer type.
5-2-9 A cast should not convert a pointer type to an integral type.
5-2-11 The comma operator, && operator and the || operator shall not be overloaded.

 Software Quality Objective Subsets (C++)

16-29

MISRA C++ Rule Description
5-3-2 The unary minus operator shall not be applied to an expression whose underlying type

is unsigned.
5-3-3 The unary & operator shall not be overloaded.
5-18-1 The comma operator shall not be used.
6-2-1 Assignment operators shall not be used in sub-expressions.
6-2-2 Floating-point expressions shall not be directly or indirectly tested for equality or

inequality.
6-3-1 The statement forming the body of a switch, while, do ... while or for statement shall be

a compound statement.
6-4-2 All if ... else if constructs shall be terminated with an else clause.
6-4-6 The final clause of a switch statement shall be the default-clause.
6-5-1 A for loop shall contain a single loop-counter which shall not have floating type.
6-5-2 If loop-counter is not modified by -- or ++, then, within condition, the loop-counter shall

only be used as an operand to <=, <, > or >=.
6-5-3 The loop-counter shall not be modified within condition or statement.
6-5-4 The loop-counter shall be modified by one of: --, ++, -=n, or +=n ; where n remains

constant for the duration of the loop.
6-6-1 Any label referenced by a goto statement shall be declared in the same block, or in a

block enclosing the goto statement.
6-6-2 The goto statement shall jump to a label declared later in the same function body.
6-6-4 For any iteration statement there shall be no more than one break or goto statement

used for loop termination.
6-6-5 A function shall have a single point of exit at the end of the function.
7-5-1 A function shall not return a reference or a pointer to an automatic variable (including

parameters), defined within the function.
7-5-2 The address of an object with automatic storage shall not be assigned to another object

that may persist after the first object has ceased to exist.
7-5-4 Functions should not call themselves, either directly or indirectly.
8-4-1 Functions shall not be defined using the ellipsis notation.
8-4-3 All exit paths from a function with non-void return type shall have an explicit return

statement with an expression.
8-4-4 A function identifier shall either be used to call the function or it shall be preceded by

&.
8-5-2 Braces shall be used to indicate and match the structure in the non-zero initialization of

arrays and structures.
8-5-3 In an enumerator list, the = construct shall not be used to explicitly initialize members

other than the first, unless all items are explicitly initialized.
9-5-1 Unions shall not be used.
10-1-2 A base class shall only be declared virtual if it is used in a diamond hierarchy.
10-1-3 An accessible base class shall not be both virtual and non-virtual in the same hierarchy.

16 Configure Coding Rules Checking and Code Metrics Computation

16-30

MISRA C++ Rule Description
10-3-1 There shall be no more than one definition of each virtual function on each path

through the inheritance hierarchy.
10-3-2 Each overriding virtual function shall be declared with the virtual keyword.
10-3-3 A virtual function shall only be overridden by a pure virtual function if it is itself

declared as pure virtual.
11-0-1 Member data in non-POD class types shall be private.
12-1-1 An object's dynamic type shall not be used from the body of its constructor or

destructor.
12-8-2 The copy assignment operator shall be declared protected or private in an abstract

class.
15-0-3 Control shall not be transferred into a try or catch block using a goto or a switch

statement.
15-1-3 An empty throw (throw;) shall only be used in the compound- statement of a catch

handler.
15-3-3 Handlers of a function-try-block implementation of a class constructor or destructor

shall not reference non-static members from this class or its bases.
15-3-5 A class type exception shall always be caught by reference.
15-3-6 Where multiple handlers are provided in a single try-catch statement or function-try-

block for a derived class and some or all of its bases, the handlers shall be ordered
most-derived to base class.

15-3-7 Where multiple handlers are provided in a single try-catch statement or function-try-
block, any ellipsis (catch-all) handler shall occur last.

15-4-1 If a function is declared with an exception-specification, then all declarations of the
same function (in other translation units) shall be declared with the same set of type-
ids.

15-5-1 A class destructor shall not exit with an exception.
15-5-2 Where a function's declaration includes an exception-specification, the function shall

only be capable of throwing exceptions of the indicated type(s).
16-0-5 Arguments to a function-like macro shall not contain tokens that look like

preprocessing directives.
16-0-6 In the definition of a function-like macro, each instance of a parameter shall be

enclosed in parentheses, unless it is used as the operand of # or ##.
16-0-7 Undefined macro identifiers shall not be used in #if or #elif preprocessor directives,

except as operands to the defined operator.
16-2-2 C++ macros shall only be used for: include guards, type qualifiers, or storage class

specifiers.
16-3-1 There shall be at most one occurrence of the # or ## operators in a single macro

definition.
18-4-1 Dynamic heap memory allocation shall not be used.

See Also
Check MISRA C++:2008 (-misra-cpp)

 Software Quality Objective Subsets (C++)

16-31

More About
• “Check for and Review Coding Standard Violations” on page 16-2

16 Configure Coding Rules Checking and Code Metrics Computation

16-32

Coding Rule Subsets Checked Early in Analysis
In the initial compilation phase of the analysis, Polyspace checks those coding rules that do not
require the run-time error detection part of the analysis. If you want only those rules checked, you
can perform a much quicker analysis.

The software provides two predefined subsets of rules that it checks earlier in the analysis. The
subsets are available with the options Check MISRA C:2004 (-misra2), Check MISRA AC AGC
(-misra-ac-agc), and Check MISRA C:2012 (-misra3).

Argument Purpose
single-unit-rules Check rules that apply only to single translation units.

If you detect only coding rule violations and select this subset, a Bug Finder
analysis stops after the compilation phase.

system-decidable-
rules

Check rules in the single-unit-rules subset and some rules that apply to
the collective set of program files. The additional rules are the less complex
rules that apply at the integration level. These rules can be checked only at
the integration level because the rules involve more than one translation
unit.

If you detect only coding rule violations and select this subset, a Bug Finder
analysis stops after the linking phase.

See also “Check for and Review Coding Standard Violations” on page 16-2.

MISRA C:2004 and MISRA AC AGC Rules
The software checks the following rules early in the analysis. The rules that are checked at a system
level and appear only in the system-decidable-rules subset are indicated by an asterisk.

Environment

Rule Description
1.1* All code shall conform to ISO 9899:1990 "Programming languages - C", amended and

corrected by ISO/IEC 9899/COR1:1995, ISO/IEC 9899/AMD1:1995, and ISO/IEC 9899/
COR2:1996.

Language Extensions

Rule Description
2.1 Assembly language shall be encapsulated and isolated.
2.2 Source code shall only use /* */ style comments.
2.3 The character sequence /* shall not be used within a comment.

Documentation

Rule Description
3.4 All uses of the #pragma directive shall be documented and explained.

 Coding Rule Subsets Checked Early in Analysis

16-33

Character Sets

Rule Description
4.1 Only those escape sequences which are defined in the ISO C standard shall be used.
4.2 Trigraphs shall not be used.

Identifiers

Rule Description
5.1* Identifiers (internal and external) shall not rely on the significance of more than 31

characters.
5.2 Identifiers in an inner scope shall not use the same name as an identifier in an outer

scope, and therefore hide that identifier.
5.3* A typedef name shall be a unique identifier.
5.4* A tag name shall be a unique identifier.
5.5* No object or function identifier with a static storage duration should be reused.
5.6* No identifier in one name space should have the same spelling as an identifier in another

name space, with the exception of structure and union member names.
5.7* No identifier name should be reused.

Types

Rule Description
6.1 The plain char type shall be used only for the storage and use of character values.
6.2 Signed and unsigned char type shall be used only for the storage and use of numeric

values.
6.3 typedefs that indicate size and signedness should be used in place of the basic types.
6.4 Bit fields shall only be defined to be of type unsigned int or signed int.
6.5 Bit fields of type signed int shall be at least 2 bits long.

Constants

Rule Description
7.1 Octal constants (other than zero) and octal escape sequences shall not be used.

16 Configure Coding Rules Checking and Code Metrics Computation

16-34

Declarations and Definitions

Rule Description
8.1 Functions shall have prototype declarations and the prototype shall be visible at both the

function definition and call.
8.2 Whenever an object or function is declared or defined, its type shall be explicitly stated.
8.3 For each function parameter the type given in the declaration and definition shall be

identical, and the return types shall also be identical.
8.4* If objects or functions are declared more than once their types shall be compatible.
8.5 There shall be no definitions of objects or functions in a header file.
8.6 Functions shall always be declared at file scope.
8.7 Objects shall be defined at block scope if they are only accessed from within a single

function.
8.8* An external object or function shall be declared in one file and only one file.
8.9* An identifier with external linkage shall have exactly one external definition.
8.10* All declarations and definitions of objects or functions at file scope shall have internal

linkage unless external linkage is required.
8.11 The static storage class specifier shall be used in definitions and declarations of

objects and functions that have internal linkage
8.12 When an array is declared with external linkage, its size shall be stated explicitly or

defined implicitly by initialization.

Initialization

Rule Description
9.2 Braces shall be used to indicate and match the structure in the nonzero initialization of

arrays and structures.
9.3 In an enumerator list, the = construct shall not be used to explicitly initialize members

other than the first, unless all items are explicitly initialized.

 Coding Rule Subsets Checked Early in Analysis

16-35

Arithmetic Type Conversion

Rule Description
10.1 The value of an expression of integer type shall not be implicitly converted to a different

underlying type if:

• It is not a conversion to a wider integer type of the same signedness, or
• The expression is complex, or
• The expression is not constant and is a function argument, or
• The expression is not constant and is a return expression

10.2 The value of an expression of floating type shall not be implicitly converted to a different
type if

• It is not a conversion to a wider floating type, or
• The expression is complex, or
• The expression is a function argument, or
• The expression is a return expression

10.3 The value of a complex expression of integer type may only be cast to a type that is
narrower and of the same signedness as the underlying type of the expression.

10.4 The value of a complex expression of float type may only be cast to narrower floating
type.

10.5 If the bitwise operator ~ and << are applied to an operand of underlying type unsigned
char or unsigned short, the result shall be immediately cast to the underlying type of
the operand

10.6 The "U" suffix shall be applied to all constants of unsigned types.

Pointer Type Conversion

Rule Description
11.1 Conversion shall not be performed between a pointer to a function and any type other

than an integral type.
11.2 Conversion shall not be performed between a pointer to an object and any type other

than an integral type, another pointer to a object type or a pointer to void.
11.3 A cast should not be performed between a pointer type and an integral type.
11.4 A cast should not be performed between a pointer to object type and a different pointer

to object type.
11.5 A cast shall not be performed that removes any const or volatile qualification from

the type addressed by a pointer

16 Configure Coding Rules Checking and Code Metrics Computation

16-36

Expressions

Rule Description
12.1 Limited dependence should be placed on C's operator precedence rules in expressions.
12.3 The sizeof operator should not be used on expressions that contain side effects.
12.5 The operands of a logical && or || shall be primary-expressions.
12.6 Operands of logical operators (&&, || and !) should be effectively Boolean. Expression

that are effectively Boolean should not be used as operands to operators other than (&&,
|| or !).

12.7 Bitwise operators shall not be applied to operands whose underlying type is signed.
12.9 The unary minus operator shall not be applied to an expression whose underlying type is

unsigned.
12.10 The comma operator shall not be used.
12.11 Evaluation of constant unsigned expression should not lead to wraparound.
12.12 The underlying bit representations of floating-point values shall not be used.
12.13 The increment (++) and decrement (--) operators should not be mixed with other

operators in an expression

Control Statement Expressions

Rule Description
13.1 Assignment operators shall not be used in expressions that yield Boolean values.
13.2 Tests of a value against zero should be made explicit, unless the operand is effectively

Boolean.
13.3 Floating-point expressions shall not be tested for equality or inequality.
13.4 The controlling expression of a for statement shall not contain any objects of floating

type.
13.5 The three expressions of a for statement shall be concerned only with loop control.
13.6 Numeric variables being used within a for loop for iteration counting should not be

modified in the body of the loop.

 Coding Rule Subsets Checked Early in Analysis

16-37

Control Flow

Rule Description
14.3 All non-null statements shall either

• have at least one side effect however executed, or
• cause control flow to change.

14.4 The goto statement shall not be used.
14.5 The continue statement shall not be used.
14.6 For any iteration statement, there shall be at most one break statement used for loop

termination.
14.7 A function shall have a single point of exit at the end of the function.
14.8 The statement forming the body of a switch, while, do while or for statement shall

be a compound statement.
14.9 An if (expression) construct shall be followed by a compound statement. The else

keyword shall be followed by either a compound statement, or another if statement.
14.10 All if else if constructs should contain a final else clause.

Switch Statements

Rule Description
15.0 Unreachable code is detected between switch statement and first case.
15.1 A switch label shall only be used when the most closely-enclosing compound statement

is the body of a switch statement
15.2 An unconditional break statement shall terminate every non-empty switch clause.
15.3 The final clause of a switch statement shall be the default clause.
15.4 A switch expression should not represent a value that is effectively Boolean.
15.5 Every switch statement shall have at least one case clause.

Functions

Rule Description
16.1 Functions shall not be defined with variable numbers of arguments.
16.3 Identifiers shall be given for all of the parameters in a function prototype declaration.
16.4* The identifiers used in the declaration and definition of a function shall be identical.
16.5 Functions with no parameters shall be declared with parameter type void.
16.6 The number of arguments passed to a function shall match the number of parameters.
16.8 All exit paths from a function with non-void return type shall have an explicit return

statement with an expression.
16.9 A function identifier shall only be used with either a preceding &, or with a parenthesized

parameter list, which may be empty.

16 Configure Coding Rules Checking and Code Metrics Computation

16-38

Pointers and Arrays

Rule Description
17.4 Array indexing shall be the only allowed form of pointer arithmetic.
17.5 A type should not contain more than 2 levels of pointer indirection.

Structures and Unions

Rule Description
18.1 All structure or union types shall be complete at the end of a translation unit.
18.4 Unions shall not be used.

Preprocessing Directives

Rule Description
19.1 #include statements in a file shall only be preceded by other preprocessors directives

or comments.
19.2 Nonstandard characters should not occur in header file names in #include directives.
19.3 The #include directive shall be followed by either a <filename> or "filename" sequence.
19.4 C macros shall only expand to a braced initializer, a constant, a parenthesized expression,

a type qualifier, a storage class specifier, or a do-while-zero construct.
19.5 Macros shall not be #defined and #undefd within a block.
19.6 #undef shall not be used.
19.7 A function should be used in preference to a function like-macro.
19.8 A function-like macro shall not be invoked without all of its arguments.
19.9 Arguments to a function-like macro shall not contain tokens that look like preprocessing

directives.
19.10 In the definition of a function-like macro, each instance of a parameter shall be enclosed

in parentheses unless it is used as the operand of # or ##.
19.11 All macro identifiers in preprocessor directives shall be defined before use, except in

#ifdef and #ifndef preprocessor directives and the defined() operator.
19.12 There shall be at most one occurrence of the # or ## preprocessor operators in a single

macro definition.
19.13 The # and ## preprocessor operators should not be used.
19.14 The defined preprocessor operator shall only be used in one of the two standard forms.
19.15 Precautions shall be taken in order to prevent the contents of a header file being included

twice.
19.16 Preprocessing directives shall be syntactically meaningful even when excluded by the

preprocessor.
19.17 All #else, #elif and #endif preprocessor directives shall reside in the same file as the

#if or #ifdef directive to which they are related.

 Coding Rule Subsets Checked Early in Analysis

16-39

Standard Libraries

Rule Description
20.1 Reserved identifiers, macros and functions in the standard library, shall not be defined,

redefined or undefined.
20.2 The names of standard library macros, objects and functions shall not be reused.
20.4 Dynamic heap memory allocation shall not be used.
20.5 The error indicator errno shall not be used.
20.6 The macro offsetof, in library <stddef.h>, shall not be used.
20.7 The setjmp macro and the longjmp function shall not be used.
20.8 The signal handling facilities of <signal.h> shall not be used.
20.9 The input/output library <stdio.h> shall not be used in production code.
20.10 The library functions atof, atoi and atoll from library <stdlib.h> shall not be used.
20.11 The library functions abort, exit, getenv and system from library <stdlib.h> shall

not be used.
20.12 The time handling functions of library <time.h> shall not be used.

The rules that are checked at a system level and appear only in the system-decidable-rules
subset are indicated by an asterisk.

MISRA C:2012 Rules
The software checks the following rules early in the analysis. The rules that are checked at a system
level and appear only in the system-decidable-rules subset are indicated by an asterisk.

Standard C Environment

Rule Description
1.1 The program shall contain no violations of the standard C syntax and constraints, and

shall not exceed the implementation's translation limits.
1.2 Language extensions should not be used.

Unused Code

Rule Description
2.3* A project should not contain unused type declarations.
2.4* A project should not contain unused tag declarations.
2.5* A project should not contain unused macro declarations.
2.6 A function should not contain unused label declarations.
2.7 There should be no unused parameters in functions.

16 Configure Coding Rules Checking and Code Metrics Computation

16-40

Comments

Rule Description
3.1 The character sequences /* and // shall not be used within a comment.
3.2 Line-splicing shall not be used in // comments.

Character Sets and Lexical Conventions

Rule Description
4.1 Octal and hexadecimal escape sequences shall be terminated.
4.2 Trigraphs should not be used.

Identifiers

Rule Description
5.1* External identifiers shall be distinct.
5.2 Identifiers declared in the same scope and name space shall be distinct.
5.3 An identifier declared in an inner scope shall not hide an identifier declared in an outer

scope.
5.4 Macro identifiers shall be distinct.
5.5 Identifiers shall be distinct from macro names.
5.6* A typedef name shall be a unique identifier.
5.7* A tag name shall be a unique identifier.
5.8* Identifiers that define objects or functions with external linkage shall be unique.
5.9* Identifiers that define objects or functions with internal linkage should be unique.

Types

Rule Description
6.1 Bit-fields shall only be declared with an appropriate type.
6.2 Single-bit named bit fields shall not be of a signed type.

Literals and Constants

Rule Description
7.1 Octal constants shall not be used.
7.2 A "u" or "U" suffix shall be applied to all integer constants that are represented in an

unsigned type.
7.3 The lowercase character "l" shall not be used in a literal suffix.
7.4 A string literal shall not be assigned to an object unless the object's type is "pointer to

const-qualified char".

 Coding Rule Subsets Checked Early in Analysis

16-41

Declarations and Definitions

Rule Description
8.1 Types shall be explicitly specified.
8.2 Function types shall be in prototype form with named parameters.
8.3* All declarations of an object or function shall use the same names and type qualifiers.
8.4 A compatible declaration shall be visible when an object or function with external linkage

is defined.
8.5* An external object or function shall be declared once in one and only one file.
8.6* An identifier with external linkage shall have exactly one external definition.
8.7* Functions and objects should not be defined with external linkage if they are referenced

in only one translation unit.
8.8 The static storage class specifier shall be used in all declarations of objects and

functions that have internal linkage.
8.9* An object should be defined at block scope if its identifier only appears in a single

function.
8.10 An inline function shall be declared with the static storage class.
8.11 When an array with external linkage is declared, its size should be explicitly specified.
8.12 Within an enumerator list, the value of an implicitly-specified enumeration constant shall

be unique.
8.14 The restrict type qualifier shall not be used.

Initialization

Rule Description
9.2 The initializer for an aggregate or union shall be enclosed in braces.
9.3 Arrays shall not be partially initialized.
9.4 An element of an object shall not be initialized more than once.
9.5 Where designated initializers are used to initialize an array object the size of the array

shall be specified explicitly.

16 Configure Coding Rules Checking and Code Metrics Computation

16-42

The Essential Type Model

Rule Description
10.1 Operands shall not be of an inappropriate essential type.
10.2 Expressions of essentially character type shall not be used inappropriately in addition

and subtraction operations.
10.3 The value of an expression shall not be assigned to an object with a narrower essential

type or of a different essential type category.
10.4 Both operands of an operator in which the usual arithmetic conversions are performed

shall have the same essential type category.
10.5 The value of an expression should not be cast to an inappropriate essential type.
10.6 The value of a composite expression shall not be assigned to an object with wider

essential type.
10.7 If a composite expression is used as one operand of an operator in which the usual

arithmetic conversions are performed then the other operand shall not have wider
essential type.

10.8 The value of a composite expression shall not be cast to a different essential type
category or a wider essential type.

Pointer Type Conversion

Rule Description
11.1 Conversions shall not be performed between a pointer to a function and any other type.
11.2 Conversions shall not be performed between a pointer to an incomplete type and any

other type.
11.3 A cast shall not be performed between a pointer to object type and a pointer to a

different object type.
11.4 A conversion should not be performed between a pointer to object and an integer type.
11.5 A conversion should not be performed from pointer to void into pointer to object.
11.6 A cast shall not be performed between pointer to void and an arithmetic type.
11.7 A cast shall not be performed between pointer to object and a non-integer arithmetic

type.
11.8 A cast shall not remove any const or volatile qualification from the type pointed to by a

pointer.
11.9 The macro NULL shall be the only permitted form of integer null pointer constant.

Expressions

Rule Description
12.1 The precedence of operators within expressions should be made explicit.
12.3 The comma operator should not be used.
12.4 Evaluation of constant expressions should not lead to unsigned integer wrap-around.

 Coding Rule Subsets Checked Early in Analysis

16-43

Side Effects

Rule Description
13.3 A full expression containing an increment (++) or decrement (--) operator should have

no other potential side effects other than that caused by the increment or decrement
operator.

13.4 The result of an assignment operator should not be used.
13.6 The operand of the sizeof operator shall not contain any expression which has potential

side effects.

Control Statement Expressions

Rule Description
14.4 The controlling expression of an if statement and the controlling expression of an

iteration-statement shall have essentially Boolean type.

Control Flow

Rule Description
15.1 The goto statement should not be used.
15.2 The goto statement shall jump to a label declared later in the same function.
15.3 Any label referenced by a goto statement shall be declared in the same block, or in any

block enclosing the goto statement.
15.4 There should be no more than one break or goto statement used to terminate any

iteration statement.
15.5 A function should have a single point of exit at the end
15.6 The body of an iteration-statement or a selection-statement shall be a compound

statement.
15.7 All if … else if constructs shall be terminated with an else statement.

Switch Statements

Rule Description
16.1 All switch statements shall be well-formed.
16.2 A switch label shall only be used when the most closely-enclosing compound statement

is the body of a switch statement.
16.3 An unconditional break statement shall terminate every switch-clause.
16.4 Every switch statement shall have a default label.
16.5 A default label shall appear as either the first or the last switch label of a switch

statement.
16.6 Every switch statement shall have at least two switch-clauses.
16.7 A switch-expression shall not have essentially Boolean type.

16 Configure Coding Rules Checking and Code Metrics Computation

16-44

Functions

Rule Description
17.1 The features of <starg.h> shall not be used.
17.3 A function shall not be declared implicitly.
17.4 All exit paths from a function with non-void return type shall have an explicit return

statement with an expression.
17.6 The declaration of an array parameter shall not contain the static keyword between the

[].
17.7 The value returned by a function having non-void return type shall be used.

Pointers and Arrays

Rule Description
18.4 The +, -, += and -= operators should not be applied to an expression of pointer type.
18.5 Declarations should contain no more than two levels of pointer nesting.
18.7 Flexible array members shall not be declared.
18.8 Variable-length array types shall not be used.

Overlapping Storage

Rule Description
19.2 The union keyword should not be used.

 Coding Rule Subsets Checked Early in Analysis

16-45

Preprocessing Directives

Rule Description
20.1 #include directives should only be preceded by preprocessor directives or comments.
20.2 The ', ", or \ characters and the /* or // character sequences shall not occur in a

header file name.
20.3 The #include directive shall be followed by either a <filename> or \"filename\"

sequence.
20.4 A macro shall not be defined with the same name as a keyword.
20.5 #undef should not be used.
20.6 Tokens that look like a preprocessing directive shall not occur within a macro argument.
20.7 Expressions resulting from the expansion of macro parameters shall be enclosed in

parentheses.
20.8 The controlling expression of a #if or #elif preprocessing directive shall evaluate to 0

or 1.
20.9 All identifiers used in the controlling expression of #if or #elif preprocessing

directives shall be #define'd before evaluation.
20.10 The # and ## preprocessor operators should not be used.
20.11 A macro parameter immediately following a # operator shall not immediately be followed

by a ## operator.
20.12 A macro parameter used as an operand to the # or ## operators, which is itself subject to

further macro replacement, shall only be used as an operand to these operators.
20.13 A line whose first token is # shall be a valid preprocessing directive.
20.14 All #else, #elif and #endif preprocessor directives shall reside in the same file as the

#if, #ifdef or #ifndef directive to which they are related.

Standard Libraries

Rule Description
21.1 #define and #undef shall not be used on a reserved identifier or reserved macro name.
21.2 A reserved identifier or macro name shall not be declared.
21.3 The memory allocation and deallocation functions of <stdlib.h> shall not be used.
21.4 The standard header file <setjmp.h> shall not be used.
21.5 The standard header file <signal.h> shall not be used.
21.6 The Standard Library input/output functions shall not be used.
21.7 The atof, atoi, atol, and atoll functions of <stdlib.h> shall not be used.
21.8 The library functions abort, exit, getenv and system of <stdlib.h> shall not be

used.
21.9 The library functions bsearch and qsort of <stdlib.h> shall not be used.
21.10 The Standard Library time and date functions shall not be used.
21.11 The standard header file <tgmath.h> shall not be used.
21.12 The exception handling features of <fenv.h> should not be used.

16 Configure Coding Rules Checking and Code Metrics Computation

16-46

The rules that are checked at a system level and appear only in the system-decidable-rules
subset are indicated by an asterisk.

See Also
Check MISRA C:2004 (-misra2) | Check MISRA AC AGC (-misra-ac-agc) | Check MISRA
C:2012 (-misra3)

More About
• “Check for and Review Coding Standard Violations” on page 16-2

 Coding Rule Subsets Checked Early in Analysis

16-47

Create Custom Coding Rules
This example shows how to check for violations of naming conventions on functions and objects in
your C/C++ code. For each naming convention, you specify a pattern in the form of a regular
expression. The software compares the pattern to identifiers in the source code and determines
whether the identifiers follow those naming conventions.

The tutorial uses this code stored in a file printInitialValue.c:

#include <stdio.h>

typedef struct {
 int a;
 int b;
} collection;

void main()
{
 collection myCollection= {0,0};
 printf("Initial values in the collection are %d and %d.",
 myCollection.a,myCollection.b);
}

Specify Naming Convention
Custom coding rule checkers compare the identifiers in your code to a naming convention that you
specify. Polyspace raises a violation if the identifiers do not match the convention. Before you use the
custom coding rules to enforce the naming convention, specify the naming convention by using a
regular expression.

1 Open the Checkers Selection window. Depending on your workflow, you might open the window
by using one of the Polyspace as You Code IDE plugins, the desktop user interface, or the
command polyspace-checkers-selection.

2 In the Checkers Selection window, select the rule 4.3.
3 In the Convention field, enter the message that you want to display when the rule is violated.

This message describes the naming convention that you want to specify. For instance, in the
Convention field, enter All struct fields must begin with s_ and have capital
letters or digits.

4 In the Pattern field, enter a regular expression corresponding to the naming convention that you
want to specify. For instance, to represent struct field names that begin with s_ and have
capital letters or digits, specify s_[A-Z0-9_]+. Polyspace supports Perl regular expressions
when defining patterns. See Check custom rules (-custom-rules).

16 Configure Coding Rules Checking and Code Metrics Computation

16-48

A custom rule is not activated if the Pattern field is empty.
5 The Comment field is optional. A comment does not appear in the Polyspace results list. Leave

the Comment field blank.
6 Save your changes in an XML file and close the window. This XML file can be used to check the

specified custom rule.

Alternatively, edit a preexisting checkers XML file to specify naming conventions. The Polyspace
installation folder contains a template that you can copy and edit.

1 Locate the template custom_rules.xml in polyspaceroot\help\toolbox\bugfinder
\examples\coding_standards_XML. Here, polyspaceroot is the root installation folder for
the Polyspace products, for instance, C:\Program Files\Polyspace Server\R2023a. Make
an editable copy of the file custom_rules.xml.

2 In the editable XML file, locate the node corresponding to rule 4.3. Set the state attribute to on.
Add a subnode Convention and specify it as All struct fields must begin with s_
and have capital letters or digits. Then, add a subnode Pattern and specify it as
s_[A-Z0-9_]+. For instance:

 <check id="4.3" state="on">
 <convention>All struct fields must begin with s_
 and have capital letters or digits</convention>
 <pattern>s_[A-Z0-9_]+</pattern>
 </check>

3 Save the XML file. You can use this XML file check the specified custom rule.

 Create Custom Coding Rules

16-49

Check for Violations of Defined Custom Coding Rule
After specifying the naming convention, run a Polyspace analysis.

• If you are using the Polyspace desktop UI or one of the Polyspace as You Code plugins in an IDE,
run a Polyspace analysis after saving your changes in the Checkers Selection window.

• If you are using the command line interface, provide the modified custom_rules.xml file as the
argument for the option Set checkers by file (-checkers-selection-file) during
analysis, along with the option Check custom rules (-custom-rules). For instance, for
custom rules checking by using Polyspace Bug Finder Server, enter:

polyspace-bug-finder-server -sources printInitialValue.c -custom-rules from-file
 -checkers-selection-file custom_rules.xml

The Polyspace analysis reports two violations of custom rule 4.3 on the two fields collection.a and
collection.b.

To resolve the defects, change the name of the fields so that they comply with the naming convention.
For instance, rename the fields as s_A and s_B respectively. After renaming the fields, run another
Polyspace analysis to verify that the naming convention is no longer violated.

See Also
Check custom rules (-custom-rules) | Set checkers by file (-checkers-selection-
file)

More About
• “Setting Checkers in Polyspace as You Code”
• “Run Polyspace Bug Finder on Desktop”
• Perl Regular Expression

16 Configure Coding Rules Checking and Code Metrics Computation

16-50

https://perldoc.perl.org/perlre#Regular-Expressions

Compute Code Complexity Metrics Using Polyspace
This topic describes how to compute all code complexity metrics and then review the ones that
exceed specified thresholds. To see metric values only if they exceed thresholds, check for guidelines
on software complexity. See “Reduce Software Complexity by Using Polyspace Checkers” on page 16-
11.

Code complexity metrics are a set of numbers that quantify the complexity of your C/C++ program.
For instance:

• A function with a high cyclomatic complexity contains too many branches.
• A function with a high number of return statements has too many exit points.

Complex programs are difficult to debug, analyze, test and maintain. To avoid too much complexity,
impose limits on the complexity metrics during coding.

Polyspace does not compute code complexity metrics by default. To compute them during analysis,
use the option Calculate code metrics (-code-metrics).

After analysis, the software displays project, file and function metrics on the Results List pane. You
can compare the computed metric values against predefined limits. If a metric value exceeds limits,
you can redesign your code to lower the metric value. For instance, if the number of called functions
is high and several of those functions are always called together, you can write one function that
fuses the bodies of those functions. Call that one function instead of the group of functions that are
called together.

Impose Limits on Metrics (Desktop Products Only)
In the user interface of the Polyspace desktop products, open some results with metrics
computations. Then impose limits on the metric values and update results on the Results List pane
to show only metric values that exceed the limits.

1 Select Tools > Preferences.
2 On the Review Scope tab, do one of the following:

• To use a predefined limit, select Include Quality Objectives Scopes.

The Scope Name list shows the additional option HIS. The option HIS displays the HIS code
metrics on page 16-54 only. Select the option to see the limit values.

• To define your own limits, select New. Save your limits file.

On the left pane, select Code Metric. On the right, select a metric and specify a limit value
for the metric. Other than Comment Density, limit values are upper limits.

To select all metrics in a category such as Function Metrics, select the box next to the
category name. For more information on the metrics categories, see “Code Metrics”. If only a
some metrics in a category are selected, the check box next to the category name displays a

 symbol.

 Compute Code Complexity Metrics Using Polyspace

16-51

3 Select Apply or OK.

The drop-down list in the left of the Results List pane toolbar displays additional options.

• If you use predefined limits, the option HIS appears. This option displays code metrics only.

16 Configure Coding Rules Checking and Code Metrics Computation

16-52

• If you define your own limits, the option corresponding to your limits file name appears.
4 Select the option corresponding to the limits that you want. Only metric values that violate your

limits remain on the Results List pane.

These metrics are shown along with a red exclamation mark. For instance, the predefined scope,
HIS, requires that every function should have only one return statement. If you select the scope
HIS, you see the metric Number of return statements only if the number exceeds one.

5 Review each violation and decide how to rework your code to avoid the violation.

Note To enforce coding standards across your organization, share your limits file that you saved in
XML format.

People in your organization can use the Open button on the Review Scope tab and navigate to the
location of the XML file.

Impose Limits on Metrics (Server and Access products)
In the Polyspace Access web interface, limits on code complexity metrics are predefined. In the
Dashboard perspective, if you select Code Metric, a Code Metrics window shows the metric values
and limits.

To find the limits used, see “HIS Code Complexity Metrics” on page 16-54.

See also “Code Metrics Dashboard in Polyspace Access Web Interface” on page 25-11.

See Also
Calculate code metrics (-code-metrics)

More About
• “Code Metrics”
• “HIS Code Complexity Metrics” on page 16-54

 Compute Code Complexity Metrics Using Polyspace

16-53

HIS Code Complexity Metrics
The following list shows the Hersteller Initiative Software (HIS) standard metrics that Polyspace
evaluates. These metrics and the recommended limits for their values are part of a standard defined
by a major group of Original Equipment Manufacturers or OEMs. For more information on how to
focus your review to this subset of code metrics, see “Compute Code Complexity Metrics Using
Polyspace” on page 16-51.

Project
Polyspace evaluates the following HIS metrics at the project level.

Metric Recommended Upper Limit
Number of direct recursions
(AP_CG_DIRECT_CYCLE)

0

Number of recursions (AP_CG_CYCLE) 0

File
Polyspace evaluates the HIS metric, comment density, at the file level. The recommended lower limit
is 20.

Function
Polyspace evaluates the following HIS metrics at the function level.

Metric Recommended Upper Limit
Cyclomatic complexity (VG) 10
Language scope (VOCF) 4
Number of call levels (LEVEL) 4
Number of calling functions (CALLING) 5
Number of called functions (CALLS) 7
Number of function parameters (PARAM) 5
Number of goto statements (GOTO) 0
Number of instructions (STMT) 50
Number of paths (PATH) 80
Number of return statements (RETURN) 1

See Also

More About
• “Compute Code Complexity Metrics Using Polyspace” on page 16-51
• “Code Metrics”

16 Configure Coding Rules Checking and Code Metrics Computation

16-54

Migrate Code Prover Workflows for Checking Coding Standards
and Code Metrics to Bug Finder

In previous releases, Polyspace Code Prover supported checking of external coding standards and
computation of code complexity metrics. For instance, you might be using Code Prover to:

• Check compliance with external coding standards such as MISRA C:2012 or MISRA C++:2008.
• Check compliance with naming conventions.
• Check compliance with code complexity standards.
• Calculate code metrics.

Support for the preceding capabilities will be removed from Code Prover in a future release. Starting
in R2021b, Polyspace Bug Finder is the recommended tool for performing these tasks. Modify your
workflows to migrate from using Code Prover to using Bug Finder.

Changes in Workflow
To migrate from Code Prover to Bug Finder, your workflow might need some changes.

Check for Coding Rule Violations and Compute Code Metrics

Previously, to perform this task, you configured the appropriate options in the Configuration pane,
and then clicked Run Code Prover. To migrate to using Bug Finder:

• In the Polyspace user interface, configure the same options in the Configuration pane, and then
click Run Bug Finder.

• At the command line, replace polyspace-code-prover by polyspace-bug-finder. If you do
not want to enable the Bug Finder defects, specify -checkers with the value none. For instance,
replace this command:

polyspace-code-prover -sources file_name -misra3 all -code-metrics

with this command:

polyspace-bug-finder -sources file_name -misra3 all -code-metrics -checkers none

Polyspace Bug Finder checks some coding rules differently compared to Code Prover. After migrating
to Bug Finder, you might see some small difference in the number and location of coding rule
violations.

Compute Code Metrics, Check for Run-Time Errors and Coding Rule Violations

Previously, to perform these tasks, you configured the appropriate options in the Configuration
pane, and then clicked Run Code Prover. To migrate to using Bug Finder:

• In the Polyspace user interface, configure the same options in the Configuration pane. Then,
obtain these results by performing two separate Polyspace analyses. Run a Bug Finder analysis to
check for coding rule violations and to compute code metrics. Run a separate Code Prover
verification to check for run-time errors.

• At the command line, run separate Bug Finder and Code Prover analyses by using the commands
polyspace-bug-finder and polyspace-code-prover with appropriate analysis options. For
instance, replace this command:

 Migrate Code Prover Workflows for Checking Coding Standards and Code Metrics to Bug Finder

16-55

polyspace-code-prover -sources file_name -misra3 all -code-metrics

with this command:

polyspace-bug-finder -sources file_name -code-metrics -misra3 all -checkers none
polyspace-code-prover -sources file_name

Compute Code Metrics, Check for Run-Time Errors and Coding Rule Violations in Generated
Code

Previously, to perform these tasks, you configured your Polyspace analysis, and then started a Code
Prover verification. To migrate to using Bug Finder:

• On the Simulink toolstrip, use the same configurations that you used before. Then, run separate
Bug Finder and Code Prover analyses.

• In the MATLAB Command Window, use separate sets of polyspace.ModelLinkOptions and
polyspace.Project objects to perform separate Bug Finder and Code Prover analyses.

Sample MATLAB Code

% Make directory for code generation
[TEMPDIR, CGDIR] = rtwdemodir();
% Specify model name
modelName = 'rtwdemo_roll';
% Load the model
load_system(modelName);

% Set parameters for Embedded Coder target
set_param(modelName, 'SystemTargetFile', 'ert.tlc');
set_param(modelName,'Solver','FixedStepDiscrete');
set_param(modelName,'SupportContinuousTime','on');
set_param(modelName,'LaunchReport','off');
set_param(modelName,'InitFltsAndDblsToZero','on');

% Generate code
slbuild(modelName);

% Create Bug Finder project configuration
psprjCfgBF = polyspace.ModelLinkOptions(modelName);
% Enable coding rules, such as MISRA C:2012
psprjCfgBF.CodingRulesCodeMetrics.EnableMisraC3 = true;
psprjCfgBF.CodingRulesCodeMetrics.MisraC3Subset = 'all';
% Deactivate Bug Finder defects
psprjcfg.BugFinderAnalysis.EnableChecker = false;

% Specify results folder for bugfinder analysis
psprjCfgBF.ResultsDir = 'BF_newResfolder';

% Associate the project configurations with a Polyspace project
bfProj = polyspace.Project;
bfProj.Configuration = psprjCfgBF;

% Set verification mode as Bug Finder
bfStatus = bfProj.run('bugfinder');
% obtain BF results in a table
BF_results = bfProj.Results.getResults('readable');

16 Configure Coding Rules Checking and Code Metrics Computation

16-56

% Create a new project for Code Prover verification
cpProj = polyspace.Project;

% Create a new configuration object for Code Prover verification
psprjCfgCP = polyspace.ModelLinkOptions(modelName);
psprjCfgCP.CodingRulesCodeMetrics.EnableMisraC3 = false;

% Specify results folder for Code Prover analysis
psprjCfgCP.ResultsDir = 'CP_newResfolder';

% Associate the project configurations with a Polyspace project
cpProj.Configuration = psprjCfgCP;

% Set verification mode as Code Prover
cpStatus = cpProj.run('codeprover');
% obtain CP results in a table
CP_results = cpProj.Results.getResults('readable');

Produce a Polyspace Report Containing Run-Time Errors, Coding Rule Violations, and Code
Metrics

Previously, you configured a Code Prover verification to produce a single report containing run-time
errors, code metrics, coding rule violations, and other results. To migrate to using Bug Finder,
configure the same options and run separate Bug Finder and Code Prover analyses. See “Compute
Code Metrics, Check for Run-Time Errors and Coding Rule Violations” on page 16-55.

The Bug Finder and Code Prover results are summarized in separated reports.

To produce a combined report containing Bug Finder and Code Prover results, use polyspace-
report-generator. For instance, if your Bug Finder and Code Prover results are saved in the
folders BF_results and CP_results, use this command at the command prompt:

polyspace-report-generator ^
-template %template_path% ^
-results-dir "CP_Results","BF_Results"

Sample Batch Script

@echo off
Rem Specify the path for source
set source=^
"C:\Program Files\Polyspace\R2021b\polyspace\examples\cxx\^
Bug_Finder_Example\sources\numerical.c"
Rem Using Developer.rpt as template
set template_path=^
"C:\Program Files\Polyspace\R2021b\toolbox\polyspace\psrptgen\^
templates\Developer.rpt"
Rem making results directory for Bug Finder and Code Prover Run
mkdir bfResults;
mkdir cpResults;
Rem Start Bug Finder analysis
polyspace-bug-finder -sources %source%^
 -results-dir "%CD%\bfResults"^
 -code-metrics ^
 -misra3 all-rules ^
 -lang c ^

 Migrate Code Prover Workflows for Checking Coding Standards and Code Metrics to Bug Finder

16-57

 -checkers none
 Rem Start Code Prover analysis
polyspace-code-prover -sources %source%^
 -results-dir "%CD%\cpResults"^
 -lang c ^
 -main-generator
Rem Start Report generation
polyspace-report-generator ^
-template %template_path% ^
-results-dir "%CD%\cpResults","%CD%\bfResults"

Check for Protected and Unprotected Shared Global Variables

Previously, to perform this task, you specified the entry point functions and temporally exclusive
functions in your code, and then computed code metrics by using Code Prover. The recommended
tool for performing this task is to use the global variable checks in Code Prover instead.

• In the Polyspace user interface, configure the same options you did before, and then click Run
Code Prover. You do not need to check Calculate Code Metrics.

• At the command line, run a Code Prover verification by using the same analysis options that you
used before. Omit -code-metrics.

After the verification completes, in the Results List, the protected shared global variables are flagged
by green checks, and the potentially unprotected shared global variables are flagged by orange
checks.

See “Global Variables” (Polyspace Code Prover).

Calculate Stack Usage

Previously, to calculate stack usage, you configured your Code Prover analysis in the Polyspace UI to
compute code metrics or specified the option -code-metrics. The recommended tool for
performing this task is to use the analysis option Calculate stack usage (-stack-usage).

• In the Polyspace user interface, check Calculate stack usage in the Check Behavior pane, and
then click Run Code Prover. You do not need to check Calculate Code Metrics.

• At the command line, run a Code Prover verification by using the same analysis options that you
used before. Use -stack-usage instead of -code-metrics.

After the verification completes, in the Results List, the stack usage metrics are listed.

16 Configure Coding Rules Checking and Code Metrics Computation

16-58

See Also

More About
• “Justify Coding Rule Violations Using Code Prover Checks” (Polyspace Code Prover)
• “Check for and Review Coding Standard Violations” on page 16-2
• “AUTOSAR C++14 Rules”
• “CERT C Rules and Recommendations”
• “CERT C++ Rules”
• “Polyspace Support for Coding Standards” on page 17-2
• “Justify Coding Rule Violations Using Code Prover Checks” on page 31-7
• “Coding Standards & Code Metrics”

 Migrate Code Prover Workflows for Checking Coding Standards and Code Metrics to Bug Finder

16-59

Polyspace Coverage of Coding
Standards

• “ Polyspace Support for Coding Standards” on page 17-2
• “MISRA C:2004 and MISRA AC AGC Coding Rules” on page 17-9
• “Required or Mandatory MISRA C:2012 Rules Supported by Polyspace Bug Finder”

on page 17-43
• “Decidable MISRA C:2012 Rules Supported by Polyspace Bug Finder” on page 17-54
• “Undecidable MISRA C:2012 Rules and Directives Supported by Polyspace Bug Finder”

on page 17-64
• “Polyspace Support for MISRA C: 2012 Amendments” on page 17-69
• “Essential Types in MISRA C:2012 Rules 10.x” on page 17-72
• “Unsupported MISRA C:2012 Guidelines” on page 17-74
• “Required and Statically Enforceable CERT C Rules Supported by Polyspace Bug Finder”

on page 17-75
• “Required MISRA C++:2008 Coding Rules Supported by Polyspace Bug Finder” on page 17-83
• “JSF AV C++ Coding Rules” on page 17-100
• “Required AUTOSAR C++14 Coding Rules Supported by Polyspace Bug Finder” on page 17-125
• “Statically Enforceable AUTOSAR C++14 Rules Supported by Polyspace Bug Finder”

on page 17-156

17

Polyspace Support for Coding Standards
Polyspace Bug Finder and Polyspace as You Code support various coding standards. Check the
compliance of your code with these standards by analyzing your individual translation units in the
IDE, and then analyzing your entire source code during integration. Polyspace as You Code supports a
subset of rules that Bug Finder supports. See “Checkers Deactivated in Polyspace as You Code
Analysis” on page 11-78.

Summary of Polyspace Support
Standard Release Statically Enforceable

Rules
Required or
Mandatory Rules

“AUTOSAR C++14” on
page 17-2

10-31-2018 349 on page 17-156 out
of 349 rules in the
standard

337 on page 17-125 out
of 362 rules in the
standard

“MISRA C++:2008” on
page 17-4

June 2008 a 195 on page 17-83 out
of 198 rules in the
standard

“MISRA C:2012” on
page 17-4

• March 2013
• April 2016

(Amendment 1)
• June 2017 (TC1)
• January 2018

(Amendment 2)

122 on page 17-54 out
of 122 rules in the
standard

126 on page 17-43 out
of 126 rules in the
standard

“CERT C” on page 17-
7

2016 120 on page 17-75 out
of 120 rules in the
standard

120 on page 17-75 out
of 120 rules in the
standard

a MISRA C++:2008 standard does not categorize rules based on their static enforceability

Coding standards categorize the rules based on their obligation level or their static enforceability.
Polyspace supports rules that are considered nonenforceable or partially enforceable by the
standards. Enforcing these rules require a manual review process, which can be assisted by the
Polyspace results.

AUTOSAR C++14
The AUTOSAR C++14 standard categorizes the rules based on their obligation level and enforcement
by static analysis.

17 Polyspace Coverage of Coding Standards

17-2

Obligation Level

Category Rules Implemented in Bug
Finder

Rules in the Standard

Required: The code must follow
these rules.

337 362

Advisory: The code is advised
to follow these rules to a
reasonable practical extent.

33 35

 Total: 370

Enforcement by Static Analysis Tool

Category Rules Implemented in Bug
Finder

Rules in the Standard

Automated: Static analysis
tools can detect all violation of
these rules.

327 327a

Partially automated: Static
analysis tools cannot detect all
possible violations of these
rules. You need manual code
review or other tools to
completely enforce these rules.
Polyspace shows the subset of
all possible issues. For details
about which issues Polyspace
detects for a particular rule, see
the Polyspace
Implementation section in the
reference page of the rule.

22 22

Nonautomated: Static analysis
tools cannot detect all possible
violations of these rules. You
need manual code review or
other tools to completely
enforce these rules. Polyspace
shows the subset of all possible
issues. For details about which
issues Polyspace detects for a
particular rule, see the
Polyspace Implementation
section in the reference page of
the rule.

21 46

a The AUTOSAR C++14 standard contains 329 Automated rules. The rules A0-4-3 and A1-4-3 are not enforceable by a
static analysis tool. These rules might be enforced by a compiler.

The Automated and Partially automated rules are statically enforceable. In total, Polyspace
supports 349 statically enforceable rules and 337 required rules. See:

 Polyspace Support for Coding Standards

17-3

• “Statically Enforceable AUTOSAR C++14 Rules Supported by Polyspace Bug Finder” on page 17-
156.

• “Required AUTOSAR C++14 Coding Rules Supported by Polyspace Bug Finder” on page 17-125.

MISRA C++:2008
The MISRA C++:2008 standard categorizes the rules based on their obligation level.

Category Rules Implemented in Bug
Finder

Rules in the Standard

Required: The code must follow
these rules.

195 198

Advisory: The code is advised
to follow these rules to a
reasonable practical extent.

18 18

Document: These rules are
associated with different
features including #pragmas,
floating-point arithmetic, or bit
fields. Whenever these features
are used, the code must follow
the associated rule.

1 12

 Total: 214

In total Polyspace supports 193 out of 198 required MISRA C++:2008 rules. See “Required MISRA C
++:2008 Coding Rules Supported by Polyspace Bug Finder” on page 17-83.

MISRA C:2012
The MISRA C:2012 standard classifies the guidelines as either a rule or a directive. Polyspace
supports the original MISRA C:2012 standard as well as the technical corrigendum 1, amendments 1,
and 2. See “Polyspace Support for MISRA C: 2012 Amendments” on page 17-69.

MISRA C:2012 Rules

A rule is a guideline that can be described completely. Compliance with a rule can be checked
statically with some limitation. The rules are further categorized based on different properties.

17 Polyspace Coverage of Coding Standards

17-4

Obligation Level

Category Rules Implemented in Bug
Finder

Rules in the Standard

Mandatory: These are
guidelines that compliant C
code must follow. The standard
does not permit deviations from
these guidelines.

16 16

Required: These are guidelines
that compliant C code must
follow. The standard permits
only the deviations that you
formally record and authorize.

110 110

Advisory: These are
recommended guidelines. The
standard permits deviation from
these guidelines without any
formal record. It is a best
practice to follow these
guidelines to a reasonably
practical degree and record the
deviations.

32 32

 Total: 158

Compliant C code must follow the Mandatory and Required rules. Polyspace supports all such rules.

Static Enforceability

Category Rules Implemented in Bug
Finder

Rules in the Standard

Decidable: A rule is decidable
if a static analysis tool can
check compliance with the rule
in every possible case.

122 122

Undecidable: A rule is
undecidable if a static analysis
tool can check compliance to it
only in certain cases. Polyspace
shows the subset of all possible
issues. For details about which
issues Polyspace detects for a
particular rule, see the
Polyspace Implementation
section in the reference page of
the rule.

36 36

 Polyspace Support for Coding Standards

17-5

Analysis Scope

Category Rules Implemented in Bug
Finder

Rules in the Standard

Single Translation Unit: You
can find all violations of these
rules by checking each
translation unit of a project
individually.

109 109

System: You can find all
violations of these rules only by
analyzing the entire project or
system.

49 49

Polyspace supports 122 out of 122 decidable MISRA C:2012 rules. See “Decidable MISRA C:2012
Rules Supported by Polyspace Bug Finder” on page 17-54.

MISRA C:2012 Directives

Directives are guidelines that cannot be completely described. Checking compliance with these
directives requires more information in addition to the code. Static analysis might assist in checking
compliance with directives. The directives are categorized based on obligation level.

Obligation Level

Category Directives Implemented in
Bug Finder

Directives in the Standard

Required: These are guidelines
that compliant C code must
follow. The standard permits
only the deviations that you
formally record and authorize.

9 10

Advisory: These are
recommended guidelines. The
standard permits deviation from
these guidelines without any
formal record. It is a best
practice to follow these
guidelines to a reasonably
practical degree and record the
deviations.

6 7

17 Polyspace Coverage of Coding Standards

17-6

Static Enforceability

Category Directive Implemented in
Bug Finder

Directive in the Standard

Decidable: A directive is
decidable if a static analysis tool
can check compliance with the
directive in every possible case.

0 0

Undecidable: A directive is
undecidable if a static analysis
tool can check compliance to it
only in certain cases. Polyspace
shows the subset of all possible
issues. For details about which
issues Polyspace detects for a
particular directive, see the
Polyspace Implementation
section in the reference page of
the directive.

15 17

Polyspace supports 36 out of 36 undecidable rules as well as 15 undecidable directives. See
“Undecidable MISRA C:2012 Rules and Directives Supported by Polyspace Bug Finder” on page 17-
64.

CERT C
Polyspace supports all statically enforceable rules in the CERT C standard. The standard categorizes
the guidelines into rules and recommendations. Polyspace does not support rules that are being
removed or under construction.

Category Checks Implemented in Bug
Finder

Checks in the Standard

Rule: These guidelines are
required. Violation of these
guidelines might compromise
the safety, security, or reliability
of a system. Static analysis tools
can enforce compliance with
these guidelines.

120 120

Recommendation: These
guidelines are meant to improve
the readability, safety, and
security of a system. Static
analysis can only detect a
subset of violations of these
guidelines. Polyspace shows the
subset of all possible issues. For
details about which issues
Polyspace detects, see the
reference page of these rules.

83 183

 Polyspace Support for Coding Standards

17-7

Other
Polyspace also supports these coding rule standards.

Standard Rules Implemented in Bug Finder
MISRA C:2004 132 out of 142 rules in the standard
MISRA AC AGC 130 out of 142 in the standard
ISO/IEC TS 17961 46 out of 46 in the standard
JSF AV C++ 160 out of 234 in the standard
CERT C++ 153 out of 163 in the standard
CWE 102 (version 4.9), including:

• 72 out of 82 C specific rules (CWE-658).
• 75 out of 86 C++ specific rules (CWE-659).

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14) | Check MISRA C++:2008 (-misra-cpp) |
Check SEI CERT-C++ (-cert-cpp) | Check MISRA C:2012 (-misra3) | Check MISRA
C:2004 (-misra2) | Check SEI CERT-C (-cert-c) | Check CWE (-cwe)

More About
• “Checkers Deactivated in Polyspace as You Code Analysis” on page 11-78
• “Polyspace Support for MISRA C: 2012 Amendments” on page 17-69
• “Decidable MISRA C:2012 Rules Supported by Polyspace Bug Finder” on page 17-54
• “Undecidable MISRA C:2012 Rules and Directives Supported by Polyspace Bug Finder” on page

17-64
• “Required AUTOSAR C++14 Coding Rules Supported by Polyspace Bug Finder” on page 17-125
• “Statically Enforceable AUTOSAR C++14 Rules Supported by Polyspace Bug Finder” on page

17-156
• “Required MISRA C++:2008 Coding Rules Supported by Polyspace Bug Finder” on page 17-83
• “Required and Statically Enforceable CERT C Rules Supported by Polyspace Bug Finder” on

page 17-75

17 Polyspace Coverage of Coding Standards

17-8

MISRA C:2004 and MISRA AC AGC Coding Rules

In this section...
“Supported MISRA C:2004 and MISRA AC AGC Rules” on page 17-9
“Troubleshooting” on page 17-9
“List of Supported Coding Rules” on page 17-9
“Unsupported MISRA C:2004 and MISRA AC AGC Rules” on page 17-41

Supported MISRA C:2004 and MISRA AC AGC Rules
The following tables list MISRA C:2004 coding rules that the Polyspace coding rules checker
supports. Details regarding how the software checks individual rules and any limitations on the scope
of checking are described in the “Polyspace Specification” column.

Note The Polyspace coding rules checker:

• Supports MISRA-C:2004 Technical Corrigendum 1 for rules 4.1, 5.1, 5.3, 6.1, 6.3, 7.1, 9.2, 10.5,
12.6, 13.5, and 15.0.

• Checks rules specified by MISRA AC AGC Guidelines for the Application of MISRA-C:2004 in the
Context of Automatic Code Generation.

The software reports most violations during the compile phase of an analysis. However, the software
detects violations of rules 9.1 (Non-initialized variable), 12.11 (one of the overflow checks)
using -scalar-overflows-checks signed-and-unsigned), 13.7 (dead code), 14.1 (dead code),
16.2 and 21.1 during code analysis, and reports these violations as run-time errors.

Note Some violations of rules 13.7 and 14.1 are reported during the compile phase of analysis.

Troubleshooting
If you expect a rule violation but do not see it, check out “Diagnose Why Coding Standard Violations
Do Not Appear as Expected” on page 32-49.

List of Supported Coding Rules
• “Environment” on page 17-11
• “Language Extensions” on page 17-12
• “Documentation” on page 17-15
• “Character Sets” on page 17-15
• “Identifiers” on page 17-15
• “Types” on page 17-16
• “Constants” on page 17-17

 MISRA C:2004 and MISRA AC AGC Coding Rules

17-9

• “Declarations and Definitions” on page 17-17
• “Initialisation” on page 17-20
• “Arithmetic Type Conversion” on page 17-21
• “Pointer Type Conversion” on page 17-24
• “Expressions” on page 17-25
• “Control Statement Expressions” on page 17-27
• “Control Flow” on page 17-29
• “Switch Statements” on page 17-31
• “Functions” on page 17-32
• “Pointers and Arrays” on page 17-33
• “Structures and Unions” on page 17-34
• “Preprocessing Directives” on page 17-34
• “Standard Libraries” on page 17-37
• “Runtime Failures” on page 17-41

17 Polyspace Coverage of Coding Standards

17-10

Environment

N. MISRA Definition Messages in report file Polyspace Implementation
1.1 All code shall conform to ISO

9899:1990 “Programming
languages - C”, amended and
corrected by ISO/IEC 9899/
COR1:1995, ISO/IEC 9899/
AMD1:1995, and ISO/IEC 9899/
COR2:1996.

The text All code shall conform
to ISO 9899:1990 Programming
languages C, amended and
corrected by ISO/IEC 9899/
COR1:1995, ISO/IEC 9899/
AMD1:1995, and ISO/IEC 9899/
COR2:1996 precedes each of the
following messages:

• ANSI C does not allow
‘#include_next'

• ANSI C does not allow
macros with variable
arguments list

• ANSI C does not allow
‘#assert’

• ANSI C does not allow
'#unassert'

• ANSI C does not allow
testing assertions

• ANSI C does not allow
'#ident'

• ANSI C does not allow
'#sccs'

• text following '#else' violates
ANSI standard.

• text following '#endif'
violates ANSI standard.

• text following '#else' or
'#endif' violates ANSI
standard.

All the supported extensions
lead to a violation of this MISRA
rule. Standard compilation error
messages do not lead to a
violation of this MISRA rule and
remain unchanged.

 MISRA C:2004 and MISRA AC AGC Coding Rules

17-11

N. MISRA Definition Messages in report file Polyspace Implementation
1.1
(cont.)

 The text All code shall conform
to ISO 9899:1990 Programming
languages C, amended and
corrected by ISO/IEC 9899/
COR1:1995, ISO/IEC 9899/
AMD1:1995, and ISO/IEC 9899/
COR2:1996 precedes each of the
following messages:

• ANSI C90 forbids 'long long
int' type.

• ANSI C90 forbids 'long
double' type.

• ANSI C90 forbids long long
integer constants.

• Keyword 'inline' should not
be used.

• Array of zero size should not
be used.

• Integer constant does not fit
within unsigned long int.

• Integer constant does not fit
within long int.

• Too many nesting levels of
#includes: N1. The limit is
N0.

• Too many macro definitions:
N1. The limit is N0.

• Too many nesting levels for
control flow: N1. The limit is
N0.

• Too many enumeration
constants: N1. The limit is N0.

Language Extensions

N. MISRA Definition Messages in report file Polyspace Implementation
2.1 Assembly language shall be

encapsulated and isolated.
Assembly language shall be
encapsulated and isolated.

No warnings if code is
encapsulated in the following:

• asm functions or asm
pragma

• Macros

17 Polyspace Coverage of Coding Standards

17-12

N. MISRA Definition Messages in report file Polyspace Implementation
2.2 Source code shall only use /* */

style comments
C++ comments shall not be
used.

C++ comments are handled as
comments but lead to a violation
of this MISRA rule

Note: This rule cannot be
annotated in the source code.

2.3 The character sequence /* shall
not be used within a comment

The character sequence /* shall
not appear within a comment.

This rule violation is also raised
when the character sequence /*
inside a C++ comment.

Note: This rule cannot be
annotated in the source code.

 MISRA C:2004 and MISRA AC AGC Coding Rules

17-13

N. MISRA Definition Messages in report file Polyspace Implementation
2.4 Sections of code should not be

"commented out"
Sections of code should not be
"commented out"

The checker uses internal
heuristics to detect commented
out code. For instance,
characters such as #, ;, { or }
indicate comments that might
potentially contain code. These
comments are then evaluated
against other metrics to
determine the likelihood of code
masquerading as comment. For
instance, several successive
words without a symbol in
between reduces this likelihood.

The checker does not flag the
following comments even if they
contain code:

• Doxygen comments
beginning with /** or /*!.

• Comments that repeat the
same symbol several times,
for instance, the symbol =
here:

/* ==========
 * A comment
 * ==========*/

• Comments on the first line of
a file.

• Comments that mix the C
style (/* */) and C++ style
(//).

The checker considers that these
comments are meant for
documentation purposes or
entered deliberately with some
forethought.

17 Polyspace Coverage of Coding Standards

17-14

Documentation

Rule MISRA Definition Messages in report file Polyspace Implementation
3.4 All uses of the #pragma directive

shall be documented and
explained.

All uses of the #pragma directive
shall be documented and
explained.

To check this rule, you must list
the pragmas that are allowed in
source files by using the option
Allowed pragmas (-
allowed-pragmas). If
Polyspace finds a pragma not in
the allowed pragma list, a
violation is raised.

Character Sets

N. MISRA Definition Messages in report file Polyspace Implementation
4.1 Only those escape sequences

which are defined in the ISO C
standard shall be used.

\<character> is not an ISO C
escape sequence Only those
escape sequences which are
defined in the ISO C standard
shall be used.

4.2 Trigraphs shall not be used. Trigraphs shall not be used. Trigraphs are handled and
converted to the equivalent
character but lead to a violation
of the MISRA rule

Identifiers

N. MISRA Definition Messages in report file Polyspace Implementation
5.1 Identifiers (internal and external)

shall not rely on the significance
of more than 31 characters

Identifier 'XX' should not rely on
the significance of more than 31
characters.

All identifiers (global, static and
local) are checked.

For easier review, the rule
checker shows all identifiers that
have the same first 31
characters as one rule violation.
You can see all instances of
conflicting identifier names in
the event history of that rule
violation.

This checker is deactivated in a
default Polyspace as You Code
analysis. See “Checkers
Deactivated in Polyspace as You
Code Analysis” on page 11-78.

5.2 Identifiers in an inner scope shall
not use the same name as an
identifier in an outer scope, and
therefore hide that identifier.

• Local declaration of XX is
hiding another identifier.

• Declaration of parameter XX
is hiding another identifier.

Assumes that rule 8.1 is not
violated.

 MISRA C:2004 and MISRA AC AGC Coding Rules

17-15

N. MISRA Definition Messages in report file Polyspace Implementation
5.3 A typedef name shall be a unique

identifier
{typedef name}'%s' should not
be reused. (already used as
{typedef name} at %s:%d)

Warning when a typedef name is
reused as another identifier
name.

5.4 A tag name shall be a unique
identifier

{tag name}'%s' should not be
reused. (already used as {tag
name} at %s:%d)

Warning when a tag name is
reused as another identifier
name

This checker is deactivated in a
default Polyspace as You Code
analysis. See “Checkers
Deactivated in Polyspace as You
Code Analysis” on page 11-78.

5.5 No object or function identifier
with a static storage duration
should be reused.

{static identifier/parameter
name}’%s’ should not be reused.
(already used as {static
identifier/parameter name} with
static storage duration at
%s:%d)

Warning when a static name is
reused as another identifier
name

5.6 No identifier in one name space
should have the same spelling as
an identifier in another name
space, with the exception of
structure and union member
names.

{member name}'%s' should not
be reused. (already used as
{member name} at %s:%d)

Warning when an idf in a
namespace is reused in another
namespace

This checker is deactivated in a
default Polyspace as You Code
analysis. See “Checkers
Deactivated in Polyspace as You
Code Analysis” on page 11-78.

5.7 No identifier name should be
reused.

{identifier}'%s' should not be
reused. (already used as
{identifier} at %s:%d)

No violation reported when:

• Different functions have
parameters with the same
name

• Different functions have local
variables with the same name

• A function has a local
variable that has the same
name as a parameter of
another function

Types

N. MISRA Definition Messages in report file Polyspace Implementation
6.1 The plain char type shall be used

only for the storage and use of
character values

Only permissible operators on
plain chars are '=', '==' or '!='
operators, explicit casts to
integral types and '?' (for the
2nd and 3rd operands)

Warning when a plain char is
used with an operator other than
=, ==, !=, explicit casts to
integral types, or as the second
or third operands of the ?
operator.

17 Polyspace Coverage of Coding Standards

17-16

N. MISRA Definition Messages in report file Polyspace Implementation
6.2 Signed and unsigned char type

shall be used only for the storage
and use of numeric values.

• Value of type plain char is
implicitly converted to signed
char.

• Value of type plain char is
implicitly converted to
unsigned char.

• Value of type signed char is
implicitly converted to plain
char.

• Value of type unsigned char
is implicitly converted to
plain char.

Warning if value of type plain
char is implicitly converted to
value of type signed char or
unsigned char.

6.3 typedefs that indicate size and
signedness should be used in
place of the basic types

typedefs that indicate size and
signedness should be used in
place of the basic types.

No warning is given in typedef
definition.

6.4 Bit fields shall only be defined to
be of type unsigned int or signed
int.

Bit fields shall only be defined to
be of type unsigned int or signed
int.

6.5 Bit fields of type signed int shall
be at least 2 bits long.

Bit fields of type signed int shall
be at least 2 bits long.

No warning on anonymous
signed int bitfields of width 0 -
Extended to all signed bitfields
of size <= 1 (if Rule 6.4 is
violated).

Constants

N. MISRA Definition Messages in report file Polyspace Implementation
7.1 Octal constants (other than zero)

and octal escape sequences shall
not be used.

• Octal constants other than
zero and octal escape
sequences shall not be used.

• Octal constants (other than
zero) should not be used.

• Octal escape sequences
should not be used.

Declarations and Definitions

N. MISRA Definition Messages in report file Polyspace Implementation
8.1 Functions shall have prototype

declarations and the prototype
shall be visible at both the
function definition and call.

• Function XX has no complete
prototype visible at call.

• Function XX has no prototype
visible at definition.

Prototype visible at call must be
complete.

8.2 Whenever an object or function is
declared or defined, its type shall
be explicitly stated

Whenever an object or function is
declared or defined, its type shall
be explicitly stated.

 MISRA C:2004 and MISRA AC AGC Coding Rules

17-17

N. MISRA Definition Messages in report file Polyspace Implementation
8.3 For each function parameter the

type given in the declaration and
definition shall be identical, and
the return types shall also be
identical.

Definition of function 'XX'
incompatible with its declaration.

Assumes that rule 8.1 is not
violated. The rule is restricted to
compatible types. Can be turned
to Off

8.4 If objects or functions are
declared more than once their
types shall be compatible.

• If objects or functions are
declared more than once their
types shall be compatible.

• Global declaration of 'XX'
function has incompatible
type with its definition.

• Global declaration of 'XX'
variable has incompatible type
with its definition.

Violations of this rule might be
generated during the link phase.

This checker is deactivated in a
default Polyspace as You Code
analysis. See “Checkers
Deactivated in Polyspace as You
Code Analysis” on page 11-78.

8.5 There shall be no definitions of
objects or functions in a header
file

• Object 'XX' should not be
defined in a header file.

• Function 'XX' should not be
defined in a header file.

• Fragment of function should
not be defined in a header file.

Tentative definitions are
considered as definitions. For
objects with file scope, tentative
definitions are declarations that:

• Do not have initializers.
• Do not have storage class
specifiers, or have the static
specifier

8.6 Functions shall always be
declared at file scope.

Function 'XX' should be declared
at file scope.

This rule maps to ISO/IEC TS
17961 ID addrescape.

8.7 Objects shall be defined at block
scope if they are only accessed
from within a single function

Object 'XX' should be declared at
block scope.

Restricted to static objects.

8.8 An external object or function
shall be declared in one file and
only one file

Function/Object 'XX' has external
declarations in multiple files.

Restricted to explicit extern
declarations (tentative definitions
are ignored).

Polyspace considers that
variables or functions declared
extern in a non-header file
violate this rule.

17 Polyspace Coverage of Coding Standards

17-18

N. MISRA Definition Messages in report file Polyspace Implementation
8.9 An identifier with external

linkage shall have exactly one
external definition.

• Procedure/Global variable XX
multiply defined.

• Forbidden multiple tentative
definitions for object XX

• Global variable has multiple
tentative definitions

• Undefined global variable XX

The checker flags multiple
definitions only if the definitions
occur in different files.

No warnings appear on
predefined symbols.

This checker is deactivated in a
default Polyspace as You Code
analysis. See “Checkers
Deactivated in Polyspace as You
Code Analysis” on page 11-78.

8.10 All declarations and definitions of
objects or functions at file scope
shall have internal linkage unless
external linkage is required

Function/Variable XX should have
internal linkage.

Assumes that 8.1 is not violated.
No warning if 0 uses.

If your code does not contain a
main function and you use
options such as Variables to
initialize (-main-
generator-writes-
variables) with value custom
to explicitly specify a set of
variables to initialize, the checker
does not flag those variables. The
checker assumes that in a real
application, the file containing
the main must initialize the
variables in addition to any file
that currently uses them.
Therefore, the variables must be
used in more than one translation
unit.

This checker is deactivated in a
default Polyspace as You Code
analysis. See “Checkers
Deactivated in Polyspace as You
Code Analysis” on page 11-78.

8.11 The static storage class specifier
shall be used in definitions and
declarations of objects and
functions that have internal
linkage

static storage class specifier
should be used on internal
linkage symbol XX.

8.12 When an array is declared with
external linkage, its size shall be
stated explicitly or defined
implicitly by initialization

Size of array 'XX' should be
explicitly stated.

 MISRA C:2004 and MISRA AC AGC Coding Rules

17-19

Initialisation

N. MISRA Definition Messages in report file Polyspace Implementation
9.1 All automatic variables shall have

been assigned a value before
being used.

 Polyspace reports a violation of
this rule if your code contains
these issues:

• Non-initialized
variable

• Non-initialized
pointer

9.2 Braces shall be used to indicate
and match the structure in the
nonzero initialisation of arrays
and structures.

Braces shall be used to indicate
and match the structure in the
nonzero initialization of arrays
and structures.

9.3 In an enumerator list, the =
construct shall not be used to
explicitly initialize members other
than the first, unless all items are
explicitly initialized.

In an enumerator list, the =
construct shall not be used to
explicitly initialize members
other than the first, unless all
items are explicitly initialized.

17 Polyspace Coverage of Coding Standards

17-20

Arithmetic Type Conversion

N. MISRA Definition Messages in report file Polyspace Implementation
10.1 The value of an expression of

integer type shall not be implicitly
converted to a different
underlying type if:

• it is not a conversion to a
wider integer type of the same
signedness, or

• the expression is complex, or
• the expression is not constant

and is a function argument, or
• the expression is not constant

and is a return expression

• Implicit conversion of the
expression of underlying type
XX to the type XX that is not
a wider integer type of the
same signedness.

• Implicit conversion of one of
the binary operands whose
underlying types are XX and
XX

• Implicit conversion of the
binary right hand operand of
underlying type XX to XX
that is not an integer type.

• Implicit conversion of the
binary left hand operand of
underlying type XX to XX that
is not an integer type.

• Implicit conversion of the
binary right hand operand of
underlying type XX to XX that
is not a wider integer type of
the same signedness or
Implicit conversion of the
binary ? left hand operand of
underlying type XX to XX, but
it is a complex expression.

• Implicit conversion of
complex integer expression
of underlying type XX to XX.

• Implicit conversion of non-
constant integer expression
of underlying type XX in
function return whose
expected type is XX.

• Implicit conversion of non-
constant integer expression
of underlying type XX as
argument of function whose
corresponding parameter
type is XX.

ANSI C base types order (signed
char, short, int, long) defines
that T2 is wider than T1 if T2 is
on the right hand of T1 or T2 =
T1. The same interpretation is
applied on the unsigned version
of base types.

An expression of bool or enum
types has int as underlying type.

Plain char may have signed or
unsigned underlying type
(depending on Polyspace target
configuration or option setting).

The underlying type of a simple
expression of struct.bitfield is
the base type used in the bitfield
definition, the bitfield width is
not token into account and it
assumes that only signed |
unsigned int are used for bitfield
(Rule 6.4).

This rule violation is not
produced on operations
involving pointers.

No violation reported when:

• The implicit conversion is a
type widening, without
change of signedness of
integer

• The expression is an
argument expression or a
return expression

No violation reported when the
following are true:

• Implicit conversion applies to
a constant expression and is
a type widening, with a
possible change of
signedness of integer.

• The conversion does not
change the representation of

 MISRA C:2004 and MISRA AC AGC Coding Rules

17-21

N. MISRA Definition Messages in report file Polyspace Implementation
the constant value or the
result of the operation.

• The expression is an
argument expression or a
return expression or an
operand expression of a non-
bitwise operator.

Conversions of constants are not
reported for these cases to avoid
flagging too many violations. If
the constant can be represented
in both the original and
converted type, the conversion is
less of an issue.

10.2 The value of an expression of
floating type shall not be
implicitly converted to a different
type if

• it is not a conversion to a
wider floating type, or

• the expression is complex, or
• the expression is a function

argument, or
• the expression is a return

expression

• Implicit conversion of the
expression from XX to XX
that is not a wider floating
type.

• Implicit conversion of the
binary ? right hand operand
from XX to XX, but it is a
complex expression.

• Implicit conversion of the
binary ? right hand operand
from XX to XX that is not a
wider floating type or Implicit
conversion of the binary ? left
hand operand from XX to XX,
but it is a complex
expression.

• Implicit conversion of
complex floating expression
from XX to XX.

• Implicit conversion of
floating expression of XX type
in function return whose
expected type is XX.

• Implicit conversion of
floating expression of XX type
as argument of function
whose corresponding
parameter type is XX.

ANSI C base types order (float,
double) defines that T2 is wider
than T1 if T2 is on the right hand
of T1 or T2 = T1.

No violation reported when:

• The implicit conversion is a
type widening

• The expression is an
argument expression or a
return expression.

17 Polyspace Coverage of Coding Standards

17-22

N. MISRA Definition Messages in report file Polyspace Implementation
10.3 The value of a complex expression

of integer type may only be cast
to a type that is narrower and of
the same signedness as the
underlying type of the expression

Complex expression of
underlying type XX may only be
cast to narrower integer type of
same signedness, however the
destination type is XX.

• The rule checker raises a
defect only if the result of a
composite expression is cast
to a different or wider
essential type.

For instance, in this example,
a violation is shown in the
first assignment to i but not
the second. In the first
assignment, a composite
expression i+1 is directly
cast from a signed to an
unsigned type. In the second
assignment, the composite
expression is first cast to the
same type and then the result
is cast to a different type.

typedef int int32_T;
typedef unsigned char
 uint8_T;
...
...
int32_T i;
i = (uint8_T)(i+1);
/* Noncompliant */
i = (uint8_T)
 ((int32_T)(i+1));
 /* Compliant */

• ANSI C base types order
(signed char, short, int, long)
defines that T1 is narrower
than T2 if T2 is on the right
hand of T1 or T1 = T2. The
same methodology is applied
on the unsigned version of
base types.

• An expression of bool or
enum types has int as
underlying type.

• Plain char may have signed
or unsigned underlying type
(depending on target
configuration or option
setting).

• The underlying type of a
simple expression of
struct.bitfield is the base
type used in the bitfield
definition, the bitfield width

 MISRA C:2004 and MISRA AC AGC Coding Rules

17-23

N. MISRA Definition Messages in report file Polyspace Implementation
is not token into account and
it assumes that only signed,
unsigned int are used for
bitfield (Rule 6.4).

10.4 The value of a complex expression
of float type may only be cast to
narrower floating type

Complex expression of XX type
may only be cast to narrower
floating type, however the
destination type is XX.

ANSI C base types order (float,
double) defines that T1 is
narrower than T2 if T2 is on the
right hand of T1 or T2 = T1.

10.5 If the bitwise operator ~ and <<
are applied to an operand of
underlying type unsigned char or
unsigned short, the result shall be
immediately cast to the
underlying type of the operand

Bitwise [<<|~] is applied to the
operand of underlying type
[unsigned char|unsigned short],
the result shall be immediately
cast to the underlying type.

10.6 The “U” suffix shall be applied to
all constants of unsigned types

No explicit 'U suffix on constants
of an unsigned type.

 Warning when the type
determined from the value and
the base (octal, decimal or
hexadecimal) is unsigned and
there is no suffix u or U.

For example, when the size of
the int and long int data
types is 32 bits, the coding rule
checker will report a violation of
rule 10.6 for the following line:

int a = 2147483648;

There is a difference between
decimal and hexadecimal
constants when int and long
int are not the same size.

Pointer Type Conversion

N. MISRA Definition Messages in report file Polyspace Implementation
11.1 Conversion shall not be

performed between a pointer to a
function and any type other than
an integral type

Conversion shall not be
performed between a pointer to
a function and any type other
than an integral type.

Casts and implicit conversions
involving a function pointer.

Casts or implicit conversions
from NULL or (void*)0 do not
give any warning.

11.2 Conversion shall not be
performed between a pointer to
an object and any type other than
an integral type, another pointer
to a object type or a pointer to
void

Conversion shall not be
performed between a pointer to
an object and any type other
than an integral type, another
pointer to a object type or a
pointer to void.

There is also a warning on
qualifier loss

This rule maps to ISO/IEC TS
17961 ID alignconv.

17 Polyspace Coverage of Coding Standards

17-24

N. MISRA Definition Messages in report file Polyspace Implementation
11.3 A cast should not be performed

between a pointer type and an
integral type

A cast should not be performed
between a pointer type and an
integral type.

Exception on zero constant.
Extended to all conversions

This rule maps to ISO/IEC TS
17961 ID alignconv.

11.4 A cast should not be performed
between a pointer to object type
and a different pointer to object
type.

A cast should not be performed
between a pointer to object type
and a different pointer to object
type.

11.5 A cast shall not be performed that
removes any const or volatile
qualification from the type
addressed by a pointer

A cast shall not be performed
that removes any const or
volatile qualification from the
type addressed by a pointer

Extended to all conversions

Expressions

N. MISRA Definition Messages in report file Polyspace Implementation
12.1 Limited dependence should be

placed on C's operator
precedence rules in expressions

Limited dependence should be
placed on C's operator
precedence rules in expressions

12.2 The value of an expression shall
be the same under any order of
evaluation that the standard
permits.

• The value of 'sym' depends
on the order of evaluation.

• The value of volatile 'sym'
depends on the order of
evaluation because of multiple
accesses.

Rule 12.2 check assumes that no
assignment in expressions that
yield a Boolean values (rule
13.1).

The expression is a simple
expression of symbols. i = i++;
is a violation, but tab[2] =
tab[2]++; is not a violation.

12.3 The sizeof operator should not
be used on expressions that
contain side effects.

The sizeof operator should not
be used on expressions that
contain side effects.

No warning on volatile accesses

12.4 The right hand operand of a
logical && or || operator shall not
contain side effects.

The right hand operand of a
logical && or || operator shall not
contain side effects.

No warning on volatile accesses

12.5 The operands of a logical && or
|| shall be primary-expressions.

• operand of logical && is not a
primary expression

• operand of logical || is not a
primary expression

• The operands of a logical &&
or || shall be primary-
expressions.

During preprocessing, violations
of this rule are detected on the
expressions in #if directives.

Allowed exception on
associatively (a && b && c), (a ||
b || c).

 MISRA C:2004 and MISRA AC AGC Coding Rules

17-25

N. MISRA Definition Messages in report file Polyspace Implementation
12.6 Operands of logical operators

(&&, || and !) should be
effectively Boolean. Expression
that are effectively Boolean
should not be used as operands
to operators other than (&&, ||
or !).

• Operand of '!' logical operator
should be effectively Boolean.

• Left operand of '%s' logical
operator should be effectively
Boolean.

• Right operand of '%s' logical
operator should be effectively
Boolean.

• %s operand of '%s' is
effectively Boolean. Boolean
should not be used as
operands to operators other
than '&&', '||', '!', '=', '==', '!
=' and '?:'.

The operand of a logical operator
should be a Boolean data type.
Although the C standard does not
explicitly define the Boolean data
type, the standard implicitly
assumes the use of the Boolean
data type.

Some operators may return
Boolean-like expressions, for
example, (var == 0).

Consider the following code:

unsigned char flag;
if (!flag)

The rule checker reports a
violation of rule 12.6:

Operand of '!' logical
operator should be
effectively Boolean.

The operand flag is not a
Boolean but an unsigned char.

To be compliant with rule 12.6,
the code must be rewritten either
as

if (!(flag != 0))

or

if (flag == 0)

The use of the option -boolean-
types may increase or decrease
the number of warnings
generated.

12.7 Bitwise operators shall not be
applied to operands whose
underlying type is signed

• [~/Left Shift/Right shift/&]
operator applied on an
expression whose underlying
type is signed.

• Bitwise ~ on operand of
signed underlying type XX.

• Bitwise [<<|>>] on left hand
operand of signed underlying
type XX.

• Bitwise [& | ^] on two
operands of s

The underlying type for an
integer is signed when:

• it does not have a u or U suffix
• it is small enough to fit into a

64 bits signed number

17 Polyspace Coverage of Coding Standards

17-26

N. MISRA Definition Messages in report file Polyspace Implementation
12.8 The right hand operand of a shift

operator shall lie between zero
and one less than the width in
bits of the underlying type of the
left hand operand.

• shift amount is negative
• shift amount is bigger than 64
• Bitwise [<< >>] count out of

range [0 ..X] (width of the
underlying type XX of the left
hand operand - 1)..

The numbers that are
manipulated in preprocessing
directives are 64 bits wide so that
valid shift range is between 0 and
63

Check is also extended onto
bitfields with the field width or
the width of the base type when
it is within a complex expression

12.9 The unary minus operator shall
not be applied to an expression
whose underlying type is
unsigned.

• Unary - on operand of
unsigned underlying type XX.

• Minus operator applied to an
expression whose underlying
type is unsigned

The underlying type for an
integer is signed when:

• it does not have a u or U suffix
• it is small enough to fit into a

64 bits signed number
12.10 The comma operator shall not be

used.
The comma operator shall not be
used.

12.11 Evaluation of constant unsigned
expression should not lead to
wraparound.

Evaluation of constant unsigned
integer expressions should not
lead to wrap-around.

12.12 The underlying bit
representations of floating-point
values shall not be used.

The underlying bit
representations of floating-point
values shall not be used.

Warning when:

• A float pointer is cast as a
pointer to another data type.
Casting a float pointer as a
pointer to void does not
generate a warning.

• A float is packed with another
data type. For example:

union {
 float f;
 int i;
} …

12.13 The increment (++) and
decrement (--) operators should
not be mixed with other
operators in an expression

The increment (++) and
decrement (--) operators should
not be mixed with other
operators in an expression

Warning when ++ or -- operators
are not used alone.

Control Statement Expressions

N. MISRA Definition Messages in report file Polyspace Implementation
13.1 Assignment operators shall not

be used in expressions that yield
Boolean values.

Assignment operators shall not
be used in expressions that yield
Boolean values.

 MISRA C:2004 and MISRA AC AGC Coding Rules

17-27

N. MISRA Definition Messages in report file Polyspace Implementation
13.2 Tests of a value against zero

should be made explicit, unless
the operand is effectively Boolean

Tests of a value against zero
should be made explicit, unless
the operand is effectively Boolean

No warning is given on integer
constants. Example: if (2)

The use of the option -boolean-
types may increase or decrease
the number of warnings
generated.

13.3 Floating-point expressions shall
not be tested for equality or
inequality.

Floating-point expressions shall
not be tested for equality or
inequality.

Warning on directs tests only.

13.4 The controlling expression of a
for statement shall not contain
any objects of floating type

The controlling expression of a
for statement shall not contain
any objects of floating type

If for index is a variable symbol,
checked that it is not a float.

13.5 The three expressions of a for
statement shall be concerned
only with loop control

• 1st expression should be an
assignment.

• Bad type for loop counter
(XX).

• 2nd expression should be a
comparison.

• 2nd expression should be a
comparison with loop counter
(XX).

• 3rd expression should be an
assignment of loop counter
(XX).

• 3rd expression: assigned
variable should be the loop
counter (XX).

• The following kinds of for
loops are allowed:

(a) all three expressions shall
be present;

(b) the 2nd and 3rd
expressions shall be present
with prior initialization of the
loop counter;

(c) all three expressions shall
be empty for a deliberate
infinite loop.

Checked if the for loop index (V)
is a variable symbol; checked if V
is the last assigned variable in
the first expression (if present).
Checked if, in first expression, if
present, is assignment of V;
checked if in 2nd expression, if
present, must be a comparison of
V; Checked if in 3rd expression, if
present, must be an assignment
of V.

13.6 Numeric variables being used
within a for loop for iteration
counting should not be modified
in the body of the loop.

Numeric variables being used
within a for loop for iteration
counting should not be modified
in the body of the loop.

Detect only direct assignments if
the for loop index is known and if
it is a variable symbol.

17 Polyspace Coverage of Coding Standards

17-28

N. MISRA Definition Messages in report file Polyspace Implementation
13.7 Boolean operations whose results

are invariant shall not be
permitted

• Boolean operations whose
results are invariant shall not
be permitted. Expression is
always true.

• Boolean operations whose
results are invariant shall not
be permitted. Expression is
always false.

• Boolean operations whose
results are invariant shall not
be permitted.

During compilation, the checker
covers comparisons with at least
one constant operand. Some
violations of this rule are
reported through the Dead code
and Useless if checkers.

The rule violation appears when
you check whether an enum
variable value lies between its
lower and upper bound. The
violation appears even if you
increment or decrement the
variable outside its bounds, for
instance, in this for loop
condition:

enum ec {RED, BLUE, GREEN}
 col;
for(col=RED; col<=GREEN;
 col++)
{}

An enum variable can potentially
wrap around when incremented
outside its range and the loop
condition can be always true. To
avoid the rule violation, you can
cast the enum to an integer
before the comparison, for
instance:

enum ec {RED, BLUE, GREEN}
 col;
for(col=RED; (int)col<=GREEN;
 col++)
{}

Control Flow

N. MISRA Definition Messages in report file Polyspace Implementation
14.1 There shall be no unreachable

code.
There shall be no unreachable
code.

14.2 All non-null statements shall
either have at least one side
effect however executed, or
cause control flow to change

All non-null statements shall
either:

• have at least one side effect
however executed, or

• cause control flow to change

 MISRA C:2004 and MISRA AC AGC Coding Rules

17-29

N. MISRA Definition Messages in report file Polyspace Implementation
14.3 Before preprocessing, a null

statement shall occur on a line by
itself; it may be followed by a
comment provided that the first
character following the null
statement is a white-space
character.

A null statement shall appear on
a line by itself

We assume that a ';' is a null
statement when it is the first
character on a line (excluding
comments). The rule is violated
when:

• there are some comments
before it on the same line.

• there is a comment
immediately after it

• there is something else than
a comment after the ';' on
the same line.

14.4 The goto statement shall not be
used.

The goto statement shall not be
used.

14.5 The continue statement shall not
be used.

The continue statement shall
not be used.

14.6 For any iteration statement there
shall be at most one break
statement used for loop
termination

For any iteration statement
there shall be at most one break
statement used for loop
termination

14.7 A function shall have a single
point of exit at the end of the
function

A function shall have a single
point of exit at the end of the
function

14.8 The statement forming the body
of a switch, while, do while or for
statement shall be a compound
statement

• The body of a do while
statement shall be a
compound statement.

• The body of a for statement
shall be a compound
statement.

• The body of a switch
statement shall be a
compound statement

14.9 An if (expression) construct shall
be followed by a compound
statement. The else keyword
shall be followed by either a
compound statement, or another
if statement

• An if (expression) construct
shall be followed by a
compound statement.

• The else keyword shall be
followed by either a
compound statement, or
another if statement

14.10 All if else if constructs should
contain a final else clause.

All if else if constructs should
contain a final else clause.

17 Polyspace Coverage of Coding Standards

17-30

Switch Statements

N. MISRA Definition Messages in report file Polyspace Implementation
15.0 The MISRA C switch syntax shall

be used.
switch statements syntax
normative restrictions.

Warning on declarations or any
statements before the first switch
case.

Warning on label or jump
statements in the body of switch
cases.

On the following example, the
rule is displayed in the log file at
line 3:

1 ...
2 switch(index) {
3 var = var + 1;
// RULE 15.0
// violated
4case 1: ...

The code between switch
statement and first case is
checked as dead code by
Polyspace. It follows ANSI
standard behavior.

This rule is not considered as a
required rule in the MISRA
C:2004 rules for generated code.
In generated code, if you find a
violation of rule 15.0 that does
not simultaneously violate a later
rule in this group, justify the
violation with appropriate
comments.

15.1 A switch label shall only be used
when the most closely-enclosing
compound statement is the body
of a switch statement

A switch label shall only be used
when the most closely-enclosing
compound statement is the body
of a switch statement

15.2 An unconditional break statement
shall terminate every non-empty
switch clause

An unconditional break statement
shall terminate every non-empty
switch clause

Warning for each non-compliant
case clause.

15.3 The final clause of a switch
statement shall be the default
clause

The final clause of a switch
statement shall be the default
clause

15.4 A switch expression should not
represent a value that is
effectively Boolean

A switch expression should not
represent a value that is
effectively Boolean

The use of the option -boolean-
types may increase the number
of warnings generated.

 MISRA C:2004 and MISRA AC AGC Coding Rules

17-31

N. MISRA Definition Messages in report file Polyspace Implementation
15.5 Every switch statement shall

have at least one case clause
Every switch statement shall
have at least one case clause

Functions

N. MISRA Definition Messages in report file Polyspace Implementation
16.1 Functions shall not be defined

with variable numbers of
arguments.

Function XX should not be
defined as varargs.

16.2 Functions shall not call
themselves, either directly or
indirectly.

Function %s should not call itself. The checker reports each
function that calls itself, directly
or indirectly. Even if several
functions are involved in one
recursion cycle, each function is
individually reported.

You can calculate the total
number of recursion cycles using
the code complexity metric
Number of Recursions.

16.3 Identifiers shall be given for all of
the parameters in a function
prototype declaration.

Identifiers shall be given for all of
the parameters in a function
prototype declaration.

Assumes Rule 8.6 is not violated.

16.4 The identifiers used in the
declaration and definition of a
function shall be identical.

The identifiers used in the
declaration and definition of a
function shall be identical.

Assumes that rules 8.8, 8.1 and
16.3 are not violated.

All occurrences are detected.
16.5 Functions with no parameters

shall be declared with parameter
type void.

Functions with no parameters
shall be declared with parameter
type void.

Definitions are also checked.

16.6 The number of arguments passed
to a function shall match the
number of parameters.

• Too many arguments to XX.
• Insufficient number of

arguments to XX.

Assumes that rule 8.1 is not
violated.

This rule maps to ISO/IEC TS
17961 ID argcomp.

16.7 A pointer parameter in a function
prototype should be declared as
pointer to const if the pointer is
not used to modify the addressed
object.

Pointer parameter in a function
prototype should be declared as
pointer to const if the pointer is
not used to modify the addressed
object.

Warning if a non-const pointer
parameter is either not used to
modify the addressed object or is
passed to a call of a function that
is declared with a const pointer
parameter.

16.8 All exit paths from a function
with non-void return type shall
have an explicit return statement
with an expression.

Missing return value for non-void
function XX.

Warning when a non-void
function is not terminated with
an unconditional return with an
expression.

17 Polyspace Coverage of Coding Standards

17-32

N. MISRA Definition Messages in report file Polyspace Implementation
16.9 A function identifier shall only be

used with either a preceding &,
or with a parenthesized
parameter list, which may be
empty.

Function identifier XX should be
preceded by a & or followed by a
parameter list.

16.10 If a function returns error
information, then that error
information shall be tested.

If a function returns error
information, then that error
information shall be tested.

The checker flags functions with
non-void return if the return
value is not used or not explicitly
cast to a void type.

The checker does not flag the
functions memcpy, memset,
memmove, strcpy, strncpy,
strcat, strncat because these
functions simply return a pointer
to their first arguments.

Pointers and Arrays

N. MISRA Definition Messages in report file Polyspace Implementation
17.1 Pointer arithmetic shall only be

applied to pointers that address
an array or array element.

Pointer arithmetic shall only be
applied to pointers that address
an array or array element.

17.2 Pointer subtraction shall only be
applied to pointers that address
elements of the same array

Pointer subtraction shall only be
applied to pointers that address
elements of the same array.

Polyspace reports a violation
when you subtract that are null
or that point to elements in
different arrays.

17.3 >, >=, <, <= shall not be applied
to pointer types except where
they point to the same array.

>, >=, <, <= shall not be applied
to pointer types except where
they point to the same array.

Polyspace reports a violation
when you compare pointers that
are null or that point to elements
in different arrays. The relational
operators for the comparison are
>, <, >=, and <=.

17.4 Array indexing shall be the only
allowed form of pointer
arithmetic.

Array indexing shall be the only
allowed form of pointer
arithmetic.

Warning on:

• Operations on pointers. (p+I,
I+p, and p-I, where p is a
pointer and I an integer).

• Array indexing on nonarray
pointers.

17.5 A type should not contain more
than 2 levels of pointer
indirection

A type should not contain more
than 2 levels of pointer
indirection

 MISRA C:2004 and MISRA AC AGC Coding Rules

17-33

N. MISRA Definition Messages in report file Polyspace Implementation
17.6 The address of an object with

automatic storage shall not be
assigned to an object that may
persist after the object has
ceased to exist.

Pointer to a parameter is an
illegal return value. Pointer to a
local is an illegal return value.

Warning when assigning address
to a global variable, returning a
local variable address, or
returning a parameter address.

This rule maps to ISO/IEC TS
17961 ID accfree.

Structures and Unions

N. MISRA Definition Messages in report file Polyspace Implementation
18.1 All structure or union types shall

be complete at the end of a
translation unit.

All structure or union types shall
be complete at the end of a
translation unit.

Warning for all incomplete
declarations of structs or unions.

18.2 An object shall not be assigned to
an overlapping object.

• An object shall not be
assigned to an overlapping
object.

• Destination and source of XX
overlap, the behavior is
undefined.

18.4 Unions shall not be used Unions shall not be used.

Preprocessing Directives

N. MISRA Definition Messages in report file Polyspace Implementation
19.1 #include statements in a file shall

only be preceded by other
preprocessors directives or
comments

#include statements in a file shall
only be preceded by other
preprocessors directives or
comments

A message is displayed when a
#include directive is preceded by
other things than preprocessor
directives, comments, spaces or
“new lines”.

19.2 Nonstandard characters should
not occur in header file names in
#include directives

• A message is displayed on
characters ', " or /* between <
and > in #include <filename>

• A message is displayed on
characters ', or /* between "
and " in #include "filename"

19.3 The #include directive shall be
followed by either a <filename>
or "filename" sequence.

• '#include' expects
"FILENAME" or
<FILENAME>

• '#include_next' expects
"FILENAME" or
<FILENAME>

17 Polyspace Coverage of Coding Standards

17-34

N. MISRA Definition Messages in report file Polyspace Implementation
19.4 C macros shall only expand to a

braced initializer, a constant, a
parenthesized expression, a type
qualifier, a storage class specifier,
or a do-while-zero construct.

Macro '<name>' does not expand
to a compliant construct.

We assume that a macro
definition does not violate this
rule when it expands to:

• a braced construct (not
necessarily an initializer)

• a parenthesized construct (not
necessarily an expression)

• a number
• a character constant
• a string constant (can be the

result of the concatenation of
string field arguments and
literal strings)

• the following keywords:
typedef, extern, static, auto,
register, const, volatile,
__asm__ and __inline__

• a do-while-zero construct
19.5 Macros shall not be #defined and

#undefd within a block.
• Macros shall not be

#define’d within a block.
• Macros shall not be #undef’d

within a block.

19.6 #undef shall not be used. #undef shall not be used.
19.7 A function should be used in

preference to a function like-
macro.

A function should be used in
preference to a function like-
macro

Message on all function-like
macro definitions.

19.8 A function-like macro shall not be
invoked without all of its
arguments

• arguments given to macro
'<name>'

• macro '<name>' used without
args.

• macro '<name>' used with
just one arg.

• macro '<name>' used with
too many (<number>) args.

19.9 Arguments to a function-like
macro shall not contain tokens
that look like preprocessing
directives.

Macro argument shall not look
like a preprocessing directive.

This rule is detected as violated
when the '#' character appears in
a macro argument (outside a
string or character constant)

 MISRA C:2004 and MISRA AC AGC Coding Rules

17-35

N. MISRA Definition Messages in report file Polyspace Implementation
19.10 In the definition of a function-like

macro each instance of a
parameter shall be enclosed in
parentheses unless it is used as
the operand of # or ##.

Parameter instance shall be
enclosed in parentheses.

If x is a macro parameter, the
following instances of x as an
operand of the # and ##
operators do not generate a
warning: #x, ##x, and x##.
Otherwise, parentheses are
required around x.

The software does not generate a
warning if a parameter is reused
as an argument of a function or
function-like macro. For example,
consider a parameter x. The
software does not generate a
warning if x appears as (x) or
(x, or ,x) or ,x,.

19.11 All macro identifiers in
preprocessor directives shall be
defined before use, except in
#ifdef and #ifndef preprocessor
directives and the defined()
operator.

'<name>' is not defined.

19.12 There shall be at most one
occurrence of the # or ##
preprocessor operators in a
single macro definition.

More than one occurrence of the
or ## preprocessor operators.

19.13 The # and ## preprocessor
operators should not be used

Message on definitions of macros
using # or ## operators

19.14 The defined preprocessor
operator shall only be used in one
of the two standard forms.

'defined' without an identifier.

17 Polyspace Coverage of Coding Standards

17-36

N. MISRA Definition Messages in report file Polyspace Implementation
19.15 Precautions shall be taken in

order to prevent the contents of a
header file being included twice.

Precautions shall be taken in
order to prevent multiple
inclusions.

When a header file is formatted
as,

#ifndef <control macro>
#define <control macro>
<contents> #endif

or,

#ifndef <control macro>
#error ...
#else
#define <control macro>
<contents> #endif

it is assumed that precautions
have been taken to prevent
multiple inclusions. Otherwise, a
violation of this MISRA rule is
detected.

19.16 Preprocessing directives shall be
syntactically meaningful even
when excluded by the
preprocessor.

directive is not syntactically
meaningful.

19.17 All #else, #elif and #endif
preprocessor directives shall
reside in the same file as the #if
or #ifdef directive to which they
are related.

• '#elif' not within a
conditional.

• '#else' not within a
conditional.

• '#elif' not within a
conditional.

• '#endif' not within a
conditional.

• unbalanced '#endif'.
• unterminated '#if' conditional.
• unterminated '#ifdef'

conditional.
• unterminated '#ifndef'

conditional.

Standard Libraries

N. MISRA Definition Messages in report file Polyspace Implementation
20.1 Reserved identifiers, macros and

functions in the standard library,
shall not be defined, redefined or
undefined.

• The macro '<name> shall not
be redefined.

• The macro '<name> shall not
be undefined.

 MISRA C:2004 and MISRA AC AGC Coding Rules

17-37

N. MISRA Definition Messages in report file Polyspace Implementation
20.2 The names of standard library

macros, objects and functions
shall not be reused.

Identifier XX should not be used. In case a macro whose name
corresponds to a standard library
macro, object or function is
defined, the rule that is detected
as violated is 20.1.

Tentative definitions are
considered as definitions. For
objects with file scope, tentative
definitions are declarations that:

• Do not have initializers.
• Do not have storage class
specifiers, or have the static
specifier

17 Polyspace Coverage of Coding Standards

17-38

N. MISRA Definition Messages in report file Polyspace Implementation
20.3 The validity of values passed to

library functions shall be
checked.

Validity of values passed to
library functions shall be checked

Warning for argument in library
function call if the following are
all true:

• Argument is a local variable
• Local variable is not tested

between last assignment and
call to the library function

• Library function is a common
mathematical function

• Corresponding parameter of
the library function has a
restricted input domain.

The library function can be one of
the following : sqrt, tan, pow,
log, log10, fmod, acos, asin,
acosh, atanh, or atan2.

You might be using a custom
library of mathematical functions.
If a custom library function have
the same domain and range as
another function from the
standard library, you can extend
this checker to check the custom
library function. See “Extend Bug
Finder Checkers for Standard
Library Functions to Custom
Libraries” on page 18-24.

A default Bug Finder analysis
might not raise a violation of this
rule when the input values are
unknown and only a subset of
inputs can cause an issue. To
check for violations caused by
specific system input values, run
a stricter Bug Finder analysis.
See “Extend Bug Finder
Checkers to Find Defects from
Specific System Input Values” on
page 18-26.

By default, a Bug Finder analysis
does not recognize infinities and
NaNs. Operations that results in
infinities and NaNs might be
flagged as defects. To handle
infinities and NaN values in your
code, use the option Consider

 MISRA C:2004 and MISRA AC AGC Coding Rules

17-39

N. MISRA Definition Messages in report file Polyspace Implementation
non finite floats (-
allow-non-finite-floats).

20.4 Dynamic heap memory allocation
shall not be used.

• The macro '<name> shall not
be used.

• Identifier XX should not be
used.

In case the dynamic heap
memory allocation functions are
actually macros and the macro is
expanded in the code, this rule is
detected as violated. Assumes
rule 20.2 is not violated.

20.5 The error indicator errno shall
not be used

The error indicator errno shall
not be used

Assumes that rule 20.2 is not
violated

20.6 The macro offsetof, in library
<stddef.h>, shall not be used.

• The macro '<name> shall not
be used.

• Identifier XX should not be
used.

Assumes that rule 20.2 is not
violated

20.7 The setjmp macro and the
longjmp function shall not be
used.

• The macro '<name> shall not
be used.

• Identifier XX should not be
used.

In case the longjmp function is
actually a macro and the macro is
expanded in the code, this rule is
detected as violated. Assumes
that rule 20.2 is not violated

20.8 The signal handling facilities of
<signal.h> shall not be used.

• The macro '<name> shall not
be used.

• Identifier XX should not be
used.

In case some of the signal
functions are actually macros and
are expanded in the code, this
rule is detected as violated.
Assumes that rule 20.2 is not
violated

20.9 The input/output library
<stdio.h> shall not be used in
production code.

• The macro '<name> shall not
be used.

• Identifier XX should not be
used.

In case the input/output library
functions are actually macros and
are expanded in the code, this
rule is detected as violated.
Assumes that rule 20.2 is not
violated

20.10 The library functions atof, atoi
and atoll from library <stdlib.h>
shall not be used.

• The macro '<name> shall not
be used.

• Identifier XX should not be
used.

In case the atof, atoi and atoll
functions are actually macros and
are expanded, this rule is
detected as violated. Assumes
that rule 20.2 is not violated

20.11 The library functions abort, exit,
getenv and system from library
<stdlib.h> shall not be used.

• The macro '<name> shall not
be used.

• Identifier XX should not be
used.

In case the abort, exit, getenv
and system functions are actually
macros and are expanded, this
rule is detected as violated.
Assumes that rule 20.2 is not
violated

17 Polyspace Coverage of Coding Standards

17-40

N. MISRA Definition Messages in report file Polyspace Implementation
20.12 The time handling functions of

library <time.h> shall not be
used.

• The macro '<name> shall not
be used.

• Identifier XX should not be
used.

In case the time handling
functions are actually macros and
are expanded, this rule is
detected as violated. Assumes
that rule 20.2 is not violated

Runtime Failures

N. MISRA Definition Messages in report file Polyspace Implementation
21.1 Minimization of runtime failures

shall be ensured by the use of at
least one of:

• static verification tools/
techniques;

• dynamic verification tools/
techniques;

• explicit coding of checks to
handle runtime faults.

Unsupported MISRA C:2004 and MISRA AC AGC Rules
The Polyspace coding rules checker does not check the following MISRA C:2004 coding rules. These
rules cannot be enforced because they are outside the scope of Polyspace software. They may
concern documentation, dynamic aspects, or functional aspects of MISRA rules. The Additional
Information column describes the reason each rule is not checked.

Environment

Rule Description Additional Information
1.2 (Required) No reliance shall be placed on undefined or

unspecified behavior
Not statically checkable unless the data
dynamic properties is taken into account

1.3 (Required) Multiple compilers and/or languages shall
only be used if there is a common defined
interface standard for object code to which
the language/compilers/assemblers conform.

It is a process rule method.

1.4 (Required) The compiler/linker/Identifiers (internal and
external) shall not rely on significance of
more than 31 characters. Furthermore the
compiler/linker shall be checked to ensure
that 31 character significance and case
sensitivity are supported for external
identifiers.

To observe this rule, check your compiler
documentation.

1.5 (Advisory) Floating point implementations should
comply with a defined floating point
standard.

To observe this rule, check your compiler
documentation.

 MISRA C:2004 and MISRA AC AGC Coding Rules

17-41

Documentation

Rule Description Additional Information
3.1 (Required) All usage of implementation-defined

behavior shall be documented.
To observe this rule, check your compiler
documentation. Error detection is based on
undefined behavior, according to choices
made for implementation- defined
constructions.

3.2 (Required) The character set and the corresponding
encoding shall be documented.

To observe this rule, check your compiler
documentation.

3.3 (Advisory) The implementation of integer division in the
chosen compiler should be determined,
documented and taken into account.

To observe this rule, check your compiler
documentation.

3.5 (Required) The implementation-defined behavior and
packing of bitfields shall be documented if
being relied upon.

To observe this rule, check your compiler
documentation.

3.6 (Required) All libraries used in production code shall be
written to comply with the provisions of this
document, and shall have been subject to
appropriate validation.

To observe this rule, check your compiler
documentation.

Structures and Unions

Rule Description Additional Information
18.3 (Required) An area of memory shall not be reused for

unrelated purposes.
"purpose" is functional design issue.

17 Polyspace Coverage of Coding Standards

17-42

Required or Mandatory MISRA C:2012 Rules Supported by
Polyspace Bug Finder

The MISRA C:2012 standard classifies the rules that compliant C code must follow as Required and
Mandatory. In total, Polyspace supports 126 out of 126 such rules.

Mandatory Rules
Compliant C code must follow these coding rules. The standard does not permit deviation from these
rules. Polyspace supports 16 out of 16 such rules.

MISRA C:2012 Rule Description Polyspace Checker
MISRA C:2012 Rule 12.5 The sizeof operator shall not

have an operand which is a
function parameter declared as
“array of type”

MISRA C:2012 Rule 12.5

MISRA C:2012 Rule 13.6 The operand of the sizeof
operator shall not contain any
expression which has potential
side effects

MISRA C:2012 Rule 13.6

MISRA C:2012 Rule 17.3 A function shall not be declared
implicitly

MISRA C:2012 Rule 17.3

MISRA C:2012 Rule 17.4 All exit paths from a function
with non-void return type shall
have an explicit return
statement with an expression

MISRA C:2012 Rule 17.4

MISRA C:2012 Rule 17.6 The declaration of an array
parameter shall not contain the
static keyword between the []

MISRA C:2012 Rule 17.6

MISRA C:2012 Rule 19.1 An object shall not be assigned
or copied to an overlapping
object

MISRA C:2012 Rule 19.1

MISRA C:2012 Rule 21.13 Any value passed to a function
in <ctype.h> shall be
representable as an unsigned
char or be the value EOF

MISRA C:2012 Rule 21.13

MISRA C:2012 Rule 21.17 Use of the string handling
function from <string.h> shall
not result in accesses beyond
the bounds of the objects
referenced by their pointer
parameters

MISRA C:2012 Rule 21.17

MISRA C:2012 Rule 21.18 The size_t argument passed to
any function in <string.h>
shall have an appropriate value

MISRA C:2012 Rule 21.18

 Required or Mandatory MISRA C:2012 Rules Supported by Polyspace Bug Finder

17-43

MISRA C:2012 Rule Description Polyspace Checker
MISRA C:2012 Rule 21.19 The pointers returned by the

Standard Library functions
localeconv, getenv,
setlocale or strerror shall
only be used as if they have
pointer to const-qualified type

MISRA C:2012 Rule 21.19

MISRA C:2012 Rule 21.20 The pointer returned by the
Standard Library functions
asctime, ctime, gmtime,
localtime, localeconv,
getenv, setlocale or
strerror shall not be used
following a subsequent call to
the same function

MISRA C:2012 Rule 21.20

MISRA C:2012 Rule 22.2 A block of memory shall only be
freed if it was allocated by
means of a Standard Library
function

MISRA C:2012 Rule 22.2

MISRA C:2012 Rule 22.4 There shall be no attempt to
write to a stream which has
been opened as read-only

MISRA C:2012 Rule 22.4

MISRA C:2012 Rule 22.5 A pointer to a FILE object shall
not be dereferenced

MISRA C:2012 Rule 22.5

MISRA C:2012 Rule 22.6 The value of a pointer to a FILE
shall not be used after the
associated stream has been
closed

MISRA C:2012 Rule 22.6

MISRA C:2012 Rule 9.1 The value of an object with
automatic storage duration shall
not be read before it has been
set

MISRA C:2012 Rule 9.1

Required Rules
Compliant C code must follow these coding rules. The standard permits only the deviations that you
formally record and authorize. Polyspace supports 110 out of 110 such rules.

MISRA C:2012 Rule Description Polyspace Checker
MISRA C:2012 Rule 10.1 Operands shall not be of an

inappropriate essential type
MISRA C:2012 Rule 10.1

MISRA C:2012 Rule 10.2 Expressions of essentially
character type shall not be used
inappropriately in addition and
subtraction operations

MISRA C:2012 Rule 10.2

17 Polyspace Coverage of Coding Standards

17-44

MISRA C:2012 Rule Description Polyspace Checker
MISRA C:2012 Rule 10.3 The value of an expression shall

not be assigned to an object
with a narrower essential type
or of a different essential type
category

MISRA C:2012 Rule 10.3

MISRA C:2012 Rule 10.4 Both operands of an operator in
which the usual arithmetic
conversions are performed shall
have the same essential type
category

MISRA C:2012 Rule 10.4

MISRA C:2012 Rule 10.6 The value of a composite
expression shall not be assigned
to an object with wider essential
type

MISRA C:2012 Rule 10.6

MISRA C:2012 Rule 10.7 If a composite expression is
used as one operand of an
operator in which the usual
arithmetic conversions are
performed then the other
operand shall not have wider
essential type

MISRA C:2012 Rule 10.7

MISRA C:2012 Rule 10.8 The value of a composite
expression shall not be cast to a
different essential type category
or a wider essential type

MISRA C:2012 Rule 10.8

MISRA C:2012 Rule 11.1 Conversions shall not be
performed between a pointer to
a function and any other type

MISRA C:2012 Rule 11.1

MISRA C:2012 Rule 11.2 Conversions shall not be
performed between a pointer to
an incomplete type and any
other type

MISRA C:2012 Rule 11.2

MISRA C:2012 Rule 11.3 A cast shall not be performed
between a pointer to object type
and a pointer to a different
object type

MISRA C:2012 Rule 11.3

MISRA C:2012 Rule 11.6 A cast shall not be performed
between pointer to void and an
arithmetic type

MISRA C:2012 Rule 11.6

MISRA C:2012 Rule 11.7 A cast shall not be performed
between pointer to object and a
non-integer arithmetic type

MISRA C:2012 Rule 11.7

MISRA C:2012 Rule 11.8 A cast shall not remove any
const or volatile qualification
from the type pointed to by a
pointer

MISRA C:2012 Rule 11.8

 Required or Mandatory MISRA C:2012 Rules Supported by Polyspace Bug Finder

17-45

MISRA C:2012 Rule Description Polyspace Checker
MISRA C:2012 Rule 11.9 The macro NULL shall be the

only permitted form of integer
null pointer constant

MISRA C:2012 Rule 11.9

MISRA C:2012 Rule 12.2 The right hand operand of a
shift operator shall lie in the
range zero to one less than the
width in bits of the essential
type of the left hand operand

MISRA C:2012 Rule 12.2

MISRA C:2012 Rule 13.1 Initializer lists shall not contain
persistent side effects

MISRA C:2012 Rule 13.1

MISRA C:2012 Rule 13.2 The value of an expression and
its persistent side effects shall
be the same under all permitted
evaluation orders

MISRA C:2012 Rule 13.2

MISRA C:2012 Rule 13.5 The right hand operand of a
logical && or || operator shall
not contain persistent side
effects

MISRA C:2012 Rule 13.5

MISRA C:2012 Rule 14.1 A loop counter shall not have
essentially floating type

MISRA C:2012 Rule 14.1

MISRA C:2012 Rule 14.2 A for loop shall be well-formed MISRA C:2012 Rule 14.2
MISRA C:2012 Rule 14.3 Controlling expressions shall

not be invariant
MISRA C:2012 Rule 14.3

MISRA C:2012 Rule 14.4 The controlling expression of an
if statement and the controlling
expression of an iteration-
statement shall have essentially
Boolean type

MISRA C:2012 Rule 14.4

MISRA C:2012 Rule 15.2 The goto statement shall jump
to a label declared later in the
same function

MISRA C:2012 Rule 15.2

MISRA C:2012 Rule 15.3 Any label referenced by a goto
statement shall be declared in
the same block, or in any block
enclosing the goto statement

MISRA C:2012 Rule 15.3

MISRA C:2012 Rule 15.6 The body of an iteration-
statement or a selection-
statement shall be a compound
statement

MISRA C:2012 Rule 15.6

MISRA C:2012 Rule 15.7 All if … else if constructs shall
be terminated with an else
statement

MISRA C:2012 Rule 15.7

MISRA C:2012 Rule 16.1 All switch statements shall be
well-formed

MISRA C:2012 Rule 16.1

17 Polyspace Coverage of Coding Standards

17-46

MISRA C:2012 Rule Description Polyspace Checker
MISRA C:2012 Rule 16.2 A switch label shall only be used

when the most closely-enclosing
compound statement is the body
of a switch statement

MISRA C:2012 Rule 16.2

MISRA C:2012 Rule 16.3 An unconditional break
statement shall terminate every
switch-clause

MISRA C:2012 Rule 16.3

MISRA C:2012 Rule 16.4 Every switch statement shall
have a default label

MISRA C:2012 Rule 16.4

MISRA C:2012 Rule 16.5 A default label shall appear as
either the first or the last switch
label of a switch statement

MISRA C:2012 Rule 16.5

MISRA C:2012 Rule 16.6 Every switch statement shall
have at least two switch-clauses

MISRA C:2012 Rule 16.6

MISRA C:2012 Rule 16.7 A switch-expression shall not
have essentially Boolean type

MISRA C:2012 Rule 16.7

MISRA C:2012 Rule 17.1 The features of <stdarg.h> shall
not be used

MISRA C:2012 Rule 17.1

MISRA C:2012 Rule 17.2 Functions shall not call
themselves, either directly or
indirectly

MISRA C:2012 Rule 17.2

MISRA C:2012 Rule 17.7 The value returned by a function
having non-void return type
shall be used

MISRA C:2012 Rule 17.7

MISRA C:2012 Rule 18.1 A pointer resulting from
arithmetic on a pointer operand
shall address an element of the
same array as that pointer
operand

MISRA C:2012 Rule 18.1

MISRA C:2012 Rule 18.2 Subtraction between pointers
shall only be applied to pointers
that address elements of the
same array

MISRA C:2012 Rule 18.2

MISRA C:2012 Rule 18.3 The relational operators >, >=,
< and <= shall not be applied to
objects of pointer type except
where they point into the same
object

MISRA C:2012 Rule 18.3

MISRA C:2012 Rule 18.6 The address of an object with
automatic storage shall not be
copied to another object that
persists after the first object has
ceased to exist

MISRA C:2012 Rule 18.6

MISRA C:2012 Rule 18.7 Flexible array members shall
not be declared

MISRA C:2012 Rule 18.7

 Required or Mandatory MISRA C:2012 Rules Supported by Polyspace Bug Finder

17-47

MISRA C:2012 Rule Description Polyspace Checker
MISRA C:2012 Rule 18.8 Variable-length array types shall

not be used
MISRA C:2012 Rule 18.8

MISRA C:2012 Rule 1.1 The program shall contain no
violations of the standard C
syntax and constraints, and
shall not exceed the
implementation’s translation
limits

MISRA C:2012 Rule 1.1

MISRA C:2012 Rule 1.3 There shall be no occurrence of
undefined or critical unspecified
behaviour

MISRA C:2012 Rule 1.3

MISRA C:2012 Rule 1.4 Emergent language features
shall not be used

MISRA C:2012 Rule 1.4

MISRA C:2012 Rule 20.11 A macro parameter immediately
following a # operator shall not
immediately be followed by a
operator

MISRA C:2012 Rule 20.11

MISRA C:2012 Rule 20.12 A macro parameter used as an
operand to the # or ##
operators, which is itself subject
to further macro replacement,
shall only be used as an operand
to these operators

MISRA C:2012 Rule 20.12

MISRA C:2012 Rule 20.13 A line whose first token is #
shall be a valid preprocessing
directive

MISRA C:2012 Rule 20.13

MISRA C:2012 Rule 20.14 All #else, #elif and #endif
preprocessor directives shall
reside in the same file as the
#if, #ifdef or #ifndef directive
to which they are related

MISRA C:2012 Rule 20.14

MISRA C:2012 Rule 20.2 The ', " or \ characters and
the /* or // character sequences
shall not occur in a header file
name

MISRA C:2012 Rule 20.2

MISRA C:2012 Rule 20.3 The #include directive shall be
followed by either a <filename>
or "filename" sequence

MISRA C:2012 Rule 20.3

MISRA C:2012 Rule 20.4 A macro shall not be defined
with the same name as a
keyword

MISRA C:2012 Rule 20.4

MISRA C:2012 Rule 20.6 Tokens that look like a
preprocessing directive shall
not occur within a macro
argument

MISRA C:2012 Rule 20.6

17 Polyspace Coverage of Coding Standards

17-48

MISRA C:2012 Rule Description Polyspace Checker
MISRA C:2012 Rule 20.7 Expressions resulting from the

expansion of macro parameters
shall be enclosed in parentheses

MISRA C:2012 Rule 20.7

MISRA C:2012 Rule 20.8 The controlling expression of a
#if or #elif preprocessing
directive shall evaluate to 0 or 1

MISRA C:2012 Rule 20.8

MISRA C:2012 Rule 20.9 All identifiers used in the
controlling expression of #if or
#elif preprocessing directives
shall be #define’d before
evaluation

MISRA C:2012 Rule 20.9

MISRA C:2012 Rule 21.1 #define and #undef shall not be
used on a reserved identifier or
reserved macro name

MISRA C:2012 Rule 21.1

MISRA C:2012 Rule 21.10 The Standard Library time and
date functions shall not be used

MISRA C:2012 Rule 21.10

MISRA C:2012 Rule 21.11 The standard header file
<tgmath.h> shall not be used

MISRA C:2012 Rule 21.11

MISRA C:2012 Rule 21.14 The Standard Library function
memcmp shall not be used to
compare null terminated strings

MISRA C:2012 Rule 21.14

MISRA C:2012 Rule 21.15 The pointer arguments to the
Standard Library functions
memcpy, memmove and memcmp
shall be pointers to qualified or
unqualified versions of
compatible types

MISRA C:2012 Rule 21.15

MISRA C:2012 Rule 21.16 The pointer arguments to the
Standard Library function
memcmp shall point to either a
pointer type, an essentially
signed type, an essentially
unsigned type, an essentially
Boolean type or an essentially
enum type

MISRA C:2012 Rule 21.16

MISRA C:2012 Rule 21.2 A reserved identifier or reserved
macro name shall not be
declared

MISRA C:2012 Rule 21.2

MISRA C:2012 Rule 21.21 The Standard Library function
system of <stdlib.h> shall
not be used

MISRA C:2012 Rule 21.21

MISRA C:2012 Rule 21.3 The memory allocation and
deallocation functions of
<stdlib.h> shall not be used

MISRA C:2012 Rule 21.3

 Required or Mandatory MISRA C:2012 Rules Supported by Polyspace Bug Finder

17-49

MISRA C:2012 Rule Description Polyspace Checker
MISRA C:2012 Rule 21.4 The standard header file

<setjmp.h> shall not be used
MISRA C:2012 Rule 21.4

MISRA C:2012 Rule 21.5 The standard header file
<signal.h> shall not be used

MISRA C:2012 Rule 21.5

MISRA C:2012 Rule 21.6 The Standard Library input/
output functions shall not be
used

MISRA C:2012 Rule 21.6

MISRA C:2012 Rule 21.7 The Standard Library functions
atof, atoi, atol, and atoll
functions of <stdlib.h> shall
not be used

MISRA C:2012 Rule 21.7

MISRA C:2012 Rule 21.8 The Standard Library
termination functions of
<stdlib.h> shall not be used

MISRA C:2012 Rule 21.8

MISRA C:2012 Rule 21.9 The Standard Library library
functions bsearch and qsort
of <stdlib.h> shall not be
used

MISRA C:2012 Rule 21.9

MISRA C:2012 Rule 22.1 All resources obtained
dynamically by means of
Standard Library functions shall
be explicitly released

MISRA C:2012 Rule 22.1

MISRA C:2012 Rule 22.10 The value of errno shall only be
tested when the last function to
be called was an errno-setting
function

MISRA C:2012 Rule 22.10

MISRA C:2012 Rule 22.3 The same file shall not be open
for read and write access at the
same time on different streams

MISRA C:2012 Rule 22.3

MISRA C:2012 Rule 22.7 The macro EOF shall only be
compared with the unmodified
return value from any Standard
Library function capable of
returning EOF

MISRA C:2012 Rule 22.7

MISRA C:2012 Rule 22.8 The value of errno shall be set
to zero prior to a call to an
errno-setting-function

MISRA C:2012 Rule 22.8

MISRA C:2012 Rule 22.9 The value of errno shall be
tested against zero after calling
an errno-setting function

MISRA C:2012 Rule 22.9

MISRA C:2012 Rule 2.1 A project shall not contain
unreachable code

MISRA C:2012 Rule 2.1

MISRA C:2012 Rule 2.2 There shall be no dead code MISRA C:2012 Rule 2.2

17 Polyspace Coverage of Coding Standards

17-50

MISRA C:2012 Rule Description Polyspace Checker
MISRA C:2012 Rule 3.1 The character sequences /*

and // shall not be used within
a comment

MISRA C:2012 Rule 3.1

MISRA C:2012 Rule 3.2 Line-splicing shall not be used
in // comments

MISRA C:2012 Rule 3.2

MISRA C:2012 Rule 4.1 Octal and hexadecimal escape
sequences shall be terminated

MISRA C:2012 Rule 4.1

MISRA C:2012 Rule 5.1 External identifiers shall be
distinct

MISRA C:2012 Rule 5.1

MISRA C:2012 Rule 5.2 Identifiers declared in the same
scope and name space shall be
distinct

MISRA C:2012 Rule 5.2

MISRA C:2012 Rule 5.3 An identifier declared in an
inner scope shall not hide an
identifier declared in an outer
scope

MISRA C:2012 Rule 5.3

MISRA C:2012 Rule 5.4 Macro identifiers shall be
distinct

MISRA C:2012 Rule 5.4

MISRA C:2012 Rule 5.5 Identifiers shall be distinct from
macro names

MISRA C:2012 Rule 5.5

MISRA C:2012 Rule 5.6 A typedef name shall be a
unique identifier

MISRA C:2012 Rule 5.6

MISRA C:2012 Rule 5.7 A tag name shall be a unique
identifier

MISRA C:2012 Rule 5.7

MISRA C:2012 Rule 5.8 Identifiers that define objects or
functions with external linkage
shall be unique

MISRA C:2012 Rule 5.8

MISRA C:2012 Rule 6.1 Bit-fields shall only be declared
with an appropriate type

MISRA C:2012 Rule 6.1

MISRA C:2012 Rule 6.2 Single-bit named bit fields shall
not be of a signed type

MISRA C:2012 Rule 6.2

MISRA C:2012 Rule 7.1 Octal constants shall not be
used

MISRA C:2012 Rule 7.1

MISRA C:2012 Rule 7.2 A “u” or “U” suffix shall be
applied to all integer constants
that are represented in an
unsigned type

MISRA C:2012 Rule 7.2

MISRA C:2012 Rule 7.3 The lowercase character “l”
shall not be used in a literal
suffix

MISRA C:2012 Rule 7.3

MISRA C:2012 Rule 7.4 A string literal shall not be
assigned to an object unless the
object’s type is “pointer to
const-qualified char”

MISRA C:2012 Rule 7.4

 Required or Mandatory MISRA C:2012 Rules Supported by Polyspace Bug Finder

17-51

MISRA C:2012 Rule Description Polyspace Checker
MISRA C:2012 Rule 8.1 Types shall be explicitly

specified
MISRA C:2012 Rule 8.1

MISRA C:2012 Rule 8.10 An inline function shall be
declared with the static storage
class

MISRA C:2012 Rule 8.10

MISRA C:2012 Rule 8.12 Within an enumerator list, the
value of an implicitly-specified
enumeration constant shall be
unique

MISRA C:2012 Rule 8.12

MISRA C:2012 Rule 8.14 The restrict type qualifier shall
not be used

MISRA C:2012 Rule 8.14

MISRA C:2012 Rule 8.2 Function types shall be in
prototype form with named
parameters

MISRA C:2012 Rule 8.2

MISRA C:2012 Rule 8.3 All declarations of an object or
function shall use the same
names and type qualifiers

MISRA C:2012 Rule 8.3

MISRA C:2012 Rule 8.4 A compatible declaration shall
be visible when an object or
function with external linkage is
defined

MISRA C:2012 Rule 8.4

MISRA C:2012 Rule 8.5 An external object or function
shall be declared once in one
and only one file

MISRA C:2012 Rule 8.5

MISRA C:2012 Rule 8.6 An identifier with external
linkage shall have exactly one
external definition

MISRA C:2012 Rule 8.6

MISRA C:2012 Rule 8.8 The static storage class specifier
shall be used in all declarations
of objects and functions that
have internal linkage

MISRA C:2012 Rule 8.8

MISRA C:2012 Rule 9.2 The initializer for an aggregate
or union shall be enclosed in
braces

MISRA C:2012 Rule 9.2

MISRA C:2012 Rule 9.3 Arrays shall not be partially
initialized

MISRA C:2012 Rule 9.3

MISRA C:2012 Rule 9.4 An element of an object shall
not be initialized more than
once

MISRA C:2012 Rule 9.4

MISRA C:2012 Rule 9.5 Where designated initializers
are used to initialize an array
object the size of the array shall
be specified explicitly

MISRA C:2012 Rule 9.5

17 Polyspace Coverage of Coding Standards

17-52

See Also
Check MISRA C:2012 (-misra3)

More About
• “Check for and Review Coding Standard Violations” on page 16-2
• “Coding Standards”
• “Decidable MISRA C:2012 Rules Supported by Polyspace Bug Finder” on page 17-54
• “Undecidable MISRA C:2012 Rules and Directives Supported by Polyspace Bug Finder” on page

17-64
• “Required and Statically Enforceable CERT C Rules Supported by Polyspace Bug Finder” on

page 17-75
• “Checkers Deactivated in Polyspace as You Code Analysis” on page 11-78

 Required or Mandatory MISRA C:2012 Rules Supported by Polyspace Bug Finder

17-53

Decidable MISRA C:2012 Rules Supported by Polyspace Bug
Finder

The MISRA C:2012 standard classifies rules that can be statically enforced in all possible cases as
Decidable. Polyspace supports 122 out of 122 such rules. None of the MISRA C:2012 directives are
statically enforceable.

MISRA C:2012 Rule Description Polyspace Checker
MISRA C:2012 Rule 10.1 Operands shall not be of an

inappropriate essential type
MISRA C:2012 Rule 10.1

MISRA C:2012 Rule 10.2 Expressions of essentially
character type shall not be used
inappropriately in addition and
subtraction operations

MISRA C:2012 Rule 10.2

MISRA C:2012 Rule 10.3 The value of an expression shall
not be assigned to an object
with a narrower essential type
or of a different essential type
category

MISRA C:2012 Rule 10.3

MISRA C:2012 Rule 10.4 Both operands of an operator in
which the usual arithmetic
conversions are performed shall
have the same essential type
category

MISRA C:2012 Rule 10.4

MISRA C:2012 Rule 10.5 The value of an expression
should not be cast to an
inappropriate essential type

MISRA C:2012 Rule 10.5

MISRA C:2012 Rule 10.6 The value of a composite
expression shall not be assigned
to an object with wider essential
type

MISRA C:2012 Rule 10.6

MISRA C:2012 Rule 10.7 If a composite expression is
used as one operand of an
operator in which the usual
arithmetic conversions are
performed then the other
operand shall not have wider
essential type

MISRA C:2012 Rule 10.7

MISRA C:2012 Rule 10.8 The value of a composite
expression shall not be cast to a
different essential type category
or a wider essential type

MISRA C:2012 Rule 10.8

MISRA C:2012 Rule 11.1 Conversions shall not be
performed between a pointer to
a function and any other type

MISRA C:2012 Rule 11.1

17 Polyspace Coverage of Coding Standards

17-54

MISRA C:2012 Rule Description Polyspace Checker
MISRA C:2012 Rule 11.2 Conversions shall not be

performed between a pointer to
an incomplete type and any
other type

MISRA C:2012 Rule 11.2

MISRA C:2012 Rule 11.3 A cast shall not be performed
between a pointer to object type
and a pointer to a different
object type

MISRA C:2012 Rule 11.3

MISRA C:2012 Rule 11.4 A conversion should not be
performed between a pointer to
object and an integer type

MISRA C:2012 Rule 11.4

MISRA C:2012 Rule 11.5 A conversion should not be
performed from pointer to void
into pointer to object

MISRA C:2012 Rule 11.5

MISRA C:2012 Rule 11.6 A cast shall not be performed
between pointer to void and an
arithmetic type

MISRA C:2012 Rule 11.6

MISRA C:2012 Rule 11.7 A cast shall not be performed
between pointer to object and a
non-integer arithmetic type

MISRA C:2012 Rule 11.7

MISRA C:2012 Rule 11.8 A cast shall not remove any
const or volatile qualification
from the type pointed to by a
pointer

MISRA C:2012 Rule 11.8

MISRA C:2012 Rule 11.9 The macro NULL shall be the
only permitted form of integer
null pointer constant

MISRA C:2012 Rule 11.9

MISRA C:2012 Rule 12.1 The precedence of operators
within expressions should be
made explicit

MISRA C:2012 Rule 12.1

MISRA C:2012 Rule 12.3 The comma operator should not
be used

MISRA C:2012 Rule 12.3

MISRA C:2012 Rule 12.4 Evaluation of constant
expressions should not lead to
unsigned integer wrap-around

MISRA C:2012 Rule 12.4

MISRA C:2012 Rule 12.5 The sizeof operator shall not
have an operand which is a
function parameter declared as
“array of type”

MISRA C:2012 Rule 12.5

 Decidable MISRA C:2012 Rules Supported by Polyspace Bug Finder

17-55

MISRA C:2012 Rule Description Polyspace Checker
MISRA C:2012 Rule 13.3 A full expression containing an

increment (++) or decrement
(--) operator should have no
other potential side effects other
than that caused by the
increment or decrement
operator

MISRA C:2012 Rule 13.3

MISRA C:2012 Rule 13.4 The result of an assignment
operator should not be used

MISRA C:2012 Rule 13.4

MISRA C:2012 Rule 13.6 The operand of the sizeof
operator shall not contain any
expression which has potential
side effects

MISRA C:2012 Rule 13.6

MISRA C:2012 Rule 14.4 The controlling expression of an
if statement and the controlling
expression of an iteration-
statement shall have essentially
Boolean type

MISRA C:2012 Rule 14.4

MISRA C:2012 Rule 15.1 The goto statement should not
be used

MISRA C:2012 Rule 15.1

MISRA C:2012 Rule 15.2 The goto statement shall jump
to a label declared later in the
same function

MISRA C:2012 Rule 15.2

MISRA C:2012 Rule 15.3 Any label referenced by a goto
statement shall be declared in
the same block, or in any block
enclosing the goto statement

MISRA C:2012 Rule 15.3

MISRA C:2012 Rule 15.4 There should be no more than
one break or goto statement
used to terminate any iteration
statement

MISRA C:2012 Rule 15.4

MISRA C:2012 Rule 15.5 A function should have a single
point of exit at the end

MISRA C:2012 Rule 15.5

MISRA C:2012 Rule 15.6 The body of an iteration-
statement or a selection-
statement shall be a compound
statement

MISRA C:2012 Rule 15.6

MISRA C:2012 Rule 15.7 All if … else if constructs shall
be terminated with an else
statement

MISRA C:2012 Rule 15.7

MISRA C:2012 Rule 16.1 All switch statements shall be
well-formed

MISRA C:2012 Rule 16.1

17 Polyspace Coverage of Coding Standards

17-56

MISRA C:2012 Rule Description Polyspace Checker
MISRA C:2012 Rule 16.2 A switch label shall only be used

when the most closely-enclosing
compound statement is the body
of a switch statement

MISRA C:2012 Rule 16.2

MISRA C:2012 Rule 16.3 An unconditional break
statement shall terminate every
switch-clause

MISRA C:2012 Rule 16.3

MISRA C:2012 Rule 16.4 Every switch statement shall
have a default label

MISRA C:2012 Rule 16.4

MISRA C:2012 Rule 16.5 A default label shall appear as
either the first or the last switch
label of a switch statement

MISRA C:2012 Rule 16.5

MISRA C:2012 Rule 16.6 Every switch statement shall
have at least two switch-clauses

MISRA C:2012 Rule 16.6

MISRA C:2012 Rule 16.7 A switch-expression shall not
have essentially Boolean type

MISRA C:2012 Rule 16.7

MISRA C:2012 Rule 17.1 The features of <stdarg.h> shall
not be used

MISRA C:2012 Rule 17.1

MISRA C:2012 Rule 17.3 A function shall not be declared
implicitly

MISRA C:2012 Rule 17.3

MISRA C:2012 Rule 17.4 All exit paths from a function
with non-void return type shall
have an explicit return
statement with an expression

MISRA C:2012 Rule 17.4

MISRA C:2012 Rule 17.6 The declaration of an array
parameter shall not contain the
static keyword between the []

MISRA C:2012 Rule 17.6

MISRA C:2012 Rule 17.7 The value returned by a function
having non-void return type
shall be used

MISRA C:2012 Rule 17.7

MISRA C:2012 Rule 18.4 The +, -, += and -= operators
should not be applied to an
expression of pointer type

MISRA C:2012 Rule 18.4

MISRA C:2012 Rule 18.5 Declarations should contain no
more than two levels of pointer
nesting

MISRA C:2012 Rule 18.5

MISRA C:2012 Rule 18.7 Flexible array members shall
not be declared

MISRA C:2012 Rule 18.7

MISRA C:2012 Rule 18.8 Variable-length array types shall
not be used

MISRA C:2012 Rule 18.8

MISRA C:2012 Rule 19.2 The union keyword should not
be used

MISRA C:2012 Rule 19.2

 Decidable MISRA C:2012 Rules Supported by Polyspace Bug Finder

17-57

MISRA C:2012 Rule Description Polyspace Checker
MISRA C:2012 Rule 1.1 The program shall contain no

violations of the standard C
syntax and constraints, and
shall not exceed the
implementation’s translation
limits

MISRA C:2012 Rule 1.1

MISRA C:2012 Rule 1.2 Language extensions should not
be used

MISRA C:2012 Rule 1.2

MISRA C:2012 Rule 1.4 Emergent language features
shall not be used

MISRA C:2012 Rule 1.4

MISRA C:2012 Rule 20.1 #include directives should only
be preceded by preprocessor
directives or comments

MISRA C:2012 Rule 20.1

MISRA C:2012 Rule 20.10 The # and ## preprocessor
operators should not be used

MISRA C:2012 Rule 20.10

MISRA C:2012 Rule 20.11 A macro parameter immediately
following a # operator shall not
immediately be followed by a
operator

MISRA C:2012 Rule 20.11

MISRA C:2012 Rule 20.12 A macro parameter used as an
operand to the # or ##
operators, which is itself subject
to further macro replacement,
shall only be used as an operand
to these operators

MISRA C:2012 Rule 20.12

MISRA C:2012 Rule 20.13 A line whose first token is #
shall be a valid preprocessing
directive

MISRA C:2012 Rule 20.13

MISRA C:2012 Rule 20.14 All #else, #elif and #endif
preprocessor directives shall
reside in the same file as the
#if, #ifdef or #ifndef directive
to which they are related

MISRA C:2012 Rule 20.14

MISRA C:2012 Rule 20.2 The ', " or \ characters and
the /* or // character sequences
shall not occur in a header file
name

MISRA C:2012 Rule 20.2

MISRA C:2012 Rule 20.3 The #include directive shall be
followed by either a <filename>
or "filename" sequence

MISRA C:2012 Rule 20.3

MISRA C:2012 Rule 20.4 A macro shall not be defined
with the same name as a
keyword

MISRA C:2012 Rule 20.4

MISRA C:2012 Rule 20.5 #undef should not be used MISRA C:2012 Rule 20.5

17 Polyspace Coverage of Coding Standards

17-58

MISRA C:2012 Rule Description Polyspace Checker
MISRA C:2012 Rule 20.6 Tokens that look like a

preprocessing directive shall
not occur within a macro
argument

MISRA C:2012 Rule 20.6

MISRA C:2012 Rule 20.7 Expressions resulting from the
expansion of macro parameters
shall be enclosed in parentheses

MISRA C:2012 Rule 20.7

MISRA C:2012 Rule 20.8 The controlling expression of a
#if or #elif preprocessing
directive shall evaluate to 0 or 1

MISRA C:2012 Rule 20.8

MISRA C:2012 Rule 20.9 All identifiers used in the
controlling expression of #if or
#elif preprocessing directives
shall be #define’d before
evaluation

MISRA C:2012 Rule 20.9

MISRA C:2012 Rule 21.1 #define and #undef shall not be
used on a reserved identifier or
reserved macro name

MISRA C:2012 Rule 21.1

MISRA C:2012 Rule 21.10 The Standard Library time and
date functions shall not be used

MISRA C:2012 Rule 21.10

MISRA C:2012 Rule 21.11 The standard header file
<tgmath.h> shall not be used

MISRA C:2012 Rule 21.11

MISRA C:2012 Rule 21.12 The exception handling features
of <fenv.h> should not be used

MISRA C:2012 Rule 21.12

MISRA C:2012 Rule 21.15 The pointer arguments to the
Standard Library functions
memcpy, memmove and memcmp
shall be pointers to qualified or
unqualified versions of
compatible types

MISRA C:2012 Rule 21.15

MISRA C:2012 Rule 21.16 The pointer arguments to the
Standard Library function
memcmp shall point to either a
pointer type, an essentially
signed type, an essentially
unsigned type, an essentially
Boolean type or an essentially
enum type

MISRA C:2012 Rule 21.16

MISRA C:2012 Rule 21.2 A reserved identifier or reserved
macro name shall not be
declared

MISRA C:2012 Rule 21.2

MISRA C:2012 Rule 21.21 The Standard Library function
system of <stdlib.h> shall
not be used

MISRA C:2012 Rule 21.21

 Decidable MISRA C:2012 Rules Supported by Polyspace Bug Finder

17-59

MISRA C:2012 Rule Description Polyspace Checker
MISRA C:2012 Rule 21.3 The memory allocation and

deallocation functions of
<stdlib.h> shall not be used

MISRA C:2012 Rule 21.3

MISRA C:2012 Rule 21.4 The standard header file
<setjmp.h> shall not be used

MISRA C:2012 Rule 21.4

MISRA C:2012 Rule 21.5 The standard header file
<signal.h> shall not be used

MISRA C:2012 Rule 21.5

MISRA C:2012 Rule 21.6 The Standard Library input/
output functions shall not be
used

MISRA C:2012 Rule 21.6

MISRA C:2012 Rule 21.7 The Standard Library functions
atof, atoi, atol, and atoll
functions of <stdlib.h> shall
not be used

MISRA C:2012 Rule 21.7

MISRA C:2012 Rule 21.8 The Standard Library
termination functions of
<stdlib.h> shall not be used

MISRA C:2012 Rule 21.8

MISRA C:2012 Rule 21.9 The Standard Library library
functions bsearch and qsort
of <stdlib.h> shall not be
used

MISRA C:2012 Rule 21.9

MISRA C:2012 Rule 2.3 A project should not contain
unused type declarations

MISRA C:2012 Rule 2.3

MISRA C:2012 Rule 2.4 A project should not contain
unused tag declarations

MISRA C:2012 Rule 2.4

MISRA C:2012 Rule 2.5 A project should not contain
unused macro declarations

MISRA C:2012 Rule 2.5

MISRA C:2012 Rule 2.6 A function should not contain
unused label declarations

MISRA C:2012 Rule 2.6

MISRA C:2012 Rule 2.7 There should be no unused
parameters in functions

MISRA C:2012 Rule 2.7

MISRA C:2012 Rule 3.1 The character sequences /*
and // shall not be used within
a comment

MISRA C:2012 Rule 3.1

MISRA C:2012 Rule 3.2 Line-splicing shall not be used
in // comments

MISRA C:2012 Rule 3.2

MISRA C:2012 Rule 4.1 Octal and hexadecimal escape
sequences shall be terminated

MISRA C:2012 Rule 4.1

MISRA C:2012 Rule 4.2 Trigraphs should not be used MISRA C:2012 Rule 4.2
MISRA C:2012 Rule 5.1 External identifiers shall be

distinct
MISRA C:2012 Rule 5.1

MISRA C:2012 Rule 5.2 Identifiers declared in the same
scope and name space shall be
distinct

MISRA C:2012 Rule 5.2

17 Polyspace Coverage of Coding Standards

17-60

MISRA C:2012 Rule Description Polyspace Checker
MISRA C:2012 Rule 5.3 An identifier declared in an

inner scope shall not hide an
identifier declared in an outer
scope

MISRA C:2012 Rule 5.3

MISRA C:2012 Rule 5.4 Macro identifiers shall be
distinct

MISRA C:2012 Rule 5.4

MISRA C:2012 Rule 5.5 Identifiers shall be distinct from
macro names

MISRA C:2012 Rule 5.5

MISRA C:2012 Rule 5.6 A typedef name shall be a
unique identifier

MISRA C:2012 Rule 5.6

MISRA C:2012 Rule 5.7 A tag name shall be a unique
identifier

MISRA C:2012 Rule 5.7

MISRA C:2012 Rule 5.8 Identifiers that define objects or
functions with external linkage
shall be unique

MISRA C:2012 Rule 5.8

MISRA C:2012 Rule 5.9 Identifiers that define objects or
functions with internal linkage
should be unique

MISRA C:2012 Rule 5.9

MISRA C:2012 Rule 6.1 Bit-fields shall only be declared
with an appropriate type

MISRA C:2012 Rule 6.1

MISRA C:2012 Rule 6.2 Single-bit named bit fields shall
not be of a signed type

MISRA C:2012 Rule 6.2

MISRA C:2012 Rule 7.1 Octal constants shall not be
used

MISRA C:2012 Rule 7.1

MISRA C:2012 Rule 7.2 A “u” or “U” suffix shall be
applied to all integer constants
that are represented in an
unsigned type

MISRA C:2012 Rule 7.2

MISRA C:2012 Rule 7.3 The lowercase character “l”
shall not be used in a literal
suffix

MISRA C:2012 Rule 7.3

MISRA C:2012 Rule 7.4 A string literal shall not be
assigned to an object unless the
object’s type is “pointer to
const-qualified char”

MISRA C:2012 Rule 7.4

MISRA C:2012 Rule 8.1 Types shall be explicitly
specified

MISRA C:2012 Rule 8.1

MISRA C:2012 Rule 8.10 An inline function shall be
declared with the static storage
class

MISRA C:2012 Rule 8.10

MISRA C:2012 Rule 8.11 When an array with external
linkage is declared, its size
should be explicitly specified

MISRA C:2012 Rule 8.11

 Decidable MISRA C:2012 Rules Supported by Polyspace Bug Finder

17-61

MISRA C:2012 Rule Description Polyspace Checker
MISRA C:2012 Rule 8.12 Within an enumerator list, the

value of an implicitly-specified
enumeration constant shall be
unique

MISRA C:2012 Rule 8.12

MISRA C:2012 Rule 8.14 The restrict type qualifier shall
not be used

MISRA C:2012 Rule 8.14

MISRA C:2012 Rule 8.2 Function types shall be in
prototype form with named
parameters

MISRA C:2012 Rule 8.2

MISRA C:2012 Rule 8.3 All declarations of an object or
function shall use the same
names and type qualifiers

MISRA C:2012 Rule 8.3

MISRA C:2012 Rule 8.4 A compatible declaration shall
be visible when an object or
function with external linkage is
defined

MISRA C:2012 Rule 8.4

MISRA C:2012 Rule 8.5 An external object or function
shall be declared once in one
and only one file

MISRA C:2012 Rule 8.5

MISRA C:2012 Rule 8.6 An identifier with external
linkage shall have exactly one
external definition

MISRA C:2012 Rule 8.6

MISRA C:2012 Rule 8.7 Functions and objects should
not be defined with external
linkage if they are referenced in
only one translation unit

MISRA C:2012 Rule 8.7

MISRA C:2012 Rule 8.8 The static storage class specifier
shall be used in all declarations
of objects and functions that
have internal linkage

MISRA C:2012 Rule 8.8

MISRA C:2012 Rule 8.9 An object should be defined at
block scope if its identifier only
appears in a single function

MISRA C:2012 Rule 8.9

MISRA C:2012 Rule 9.2 The initializer for an aggregate
or union shall be enclosed in
braces

MISRA C:2012 Rule 9.2

MISRA C:2012 Rule 9.3 Arrays shall not be partially
initialized

MISRA C:2012 Rule 9.3

MISRA C:2012 Rule 9.4 An element of an object shall
not be initialized more than
once

MISRA C:2012 Rule 9.4

MISRA C:2012 Rule 9.5 Where designated initializers
are used to initialize an array
object the size of the array shall
be specified explicitly

MISRA C:2012 Rule 9.5

17 Polyspace Coverage of Coding Standards

17-62

See Also
Check MISRA C:2012 (-misra3)

More About
• “Check for and Review Coding Standard Violations” on page 16-2
• “Coding Standards”
• “Required or Mandatory MISRA C:2012 Rules Supported by Polyspace Bug Finder” on page 17-

43
• “Required and Statically Enforceable CERT C Rules Supported by Polyspace Bug Finder” on

page 17-75
• “Checkers Deactivated in Polyspace as You Code Analysis” on page 11-78
• “Undecidable MISRA C:2012 Rules and Directives Supported by Polyspace Bug Finder” on page

17-64

 Decidable MISRA C:2012 Rules Supported by Polyspace Bug Finder

17-63

Undecidable MISRA C:2012 Rules and Directives Supported by
Polyspace Bug Finder

The MISRA C:2012 standard classifies rules and directives that cannot be statically enforced in every
possible cases as Undecidable. Polyspace supports 36 out of 36 such rules, and 15 out of 17 such
directives.

Undecidable Rules
A rule is undecidable if a static analysis tool can check compliance to it only in certain cases.
Polyspace shows the subset of all possible issues. For details about which issues Polyspace detects for
a particular rule, see the Polyspace Implementation section in the reference page of the rule.
Polyspace supports 36 out of 36 such rules.

MISRA C:2012 Rule Description Polyspace Checker
MISRA C:2012 Rule 12.2 The right hand operand of a

shift operator shall lie in the
range zero to one less than the
width in bits of the essential
type of the left hand operand

MISRA C:2012 Rule 12.2

MISRA C:2012 Rule 13.1 Initializer lists shall not contain
persistent side effects

MISRA C:2012 Rule 13.1

MISRA C:2012 Rule 13.2 The value of an expression and
its persistent side effects shall
be the same under all permitted
evaluation orders

MISRA C:2012 Rule 13.2

MISRA C:2012 Rule 13.5 The right hand operand of a
logical && or || operator shall
not contain persistent side
effects

MISRA C:2012 Rule 13.5

MISRA C:2012 Rule 14.1 A loop counter shall not have
essentially floating type

MISRA C:2012 Rule 14.1

MISRA C:2012 Rule 14.2 A for loop shall be well-formed MISRA C:2012 Rule 14.2
MISRA C:2012 Rule 14.3 Controlling expressions shall

not be invariant
MISRA C:2012 Rule 14.3

MISRA C:2012 Rule 17.2 Functions shall not call
themselves, either directly or
indirectly

MISRA C:2012 Rule 17.2

MISRA C:2012 Rule 17.5 The function argument
corresponding to a parameter
declared to have an array type
shall have an appropriate
number of elements

MISRA C:2012 Rule 17.5

MISRA C:2012 Rule 17.8 A function parameter should not
be modified

MISRA C:2012 Rule 17.8

17 Polyspace Coverage of Coding Standards

17-64

MISRA C:2012 Rule Description Polyspace Checker
MISRA C:2012 Rule 18.1 A pointer resulting from

arithmetic on a pointer operand
shall address an element of the
same array as that pointer
operand

MISRA C:2012 Rule 18.1

MISRA C:2012 Rule 18.2 Subtraction between pointers
shall only be applied to pointers
that address elements of the
same array

MISRA C:2012 Rule 18.2

MISRA C:2012 Rule 18.3 The relational operators >, >=,
< and <= shall not be applied to
objects of pointer type except
where they point into the same
object

MISRA C:2012 Rule 18.3

MISRA C:2012 Rule 18.6 The address of an object with
automatic storage shall not be
copied to another object that
persists after the first object has
ceased to exist

MISRA C:2012 Rule 18.6

MISRA C:2012 Rule 19.1 An object shall not be assigned
or copied to an overlapping
object

MISRA C:2012 Rule 19.1

MISRA C:2012 Rule 1.3 There shall be no occurrence of
undefined or critical unspecified
behaviour

MISRA C:2012 Rule 1.3

MISRA C:2012 Rule 21.13 Any value passed to a function
in <ctype.h> shall be
representable as an unsigned
char or be the value EOF

MISRA C:2012 Rule 21.13

MISRA C:2012 Rule 21.14 The Standard Library function
memcmp shall not be used to
compare null terminated strings

MISRA C:2012 Rule 21.14

MISRA C:2012 Rule 21.17 Use of the string handling
function from <string.h> shall
not result in accesses beyond
the bounds of the objects
referenced by their pointer
parameters

MISRA C:2012 Rule 21.17

MISRA C:2012 Rule 21.18 The size_t argument passed to
any function in <string.h>
shall have an appropriate value

MISRA C:2012 Rule 21.18

 Undecidable MISRA C:2012 Rules and Directives Supported by Polyspace Bug Finder

17-65

MISRA C:2012 Rule Description Polyspace Checker
MISRA C:2012 Rule 21.19 The pointers returned by the

Standard Library functions
localeconv, getenv,
setlocale or strerror shall
only be used as if they have
pointer to const-qualified type

MISRA C:2012 Rule 21.19

MISRA C:2012 Rule 21.20 The pointer returned by the
Standard Library functions
asctime, ctime, gmtime,
localtime, localeconv,
getenv, setlocale or
strerror shall not be used
following a subsequent call to
the same function

MISRA C:2012 Rule 21.20

MISRA C:2012 Rule 22.1 All resources obtained
dynamically by means of
Standard Library functions shall
be explicitly released

MISRA C:2012 Rule 22.1

MISRA C:2012 Rule 22.10 The value of errno shall only be
tested when the last function to
be called was an errno-setting
function

MISRA C:2012 Rule 22.10

MISRA C:2012 Rule 22.2 A block of memory shall only be
freed if it was allocated by
means of a Standard Library
function

MISRA C:2012 Rule 22.2

MISRA C:2012 Rule 22.3 The same file shall not be open
for read and write access at the
same time on different streams

MISRA C:2012 Rule 22.3

MISRA C:2012 Rule 22.4 There shall be no attempt to
write to a stream which has
been opened as read-only

MISRA C:2012 Rule 22.4

MISRA C:2012 Rule 22.5 A pointer to a FILE object shall
not be dereferenced

MISRA C:2012 Rule 22.5

MISRA C:2012 Rule 22.6 The value of a pointer to a FILE
shall not be used after the
associated stream has been
closed

MISRA C:2012 Rule 22.6

MISRA C:2012 Rule 22.7 The macro EOF shall only be
compared with the unmodified
return value from any Standard
Library function capable of
returning EOF

MISRA C:2012 Rule 22.7

MISRA C:2012 Rule 22.8 The value of errno shall be set
to zero prior to a call to an
errno-setting-function

MISRA C:2012 Rule 22.8

17 Polyspace Coverage of Coding Standards

17-66

MISRA C:2012 Rule Description Polyspace Checker
MISRA C:2012 Rule 22.9 The value of errno shall be

tested against zero after calling
an errno-setting function

MISRA C:2012 Rule 22.9

MISRA C:2012 Rule 2.1 A project shall not contain
unreachable code

MISRA C:2012 Rule 2.1

MISRA C:2012 Rule 2.2 There shall be no dead code MISRA C:2012 Rule 2.2
MISRA C:2012 Rule 8.13 A pointer should point to a

const-qualified type whenever
possible

MISRA C:2012 Rule 8.13

MISRA C:2012 Rule 9.1 The value of an object with
automatic storage duration shall
not be read before it has been
set

MISRA C:2012 Rule 9.1

Undecidable Directives
A directive is undecidable if a static analysis tool can check compliance to it only in certain cases.
Polyspace shows the subset of all possible issues. For details about which issues Polyspace detects for
a particular directive, see the Polyspace Implementation section in the reference page of the
directive. Polyspace supports 15 out of 17 such directives.

MISRA C:2012 Directives Description Polyspace Checker
MISRA C:2012 Dir 1.1 Any implementation-defined

behavior on which the output of
the program depends shall be
documented and understood

MISRA C:2012 Dir 1.1

MISRA C:2012 Dir 2.1 All source files shall compile
without any compilation errors

MISRA C:2012 Dir 2.1

MISRA C:2012 Dir 4.1 Run-time failures shall be
minimized

MISRA C:2012 Dir 4.1

MISRA C:2012 Dir 4.10 Precautions shall be taken in
order to prevent the contents of
a header file being included
more than once

MISRA C:2012 Dir 4.10

MISRA C:2012 Dir 4.11 The validity of values passed to
library functions shall be
checked

MISRA C:2012 Dir 4.11

MISRA C:2012 Dir 4.12 Dynamic memory allocation
shall not be used

MISRA C:2012 Dir 4.12

MISRA C:2012 Dir 4.13 Functions which are designed to
provide operations on a
resource should be called in an
appropriate sequence

MISRA C:2012 Dir 4.13

 Undecidable MISRA C:2012 Rules and Directives Supported by Polyspace Bug Finder

17-67

MISRA C:2012 Directives Description Polyspace Checker
MISRA C:2012 Dir 4.14 The validity of values received

from external sources shall be
checked

MISRA C:2012 Dir 4.14

MISRA C:2012 Dir 4.3 Assembly language shall be
encapsulated and isolated

MISRA C:2012 Dir 4.3

MISRA C:2012 Dir 4.4 Sections of code should not be
"commented out"

MISRA C:2012 Dir 4.4

MISRA C:2012 Dir 4.5 Identifiers in the same name
space with overlapping visibility
should be typographically
unambiguous

MISRA C:2012 Dir 4.5

MISRA C:2012 Dir 4.6 typedefs that indicate size and
signedness should be used in
place of the basic numerical
types

MISRA C:2012 Dir 4.6

MISRA C:2012 Dir 4.7 If a function returns error
information, then that error
information shall be tested

MISRA C:2012 Dir 4.7

MISRA C:2012 Dir 4.8 If a pointer to a structure or
union is never dereferenced
within a translation unit, then
the implementation of the object
should be hidden

MISRA C:2012 Dir 4.8

MISRA C:2012 Dir 4.9 A function should be used in
preference to a function-like
macro where they are
interchangeable

MISRA C:2012 Dir 4.9

See Also
Check MISRA C:2012 (-misra3)

More About
• “Check for and Review Coding Standard Violations” on page 16-2
• “Coding Standards”
• “Decidable MISRA C:2012 Rules Supported by Polyspace Bug Finder” on page 17-54
• “Required and Statically Enforceable CERT C Rules Supported by Polyspace Bug Finder” on

page 17-75
• “Checkers Deactivated in Polyspace as You Code Analysis” on page 11-78

17 Polyspace Coverage of Coding Standards

17-68

Polyspace Support for MISRA C: 2012 Amendments
Starting in R2021a, Polyspace Bug Finder supports amendments to MISRA C:2012 rules in Technical
Corrigendum 1 and Amendments 1 and 2.

MISRA C:2012 Technical Corrigendum 1
MISRA C:2012 Technical Corrigendum 1 adds clarifications to existing rules. The clarifications have
led to corresponding changes in the Polyspace checkers.

Rule Description Update in Technical
Corrigendum 1

MISRA C:2012 Rule 10.1 Operands shall not be of an
inappropriate essential type.

The rule now explicitly forbids
use of pointer types with logical
operands such as &&, || and !.

MISRA C:2012 Rule 10.5 The value of an expression
should not be cast to an
inappropriate essential type.

The rule now forbids casts of
integer constants with value 0
or 1 to essentially enum types.

MISRA C:2012 Rule 11.2 Conversions shall not be
performed between a pointer to
an incomplete type and any
other type.

The rule now takes into account
only the unqualified types that
the pointers point to. For
instance, if a pointer is assigned
to another and the only
difference between the pointed
types is a const qualifier, the
rule does not consider this
assignment as a conversion.

MISRA C:2012 Rule 11.4 A conversion should not be
performed between a pointer to
object and an integer type.

The rule now applies explicitly
to pointers to objects only.
Conversions between an integer
type and other pointer types
such as void* or pointers to
functions are flagged by other
rules.

MISRA C:2012 Rule 11.9 The macro NULL shall be the
only permitted form of integer
null pointer constant.

The rule allows the use of {0}
to initialize aggregates or
unions containing pointers.

MISRA C:2012 Rule 14.2 A for loop shall be well-formed. The rule allows any form of
initialization of the loop counter
as long as the initialization does
not have other side effects.

MISRA C: 2012 Amendment 1 (AMD1)
MISRA C:2012 Amendment 1 introduces new coding rules that prevent security vulnerabilities.

 Polyspace Support for MISRA C: 2012 Amendments

17-69

Rule Description
MISRA C:2012 Dir 4.14 The validity of values received from external

sources shall be checked.
MISRA C:2012 Rule 12.5 The sizeof operator shall not have an operand

which is a function parameter declared as "array
of type".

MISRA C:2012 Rule 21.13 Any value passed to a function in <ctype.h>
shall be representable as an unsigned char or
be the value EOF.

MISRA C:2012 Rule 21.14 The Standard Library function memcmp shall not
be used to compare null terminated strings.

MISRA C:2012 Rule 21.15 The pointer arguments to the Standard Library
functions memcpy, memmove and memcmp shall be
pointers to qualified or unqualified versions of
compatible types.

MISRA C:2012 Rule 21.16 The pointer arguments to the Standard Library
function memcmp shall point to either a pointer
type, an essentially signed type, an essentially
unsigned type, an essentially Boolean type or an
essentially enum type.

MISRA C:2012 Rule 21.17 Use of the string handling function from
<string.h> shall not result in accesses beyond
the bounds of the objects referenced by their
pointer parameters.

MISRA C:2012 Rule 21.18 The size_t argument passed to any function in
<string.h> shall have an appropriate value.

MISRA C:2012 Rule 21.19 The pointers returned by the Standard Library
functions localeconv, getenv, setlocale or
strerror shall only be used as if they have
pointer to const-qualified type.

MISRA C:2012 Rule 21.20 The pointer returned by the Standard Library
functions asctime, ctime, gmtime, localtime,
localeconv, getenv, setlocale or strerror
shall not be used following a subsequent call to
the same function.

MISRA C:2012 Rule 22.7 The macro EOF shall only be compared with the
unmodified return value from any Standard
Library function capable of returning EOF.

MISRA C:2012 Rule 22.8 The value of errno shall be set to zero prior to a
call to an errno-setting-function.

MISRA C:2012 Rule 22.9 The value of errno shall be tested against zero
after calling an errno-setting function.

MISRA C:2012 Rule 22.10 The value of errno shall only be tested when the
last function to be called was an errno-setting
function.

17 Polyspace Coverage of Coding Standards

17-70

MISRA C:2012 Amendment 1 introduced changes to existing rules:

Rule Description Change
MISRA C:2012 Rule 21.8 The Standard Library

termination functions of
<stdlib.h> shall not be used

References to getenv is
removed from rule headline and
amplification.

After the introduction of 21.19
and 21.20, using getenv in 21.8
is no longer necessary.

MISRA C:2012 Amendment 2 (AMD2)
MISRA C:2012 Amendment 2 addresses the new language features in the C11 standard. All updates
in Amendment 2 have been incorporated in the Polyspace checkers.

Rule Description Update in Amendment 2
MISRA C:2012 Rule 1.4 Emergent language features

shall not be used.
This rule is new in Amendment
2.

MISRA C:2012 Rule 12.1 The precedence of operators
within expressions should be
made explicit.

The rule now mandates a
violation if the operand of the
_Alignof operator is not
enclosed in parenthesis.

MISRA C:2012 Rule 21.3 The memory allocation and
deallocation functions of
<stdlib.h> shall not be used.

The rule now flags uses of the
aligned_alloc function.

MISRA C:2012 Rule 21.8 The Standard Library
termination functions of
<stdlib.h> shall not be used.

The rule no longer flags
system.

In addition to exit and abort,
the rule now flags _Exit and
quick_exit.

MISRA C:2012 Rule 21.21 The Standard Library function
system of <stdlib.h> shall
not be used.

This rule is new in Amendment
2.

MISRA C:2012 Rule 22.1 All resources obtained
dynamically by means of
Standard Library functions shall
be explicitly released.

The rule now flags memory
allocation using the
aligned_alloc function if the
memory is not released.

 Polyspace Support for MISRA C: 2012 Amendments

17-71

Essential Types in MISRA C:2012 Rules 10.x
MISRA C:2012 rules 10.x classify data types in categories. The rules treat data types in the same
category as essentially similar.

For instance, the data types float, double and long double are considered as essentially floating.
Rule 10.1 states that the % operation must not have essentially floating operands. This statement
implies that the operands cannot have one of these three data types: float, double and long
double.

Categories of Essential Types
The essential types fall in these categories:

Essential type category Standard types
Essentially Boolean bool or _Bool (defined in stdbool.h)

If you define a boolean type through a typedef, you must specify
this type name before coding rules checking. For more information,
see Effective boolean types (-boolean-types). .

Essentially character char
Essentially enum named enum
Essentially signed signed char, signed short, signed int, signed long, signed long

long
Essentially unsigned unsigned char, unsigned short, unsigned int, unsigned long,

unsigned long long
Essentially floating float, double, long double

How MISRA C:2012 Uses Essential Types
These rules use essential types in their statements:

• MISRA C:2012 Rule 10.1: Operands shall not be of an inappropriate essential type.

For instance, the right operand of the << or >> operator must be essentially unsigned. Otherwise,
negative values can cause undefined behavior.

• MISRA C:2012 Rule 10.2: Expressions of essentially character type shall not be used
inappropriately in addition and subtraction operations.

For instance, the type char does not represent numeric values. Do not use a variable of this type
in addition and subtraction operations.

• MISRA C:2012 Rule 10.3: The value of an expression shall not be assigned to an object with a
narrower essential type or of a different essential type category.

For instance, do not assign a variable of data type double to a variable with the narrower data
type float.

• MISRA C:2012 Rule 10.4: Both operands of an operator in which the usual arithmetic
conversions are performed shall have the same essential type category.

17 Polyspace Coverage of Coding Standards

17-72

For instance, do not perform an addition operation with a signed int operand, which belongs to
the essentially signed category, and an unsigned int operand, which belongs to the essentially
unsigned category.

• MISRA C:2012 Rule 10.5: The value of an expression should not be cast to an inappropriate
essential type.

For instance, do not perform a cast between essentially floating types and essentially character
types.

• MISRA C:2012 Rule 10.6: The value of a composite expression shall not be assigned to an
object with wider essential type.

For instance, if a multiplication, binary addition or bitwise operation involves unsigned char
operands, do not assign the result to a variable having the wider type unsigned int.

• MISRA C:2012 Rule 10.7: If a composite expression is used as one operand of an operator in
which the usual arithmetic conversions are performed then the other operand shall not have wider
essential type.

For instance, if one operand of an addition operation is a composite expression with two unsigned
char operands, the other operand must not have the wider type unsigned int.

See Also

More About
• “Check for Coding Rule Violations” on page 6-22
• “MISRA C:2012 Directives and Rules”

 Essential Types in MISRA C:2012 Rules 10.x

17-73

Unsupported MISRA C:2012 Guidelines
The Polyspace coding rules checkers do not check the following MISRA C:2012 directives. These
directives cannot be enforced because they are outside the scope of Polyspace software. These
guidelines concern documentation, dynamic aspects, or functional aspects of MISRA rules.

For the list of supported rules and directives, see “MISRA C:2012 Directives and Rules”.

Number Category AGC
Category

Definition

Directive
3.1

Required Required All code shall be traceable to documented requirements

Directive
4.2

Advisory Advisory All usage of assembly language should be documented

See Also

More About
• “MISRA C:2012 Directives and Rules”

17 Polyspace Coverage of Coding Standards

17-74

Required and Statically Enforceable CERT C Rules Supported
by Polyspace Bug Finder

The CERT C standard classify the guidelines that compliant C code must follow as Rules. These
Rules are also considered enforceable by static analysis. Polyspace supports 120 out of 120 such
guidelines.

CERT C Rule Description Polyspace Checker
CERT C: Rule ARR30-C Do not form or use out-of-

bounds pointers or array
subscripts

CERT C: Rule ARR30-C

CERT C: Rule ARR32-C Ensure size arguments for
variable length arrays are in a
valid range

CERT C: Rule ARR32-C

CERT C: Rule ARR36-C Do not subtract or compare two
pointers that do not refer to the
same array

CERT C: Rule ARR36-C

CERT C: Rule ARR37-C Do not add or subtract an
integer to a pointer to a non-
array object

CERT C: Rule ARR37-C

CERT C: Rule ARR38-C Guarantee that library functions
do not form invalid pointers

CERT C: Rule ARR38-C

CERT C: Rule ARR39-C Do not add or subtract a scaled
integer to a pointer

CERT C: Rule ARR39-C

CERT C: Rule CON30-C Clean up thread-specific storage CERT C: Rule CON30-C
CERT C: Rule CON31-C Do not destroy a mutex while it

is locked
CERT C: Rule CON31-C

CERT C: Rule CON32-C Prevent data races when
accessing bit fields from
multiple threads

CERT C: Rule CON32-C

CERT C: Rule CON33-C Avoid race conditions when
using library functions

CERT C: Rule CON33-C

CERT C: Rule CON34-C Declare objects shared between
threads with appropriate
storage durations

CERT C: Rule CON34-C

CERT C: Rule CON35-C Avoid deadlock by locking in a
predefined order

CERT C: Rule CON35-C

CERT C: Rule CON36-C Wrap functions that can
spuriously wake up in a loop

CERT C: Rule CON36-C

CERT C: Rule CON37-C Do not call signal() in a
multithreaded program

CERT C: Rule CON37-C

CERT C: Rule CON38-C Preserve thread safety and
liveness when using condition
variables

CERT C: Rule CON38-C

 Required and Statically Enforceable CERT C Rules Supported by Polyspace Bug Finder

17-75

CERT C Rule Description Polyspace Checker
CERT C: Rule CON39-C Do not join or detach a thread

that was previously joined or
detached

CERT C: Rule CON39-C

CERT C: Rule CON40-C Do not refer to an atomic
variable twice in an expression

CERT C: Rule CON40-C

CERT C: Rule CON41-C Wrap functions that can fail
spuriously in a loop

CERT C: Rule CON41-C

CERT C: Rule CON43-C Do not allow data races in
multithreaded code

CERT C: Rule CON43-C

CERT C: Rule DCL30-C Declare objects with
appropriate storage durations

CERT C: Rule DCL30-C

CERT C: Rule DCL31-C Declare identifiers before using
them

CERT C: Rule DCL31-C

CERT C: Rule DCL36-C Do not declare an identifier with
conflicting linkage
classifications

CERT C: Rule DCL36-C

CERT C: Rule DCL37-C Do not declare or define a
reserved identifier

CERT C: Rule DCL37-C

CERT C: Rule DCL38-C Use the correct syntax when
declaring a flexible array
member

CERT C: Rule DCL38-C

CERT C: Rule DCL39-C Avoid information leakage in
structure padding

CERT C: Rule DCL39-C

CERT C: Rule DCL40-C Do not create incompatible
declarations of the same
function or object

CERT C: Rule DCL40-C

CERT C: Rule DCL41-C Do not declare variables inside a
switch statement before the first
case label

CERT C: Rule DCL41-C

CERT C: Rule ENV30-C Do not modify the object
referenced by the return value
of certain functions

CERT C: Rule ENV30-C

CERT C: Rule ENV31-C Do not rely on an environment
pointer following an operation
that may invalidate it

CERT C: Rule ENV31-C

CERT C: Rule ENV32-C All exit handlers must return
normally

CERT C: Rule ENV32-C

CERT C: Rule ENV33-C Do not call system() CERT C: Rule ENV33-C
CERT C: Rule ENV34-C Do not store pointers returned

by certain functions
CERT C: Rule ENV34-C

17 Polyspace Coverage of Coding Standards

17-76

CERT C Rule Description Polyspace Checker
CERT C: Rule ERR30-C Set errno to zero before calling

a library function known to set
errno, and check errno only
after the function returns a
value indicating failure

CERT C: Rule ERR30-C

CERT C: Rule ERR32-C Do not rely on indeterminate
values of errno

CERT C: Rule ERR32-C

CERT C: Rule ERR33-C Detect and handle standard
library errors

CERT C: Rule ERR33-C

CERT C: Rule ERR34-C Detect errors when converting a
string to a number

CERT C: Rule ERR34-C

CERT C: Rule EXP30-C Do not depend on the order of
evaluation for side effects

CERT C: Rule EXP30-C

CERT C: Rule EXP32-C Do not access a volatile object
through a nonvolatile reference

CERT C: Rule EXP32-C

CERT C: Rule EXP33-C Do not read uninitialized
memory

CERT C: Rule EXP33-C

CERT C: Rule EXP34-C Do not dereference null pointers CERT C: Rule EXP34-C
CERT C: Rule EXP35-C Do not modify objects with

temporary lifetime
CERT C: Rule EXP35-C

CERT C: Rule EXP36-C Do not cast pointers into more
strictly aligned pointer types

CERT C: Rule EXP36-C

CERT C: Rule EXP37-C Call functions with the correct
number and type of arguments

CERT C: Rule EXP37-C

CERT C: Rule EXP39-C Do not access a variable
through a pointer of an
incompatible type

CERT C: Rule EXP39-C

CERT C: Rule EXP40-C Do not modify constant objects CERT C: Rule EXP40-C
CERT C: Rule EXP42-C Do not compare padding data CERT C: Rule EXP42-C
CERT C: Rule EXP43-C Avoid undefined behavior when

using restrict-qualified pointers
CERT C: Rule EXP43-C

CERT C: Rule EXP44-C Do not rely on side effects in
operands to sizeof, _Alignof, or
_Generic

CERT C: Rule EXP44-C

CERT C: Rule EXP45-C Do not perform assignments in
selection statements

CERT C: Rule EXP45-C

CERT C: Rule EXP46-C Do not use a bitwise operator
with a Boolean-like operand

CERT C: Rule EXP46-C

CERT C: Rule EXP47-C Do not call va_arg with an
argument of the incorrect type

CERT C: Rule EXP47-C

CERT C: Rule FIO30-C Exclude user input from format
strings

CERT C: Rule FIO30-C

 Required and Statically Enforceable CERT C Rules Supported by Polyspace Bug Finder

17-77

CERT C Rule Description Polyspace Checker
CERT C: Rule FIO32-C Do not perform operations on

devices that are only
appropriate for files

CERT C: Rule FIO32-C

CERT C: Rule FIO34-C Distinguish between characters
read from a file and EOF or
WEOF

CERT C: Rule FIO34-C

CERT C: Rule FIO37-C Do not assume that fgets() or
fgetws() returns a nonempty
string when successful

CERT C: Rule FIO37-C

CERT C: Rule FIO38-C Do not copy a FILE object CERT C: Rule FIO38-C
CERT C: Rule FIO39-C Do not alternately input and

output from a stream without an
intervening flush or positioning
call

CERT C: Rule FIO39-C

CERT C: Rule FIO40-C Reset strings on fgets() or
fgetws() failure

CERT C: Rule FIO40-C

CERT C: Rule FIO41-C Do not call getc(), putc(),
getwc(), or putwc() with a
stream argument that has side
effects

CERT C: Rule FIO41-C

CERT C: Rule FIO42-C Close files when they are no
longer needed

CERT C: Rule FIO42-C

CERT C: Rule FIO44-C Only use values for fsetpos()
that are returned from fgetpos()

CERT C: Rule FIO44-C

CERT C: Rule FIO45-C Avoid TOCTOU race conditions
while accessing files

CERT C: Rule FIO45-C

CERT C: Rule FIO46-C Do not access a closed file CERT C: Rule FIO46-C
CERT C: Rule FIO47-C Use valid format strings CERT C: Rule FIO47-C
CERT C: Rule FLP30-C Do not use floating-point

variables as loop counters
CERT C: Rule FLP30-C

CERT C: Rule FLP32-C Prevent or detect domain and
range errors in math functions

CERT C: Rule FLP32-C

CERT C: Rule FLP34-C Ensure that floating-point
conversions are within range of
the new type

CERT C: Rule FLP34-C

CERT C: Rule FLP36-C Preserve precision when
converting integral values to
floating-point type

CERT C: Rule FLP36-C

CERT C: Rule FLP37-C Do not use object
representations to compare
floating-point values

CERT C: Rule FLP37-C

CERT C: Rule INT30-C Ensure that unsigned integer
operations do not wrap

CERT C: Rule INT30-C

17 Polyspace Coverage of Coding Standards

17-78

CERT C Rule Description Polyspace Checker
CERT C: Rule INT31-C Ensure that integer conversions

do not result in lost or
misinterpreted data

CERT C: Rule INT31-C

CERT C: Rule INT32-C Ensure that operations on
signed integers do not result in
overflow

CERT C: Rule INT32-C

CERT C: Rule INT33-C Ensure that division and
remainder operations do not
result in divide-by-zero errors

CERT C: Rule INT33-C

CERT C: Rule INT34-C Do not shift an expression by a
negative number of bits or by
greater than or equal to the
number of bits that exist in the
operand

CERT C: Rule INT34-C

CERT C: Rule INT35-C Use correct integer precisions CERT C: Rule INT35-C
CERT C: Rule INT36-C Converting a pointer to integer

or integer to pointer
CERT C: Rule INT36-C

CERT C: Rule MEM30-C Do not access freed memory CERT C: Rule MEM30-C
CERT C: Rule MEM31-C Free dynamically allocated

memory when no longer needed
CERT C: Rule MEM31-C

CERT C: Rule MEM33-C Allocate and copy structures
containing a flexible array
member dynamically

CERT C: Rule MEM33-C

CERT C: Rule MEM34-C Only free memory allocated
dynamically

CERT C: Rule MEM34-C

CERT C: Rule MEM35-C Allocate sufficient memory for
an object

CERT C: Rule MEM35-C

CERT C: Rule MEM36-C Do not modify the alignment of
objects by calling realloc()

CERT C: Rule MEM36-C

CERT C: Rule MSC30-C Do not use the rand() function
for generating pseudorandom
numbers

CERT C: Rule MSC30-C

CERT C: Rule MSC32-C Properly seed pseudorandom
number generators

CERT C: Rule MSC32-C

CERT C: Rule MSC33-C Do not pass invalid data to the
asctime() function

CERT C: Rule MSC33-C

CERT C: Rule MSC37-C Ensure that control never
reaches the end of a non-void
function

CERT C: Rule MSC37-C

CERT C: Rule MSC38-C Do not treat a predefined
identifier as an object if it might
only be implemented as a macro

CERT C: Rule MSC38-C

CERT C: Rule MSC39-C Do not call va_arg() on a va_list
that has an indeterminate value

CERT C: Rule MSC39-C

 Required and Statically Enforceable CERT C Rules Supported by Polyspace Bug Finder

17-79

CERT C Rule Description Polyspace Checker
CERT C: Rule MSC40-C Do not violate constraints CERT C: Rule MSC40-C
CERT C: Rule MSC41-C Never hard code sensitive

information
CERT C: Rule MSC41-C

CERT C: Rule POS30-C Use the readlink() function
properly

CERT C: Rule POS30-C

CERT C: Rule POS34-C Do not call putenv() with a
pointer to an automatic variable
as the argument

CERT C: Rule POS34-C

CERT C: Rule POS35-C Avoid race conditions while
checking for the existence of a
symbolic link

CERT C: Rule POS35-C

CERT C: Rule POS36-C Observe correct revocation
order while relinquishing
privileges

CERT C: Rule POS36-C

CERT C: Rule POS37-C Ensure that privilege
relinquishment is successful

CERT C: Rule POS37-C

CERT C: Rule POS38-C Beware of race conditions when
using fork and file descriptors

CERT C: Rule POS38-C

CERT C: Rule POS39-C Use the correct byte ordering
when transferring data between
systems

CERT C: Rule POS39-C

CERT C: Rule POS44-C Do not use signals to terminate
threads

CERT C: Rule POS44-C

CERT C: Rule POS47-C Do not use threads that can be
canceled asynchronously

CERT C: Rule POS47-C

CERT C: Rule POS48-C Do not unlock or destroy
another POSIX thread's mutex

CERT C: Rule POS48-C

CERT C: Rule POS49-C When data must be accessed by
multiple threads, provide a
mutex and guarantee no
adjacent data is also accessed

CERT C: Rule POS49-C

CERT C: Rule POS50-C Declare objects shared between
POSIX threads with appropriate
storage durations

CERT C: Rule POS50-C

CERT C: Rule POS51-C Avoid deadlock with POSIX
threads by locking in predefined
order

CERT C: Rule POS51-C

CERT C: Rule POS52-C Do not perform operations that
can block while holding a POSIX
lock

CERT C: Rule POS52-C

CERT C: Rule POS53-C Do not use more than one mutex
for concurrent waiting
operations on a condition
variable

CERT C: Rule POS53-C

17 Polyspace Coverage of Coding Standards

17-80

CERT C Rule Description Polyspace Checker
CERT C: Rule POS54-C Detect and handle POSIX library

errors
CERT C: Rule POS54-C

CERT C: Rule PRE30-C Do not create a universal
character name through
concatenation

CERT C: Rule PRE30-C

CERT C: Rule PRE31-C Avoid side effects in arguments
to unsafe macros

CERT C: Rule PRE31-C

CERT C: Rule PRE32-C Do not use preprocessor
directives in invocations of
function-like macros

CERT C: Rule PRE32-C

CERT C: Rule SIG30-C Call only asynchronous-safe
functions within signal handlers

CERT C: Rule SIG30-C

CERT C: Rule SIG31-C Do not access shared objects in
signal handlers

CERT C: Rule SIG31-C

CERT C: Rule SIG34-C Do not call signal() from within
interruptible signal handlers

CERT C: Rule SIG34-C

CERT C: Rule SIG35-C Do not return from a
computational exception signal
handler

CERT C: Rule SIG35-C

CERT C: Rule STR30-C Do not attempt to modify string
literals

CERT C: Rule STR30-C

CERT C: Rule STR31-C Guarantee that storage for
strings has sufficient space for
character data and the null
terminator

CERT C: Rule STR31-C

CERT C: Rule STR32-C Do not pass a non-null-
terminated character sequence
to a library function that
expects a string

CERT C: Rule STR32-C

CERT C: Rule STR34-C Cast characters to unsigned
char before converting to larger
integer sizes

CERT C: Rule STR34-C

CERT C: Rule STR37-C Arguments to character-
handling functions must be
representable as an unsigned
char

CERT C: Rule STR37-C

CERT C: Rule STR38-C Do not confuse narrow and wide
character strings and functions

CERT C: Rule STR38-C

CERT C: Rule WIN30-C Properly pair allocation and
deallocation functions

CERT C: Rule WIN30-C

See Also
Check SEI CERT-C (-cert-c)

 Required and Statically Enforceable CERT C Rules Supported by Polyspace Bug Finder

17-81

More About
• “Check for and Review Coding Standard Violations” on page 16-2
• “Coding Standards”
• “Required or Mandatory MISRA C:2012 Rules Supported by Polyspace Bug Finder” on page 17-

43
• “Checkers Deactivated in Polyspace as You Code Analysis” on page 11-78

17 Polyspace Coverage of Coding Standards

17-82

Required MISRA C++:2008 Coding Rules Supported by
Polyspace Bug Finder

The MISRA C++:2008 standard classifies the rules that compliant C++ code must follow as
Required. Polyspace Bug Finder supports 195 out of 198 required MISRA C++:2008 coding rules.

Supported Rules
Polyspace supports these Required rules.

MISRA C++:2008 Rule Description Polyspace Checker
MISRA C++:2008 Rule 0-1-1 A project shall not contain

unreachable code
MISRA C++:2008 Rule
0-1-1

MISRA C++:2008 Rule 0-1-10 Every defined function shall be
called at least once

MISRA C++:2008 Rule
0-1-10

MISRA C++:2008 Rule 0-1-11 There shall be no unused
parameters (named or
unnamed) in nonvirtual
functions

MISRA C++:2008 Rule
0-1-11

MISRA C++:2008 Rule 0-1-12 There shall be no unused
parameters (named or
unnamed) in the set of
parameters for a virtual function
and all the functions that
override it

MISRA C++:2008 Rule
0-1-12

MISRA C++:2008 Rule 0-1-2 A project shall not contain
infeasible paths

MISRA C++:2008 Rule
0-1-2

MISRA C++:2008 Rule 0-1-3 A project shall not contain
unused variables

MISRA C++:2008 Rule
0-1-3

MISRA C++:2008 Rule 0-1-4 A project shall not contain non-
volatile POD variables having
only one use

MISRA C++:2008 Rule
0-1-4

MISRA C++:2008 Rule 0-1-5 A project shall not contain
unused type declarations

MISRA C++:2008 Rule
0-1-5

MISRA C++:2008 Rule 0-1-6 A project shall not contain
instances of non-volatile
variables being given values
that are never subsequently
used.

MISRA C++:2008 Rule
0-1-6

MISRA C++:2008 Rule 0-1-7 The value returned by a function
having a non- void return type
that is not an overloaded
operator shall always be used

MISRA C++:2008 Rule
0-1-7

MISRA C++:2008 Rule 0-1-8 All functions with void return
type shall have external side
effect(s)

MISRA C++:2008 Rule
0-1-8

 Required MISRA C++:2008 Coding Rules Supported by Polyspace Bug Finder

17-83

MISRA C++:2008 Rule Description Polyspace Checker
MISRA C++:2008 Rule 0-1-9 There shall be no dead code MISRA C++:2008 Rule

0-1-9
MISRA C++:2008 Rule 0-2-1 An object shall not be assigned

to an overlapping object
MISRA C++:2008 Rule
0-2-1

MISRA C++:2008 Rule 0-3-2 If a function generates error
information, then that error
information shall be tested

MISRA C++:2008 Rule
0-3-2

MISRA C++:2008 Rule 10-1-2 A base class shall only be
declared virtual if it is used in a
diamond hierarchy

MISRA C++:2008 Rule
10-1-2

MISRA C++:2008 Rule 10-1-3 An accessible base class shall
not be both virtual and non-
virtual in the same hierarchy

MISRA C++:2008 Rule
10-1-3

MISRA C++:2008 Rule 10-3-1 There shall be no more than one
definition of each virtual
function on each path through
the inheritance hierarchy

MISRA C++:2008 Rule
10-3-1

MISRA C++:2008 Rule 10-3-2 Each overriding virtual function
shall be declared with the
virtual keyword

MISRA C++:2008 Rule
10-3-2

MISRA C++:2008 Rule 10-3-3 A virtual function shall only be
overridden by a pure virtual
function if it is itself declared as
pure virtual

MISRA C++:2008 Rule
10-3-3

MISRA C++:2008 Rule 11-0-1 Member data in non- POD class
types shall be private

MISRA C++:2008 Rule
11-0-1

MISRA C++:2008 Rule 12-1-1 An object's dynamic type shall
not be used from the body of its
constructor or destructor

MISRA C++:2008 Rule
12-1-1

MISRA C++:2008 Rule 12-1-3 All constructors that are
callable with a single argument
of fundamental type shall be
declared explicit

MISRA C++:2008 Rule
12-1-3

MISRA C++:2008 Rule 12-8-1 A copy constructor shall only
initialize its base classes and the
non- static members of the class
of which it is a member

MISRA C++:2008 Rule
12-8-1

MISRA C++:2008 Rule 12-8-2 The copy assignment operator
shall be declared protected or
private in an abstract class

MISRA C++:2008 Rule
12-8-2

MISRA C++:2008 Rule 14-5-1 A non-member generic function
shall only be declared in a
namespace that is not an
associated namespace

MISRA C++:2008 Rule
14-5-1

17 Polyspace Coverage of Coding Standards

17-84

MISRA C++:2008 Rule Description Polyspace Checker
MISRA C++:2008 Rule 14-5-2 A copy constructor shall be

declared when there is a
template constructor with a
single parameter that is a
generic parameter

MISRA C++:2008 Rule
14-5-2

MISRA C++:2008 Rule 14-5-3 A copy assignment operator
shall be declared when there is
a template assignment operator
with a parameter that is a
generic parameter

MISRA C++:2008 Rule
14-5-3

MISRA C++:2008 Rule 14-6-1 In a class template with a
dependent base, any name that
may be found in that dependent
base shall be referred to using a
qualified-id or this->

MISRA C++:2008 Rule
14-6-1

MISRA C++:2008 Rule 14-6-2 The function chosen by overload
resolution shall resolve to a
function declared previously in
the translation unit

MISRA C++:2008 Rule
14-6-2

MISRA C++:2008 Rule 14-7-3 All partial and explicit
specializations for a template
shall be declared in the same
file as the declaration of their
primary template

MISRA C++:2008 Rule
14-7-3

MISRA C++:2008 Rule 14-8-1 Overloaded function templates
shall not be explicitly
specialized

MISRA C++:2008 Rule
14-8-1

MISRA C++:2008 Rule 15-0-3 Control shall not be transferred
into a try or catch block using a
goto or a switch statement

MISRA C++:2008 Rule
15-0-3

MISRA C++:2008 Rule 15-1-1 The assignment-expression of a
throw statement shall not itself
cause an exception to be thrown

MISRA C++:2008 Rule
15-1-1

MISRA C++:2008 Rule 15-1-2 NULL shall not be thrown
explicitly

MISRA C++:2008 Rule
15-1-2

MISRA C++:2008 Rule 15-1-3 An empty throw (throw;) shall
only be used in the compound-
statement of a catch handler

MISRA C++:2008 Rule
15-1-3

MISRA C++:2008 Rule 15-3-1 Exceptions shall be raised only
after start-up and before
termination of the program

MISRA C++:2008 Rule
15-3-1

 Required MISRA C++:2008 Coding Rules Supported by Polyspace Bug Finder

17-85

MISRA C++:2008 Rule Description Polyspace Checker
MISRA C++:2008 Rule 15-3-3 Handlers of a function-try-block

implementation of a class
constructor or destructor shall
not reference non-static
members from this class or its
bases

MISRA C++:2008 Rule
15-3-3

MISRA C++:2008 Rule 15-3-4 Each exception explicitly thrown
in the code shall have a handler
of a compatible type in all call
paths that could lead to that
point

MISRA C++:2008 Rule
15-3-4

MISRA C++:2008 Rule 15-3-5 A class type exception shall
always be caught by reference

MISRA C++:2008 Rule
15-3-5

MISRA C++:2008 Rule 15-3-6 Where multiple handlers are
provided in a single try-catch
statement or function-try-block
for a derived class and some or
all of its bases, the handlers
shall be ordered most-derived to
base class

MISRA C++:2008 Rule
15-3-6

MISRA C++:2008 Rule 15-3-7 Where multiple handlers are
provided in a single try-catch
statement or function-try-block,
any ellipsis (catch-all) handler
shall occur last

MISRA C++:2008 Rule
15-3-7

MISRA C++:2008 Rule 15-4-1 If a function is declared with an
exception-specification, then all
declarations of the same
function (in other translation
units) shall be declared with the
same set of type-ids

MISRA C++:2008 Rule
15-4-1

MISRA C++:2008 Rule 15-5-1 A class destructor shall not exit
with an exception

MISRA C++:2008 Rule
15-5-1

MISRA C++:2008 Rule 15-5-2 Where a function's declaration
includes an exception-
specification, the function shall
only be capable of throwing
exceptions of the indicated
type(s)

MISRA C++:2008 Rule
15-5-2

MISRA C++:2008 Rule 15-5-3 The terminate() function shall
not be called implicitly

MISRA C++:2008 Rule
15-5-3

MISRA C++:2008 Rule 16-0-1 #include directives in a file shall
only be preceded by other
preprocessor directives or
comments

MISRA C++:2008 Rule
16-0-1

17 Polyspace Coverage of Coding Standards

17-86

MISRA C++:2008 Rule Description Polyspace Checker
MISRA C++:2008 Rule 16-0-2 Macros shall only be #define 'd

or #undef 'd in the global
namespace

MISRA C++:2008 Rule
16-0-2

MISRA C++:2008 Rule 16-0-3 #undef shall not be used MISRA C++:2008 Rule
16-0-3

MISRA C++:2008 Rule 16-0-4 Function-like macros shall not
be defined

MISRA C++:2008 Rule
16-0-4

MISRA C++:2008 Rule 16-0-5 Arguments to a function-like
macro shall not contain tokens
that look like preprocessing
directives

MISRA C++:2008 Rule
16-0-5

MISRA C++:2008 Rule 16-0-6 In the definition of a function-
like macro, each instance of a
parameter shall be enclosed in
parentheses, unless it is used as
the operand of # or ##

MISRA C++:2008 Rule
16-0-6

MISRA C++:2008 Rule 16-0-7 Undefined macro identifiers
shall not be used in #if or #elif
preprocessor directives, except
as operands to the defined
operator

MISRA C++:2008 Rule
16-0-7

MISRA C++:2008 Rule 16-0-8 If the # token appears as the
first token on a line, then it shall
be immediately followed by a
preprocessing token

MISRA C++:2008 Rule
16-0-8

MISRA C++:2008 Rule 16-1-1 The defined preprocessor
operator shall only be used in
one of the two standard forms

MISRA C++:2008 Rule
16-1-1

MISRA C++:2008 Rule 16-1-2 All #else, #elif and #endif
preprocessor directives shall
reside in the same file as the #if
or #ifdef directive to which they
are related

MISRA C++:2008 Rule
16-1-2

MISRA C++:2008 Rule 16-2-1 The preprocessor shall only be
used for file inclusion and
include guards

MISRA C++:2008 Rule
16-2-1

MISRA C++:2008 Rule 16-2-2 C++ macros shall only be used
for: include guards, type
qualifiers, or storage class
specifiers

MISRA C++:2008 Rule
16-2-2

MISRA C++:2008 Rule 16-2-3 Include guards shall be
provided

MISRA C++:2008 Rule
16-2-3

MISRA C++:2008 Rule 16-2-4 The ', ", /* or // characters shall
not occur in a header file name

MISRA C++:2008 Rule
16-2-4

 Required MISRA C++:2008 Coding Rules Supported by Polyspace Bug Finder

17-87

MISRA C++:2008 Rule Description Polyspace Checker
MISRA C++:2008 Rule 16-2-6 The #include directive shall be

followed by either a <filename>
or "filename" sequence

MISRA C++:2008 Rule
16-2-6

MISRA C++:2008 Rule 16-3-1 There shall be at most one
occurrence of the # or ##
operators in a single macro
definition

MISRA C++:2008 Rule
16-3-1

MISRA C++:2008 Rule 17-0-1 Reserved identifiers, macros
and functions in the Standard
Library shall not be defined,
redefined or undefined

MISRA C++:2008 Rule
17-0-1

MISRA C++:2008 Rule 17-0-2 The names of standard library
macros and objects shall not be
reused

MISRA C++:2008 Rule
17-0-2

MISRA C++:2008 Rule 17-0-3 The names of standard library
functions shall not be
overridden

MISRA C++:2008 Rule
17-0-3

MISRA C++:2008 Rule 17-0-5 The setjmp macro and the
longjmp function shall not be
used

MISRA C++:2008 Rule
17-0-5

MISRA C++:2008 Rule 18-0-1 The C library shall not be used MISRA C++:2008 Rule
18-0-1

MISRA C++:2008 Rule 18-0-2 The library functions atof, atoi
and atol from library <cstdlib>
shall not be used

MISRA C++:2008 Rule
18-0-2

MISRA C++:2008 Rule 18-0-3 The library functions abort, exit,
getenv and system from library
<cstdlib> shall not be used

MISRA C++:2008 Rule
18-0-3

MISRA C++:2008 Rule 18-0-4 The time handling functions of
library <ctime> shall not be
used

MISRA C++:2008 Rule
18-0-4

MISRA C++:2008 Rule 18-0-5 The unbounded functions of
library <cstring> shall not be
used

MISRA C++:2008 Rule
18-0-5

MISRA C++:2008 Rule 18-2-1 The macro offsetof shall not be
used

MISRA C++:2008 Rule
18-2-1

MISRA C++:2008 Rule 18-4-1 Dynamic heap memory
allocation shall not be used

MISRA C++:2008 Rule
18-4-1

MISRA C++:2008 Rule 18-7-1 The signal handling facilities of
<csignal> shall not be used

MISRA C++:2008 Rule
18-7-1

MISRA C++:2008 Rule 19-3-1 The error indicator errno shall
not be used

MISRA C++:2008 Rule
19-3-1

17 Polyspace Coverage of Coding Standards

17-88

MISRA C++:2008 Rule Description Polyspace Checker
MISRA C++:2008 Rule 1-0-1 All code shall conform to

ISO/IEC 14882:2003 "The C++
Standard Incorporating
Technical Corrigendum 1"

MISRA C++:2008 Rule
1-0-1

MISRA C++:2008 Rule 27-0-1 The stream input/output library
<cstdio> shall not be used

MISRA C++:2008 Rule
27-0-1

MISRA C++:2008 Rule 2-10-1 Different identifiers shall be
typographically unambiguous

MISRA C++:2008 Rule
2-10-1

MISRA C++:2008 Rule 2-10-2 Identifiers declared in an inner
scope shall not hide an identifier
declared in an outer scope

MISRA C++:2008 Rule
2-10-2

MISRA C++:2008 Rule 2-10-3 A typedef name (including
qualification, if any) shall be a
unique identifier

MISRA C++:2008 Rule
2-10-3

MISRA C++:2008 Rule 2-10-4 A class, union or enum name
(including qualification, if any)
shall be a unique identifier

MISRA C++:2008 Rule
2-10-4

MISRA C++:2008 Rule 2-10-6 If an identifier refers to a type,
it shall not also refer to an
object or a function in the same
scope

MISRA C++:2008 Rule
2-10-6

MISRA C++:2008 Rule 2-13-1 Only those escape sequences
that are defined in ISO/IEC
14882:2003 shall be used

MISRA C++:2008 Rule
2-13-1

MISRA C++:2008 Rule 2-13-2 Octal constants (other than
zero) and octal escape
sequences (other than "\0") shall
not be used

MISRA C++:2008 Rule
2-13-2

MISRA C++:2008 Rule 2-13-3 A "U" suffix shall be applied to
all octal or hexadecimal integer
literals of unsigned type

MISRA C++:2008 Rule
2-13-3

MISRA C++:2008 Rule 2-13-4 Literal suffixes shall be upper
case

MISRA C++:2008 Rule
2-13-4

MISRA C++:2008 Rule 2-13-5 Narrow and wide string literals
shall not be concatenated

MISRA C++:2008 Rule
2-13-5

MISRA C++:2008 Rule 2-3-1 Trigraphs shall not be used MISRA C++:2008 Rule
2-3-1

MISRA C++:2008 Rule 2-7-1 The character sequence /* shall
not be used within a C-style
comment

MISRA C++:2008 Rule
2-7-1

MISRA C++:2008 Rule 2-7-2 Sections of code shall not be
"commented out" using C-style
comments

MISRA C++:2008 Rule
2-7-2

 Required MISRA C++:2008 Coding Rules Supported by Polyspace Bug Finder

17-89

MISRA C++:2008 Rule Description Polyspace Checker
MISRA C++:2008 Rule 3-1-1 It shall be possible to include

any header file in multiple
translation units without
violating the One Definition
Rule

MISRA C++:2008 Rule
3-1-1

MISRA C++:2008 Rule 3-1-2 Functions shall not be declared
at block scope

MISRA C++:2008 Rule
3-1-2

MISRA C++:2008 Rule 3-1-3 When an array is declared, its
size shall either be stated
explicitly or defined implicitly by
initialization

MISRA C++:2008 Rule
3-1-3

MISRA C++:2008 Rule 3-2-1 All declarations of an object or
function shall have compatible
types

MISRA C++:2008 Rule
3-2-1

MISRA C++:2008 Rule 3-2-2 The One Definition Rule shall
not be violated

MISRA C++:2008 Rule
3-2-2

MISRA C++:2008 Rule 3-2-3 A type, object or function that is
used in multiple translation
units shall be declared in one
and only one file

MISRA C++:2008 Rule
3-2-3

MISRA C++:2008 Rule 3-2-4 An identifier with external
linkage shall have exactly one
definition

MISRA C++:2008 Rule
3-2-4

MISRA C++:2008 Rule 3-3-1 Objects or functions with
external linkage shall be
declared in a header file

MISRA C++:2008 Rule
3-3-1

MISRA C++:2008 Rule 3-3-2 If a function has internal linkage
then all re-declarations shall
include the static storage class
specifier

MISRA C++:2008 Rule
3-3-2

MISRA C++:2008 Rule 3-4-1 An identifier declared to be an
object or type shall be defined in
a block that minimizes its
visibility

MISRA C++:2008 Rule
3-4-1

MISRA C++:2008 Rule 3-9-1 The types used for an object, a
function return type, or a
function parameter shall be
token-for-token identical in all
declarations and re-declarations

MISRA C++:2008 Rule
3-9-1

MISRA C++:2008 Rule 3-9-3 The underlying bit
representations of floating-point
values shall not be used

MISRA C++:2008 Rule
3-9-3

MISRA C++:2008 Rule 4-10-1 NULL shall not be used as an
integer value

MISRA C++:2008 Rule
4-10-1

17 Polyspace Coverage of Coding Standards

17-90

MISRA C++:2008 Rule Description Polyspace Checker
MISRA C++:2008 Rule 4-10-2 Literal zero (0) shall not be used

as the null-pointer-constant
MISRA C++:2008 Rule
4-10-2

MISRA C++:2008 Rule 4-5-1 Expressions with type bool shall
not be used as operands to built-
in operators other than the
assignment operator =, the
logical operators &&, ||, !, the
equality operators == and !=,
the unary & operator, and the
conditional operator

MISRA C++:2008 Rule
4-5-1

MISRA C++:2008 Rule 4-5-2 Expressions with type enum
shall not be used as operands to
built- in operators other than
the subscript operator [], the
assignment operator =, the
equality operators == and !=,
the unary & operator, and the
relational operators <, <=, >,
>=

MISRA C++:2008 Rule
4-5-2

MISRA C++:2008 Rule 4-5-3 Expressions with type (plain)
char and wchar_t shall not be
used as operands to built-in
operators other than the
assignment operator =, the
equality operators == and !=,
and the unary & operator N

MISRA C++:2008 Rule
4-5-3

MISRA C++:2008 Rule 5-0-1 The value of an expression shall
be the same under any order of
evaluation that the standard
permits

MISRA C++:2008 Rule
5-0-1

MISRA C++:2008 Rule 5-0-10 If the bitwise operators ~ and
<< are applied to an operand
with an underlying type of
unsigned char or unsigned
short, the result shall be
immediately cast to the
underlying type of the operand

MISRA C++:2008 Rule
5-0-10

MISRA C++:2008 Rule 5-0-11 The plain char type shall only be
used for the storage and use of
character values

MISRA C++:2008 Rule
5-0-11

MISRA C++:2008 Rule 5-0-12 Signed char and unsigned char
type shall only be used for the
storage and use of numeric
values

MISRA C++:2008 Rule
5-0-12

 Required MISRA C++:2008 Coding Rules Supported by Polyspace Bug Finder

17-91

MISRA C++:2008 Rule Description Polyspace Checker
MISRA C++:2008 Rule 5-0-13 The condition of an if-statement

and the condition of an
iteration- statement shall have
type bool

MISRA C++:2008 Rule
5-0-13

MISRA C++:2008 Rule 5-0-14 The first operand of a
conditional-operator shall have
type bool

MISRA C++:2008 Rule
5-0-14

MISRA C++:2008 Rule 5-0-15 Array indexing shall be the only
form of pointer arithmetic

MISRA C++:2008 Rule
5-0-15

MISRA C++:2008 Rule 5-0-16 A pointer operand and any
pointer resulting from pointer
arithmetic using that operand
shall both address elements of
the same array.

MISRA C++:2008 Rule
5-0-16

MISRA C++:2008 Rule 5-0-17 Subtraction between pointers
shall only be applied to pointers
that address elements of the
same array

MISRA C++:2008 Rule
5-0-17

MISRA C++:2008 Rule 5-0-18 >, >=, <, <= shall not be
applied to objects of pointer
type, except where they point to
the same array

MISRA C++:2008 Rule
5-0-18

MISRA C++:2008 Rule 5-0-19 The declaration of objects shall
contain no more than two levels
of pointer indirection

MISRA C++:2008 Rule
5-0-19

MISRA C++:2008 Rule 5-0-20 Non-constant operands to a
binary bitwise operator shall
have the same underlying type

MISRA C++:2008 Rule
5-0-20

MISRA C++:2008 Rule 5-0-21 Bitwise operators shall only be
applied to operands of unsigned
underlying type

MISRA C++:2008 Rule
5-0-21

MISRA C++:2008 Rule 5-0-3 A cvalue expression shall not be
implicitly converted to a
different underlying type

MISRA C++:2008 Rule
5-0-3

MISRA C++:2008 Rule 5-0-4 An implicit integral conversion
shall not change the signedness
of the underlying type

MISRA C++:2008 Rule
5-0-4

MISRA C++:2008 Rule 5-0-5 There shall be no implicit
floating-integral conversions

MISRA C++:2008 Rule
5-0-5

MISRA C++:2008 Rule 5-0-6 An implicit integral or floating-
point conversion shall not
reduce the size of the
underlying type

MISRA C++:2008 Rule
5-0-6

17 Polyspace Coverage of Coding Standards

17-92

MISRA C++:2008 Rule Description Polyspace Checker
MISRA C++:2008 Rule 5-0-7 There shall be no explicit

floating-integral conversions of
a cvalue expression

MISRA C++:2008 Rule
5-0-7

MISRA C++:2008 Rule 5-0-8 An explicit integral or floating-
point conversion shall not
increase the size of the
underlying type of a cvalue
expression

MISRA C++:2008 Rule
5-0-8

MISRA C++:2008 Rule 5-0-9 An explicit integral conversion
shall not change the signedness
of the underlying type of a
cvalue expression

MISRA C++:2008 Rule
5-0-9

MISRA C++:2008 Rule 5-14-1 The right hand operand of a
logical && or || operator shall
not contain side effects

MISRA C++:2008 Rule
5-14-1

MISRA C++:2008 Rule 5-18-1 The comma operator shall not
be used

MISRA C++:2008 Rule
5-18-1

MISRA C++:2008 Rule 5-2-1 Each operand of a logical && or
|| shall be a postfix-expression

MISRA C++:2008 Rule
5-2-1

MISRA C++:2008 Rule 5-2-11 The comma operator, &&
operator and the || operator
shall not be overloaded

MISRA C++:2008 Rule
5-2-11

MISRA C++:2008 Rule 5-2-12 An identifier with array type
passed as a function argument
shall not decay to a pointer

MISRA C++:2008 Rule
5-2-12

MISRA C++:2008 Rule 5-2-2 A pointer to a virtual base class
shall only be cast to a pointer to
a derived class by means of
dynamic_cast

MISRA C++:2008 Rule
5-2-2

MISRA C++:2008 Rule 5-2-4 C-style casts (other than void
casts) and functional notation
casts (other than explicit
constructor calls) shall not be
used

MISRA C++:2008 Rule
5-2-4

MISRA C++:2008 Rule 5-2-5 A cast shall not remove any
const or volatile qualification
from the type of a pointer or
reference

MISRA C++:2008 Rule
5-2-5

MISRA C++:2008 Rule 5-2-6 A cast shall not convert a
pointer to a function to any
other pointer type, including a
pointer to function type

MISRA C++:2008 Rule
5-2-6

 Required MISRA C++:2008 Coding Rules Supported by Polyspace Bug Finder

17-93

MISRA C++:2008 Rule Description Polyspace Checker
MISRA C++:2008 Rule 5-2-7 An object with pointer type shall

not be converted to an
unrelated pointer type, either
directly or indirectly

MISRA C++:2008 Rule
5-2-7

MISRA C++:2008 Rule 5-2-8 An object with integer type or
pointer to void type shall not be
converted to an object with
pointer type

MISRA C++:2008 Rule
5-2-8

MISRA C++:2008 Rule 5-3-1 Each operand of the ! operator,
the logical && or the logical ||
operators shall have type bool

MISRA C++:2008 Rule
5-3-1

MISRA C++:2008 Rule 5-3-2 The unary minus operator shall
not be applied to an expression
whose underlying type is
unsigned

MISRA C++:2008 Rule
5-3-2

MISRA C++:2008 Rule 5-3-3 The unary & operator shall not
be overloaded

MISRA C++:2008 Rule
5-3-3

MISRA C++:2008 Rule 5-3-4 Evaluation of the operand to the
sizeof operator shall not contain
side effects

MISRA C++:2008 Rule
5-3-4

MISRA C++:2008 Rule 5-8-1 The right hand operand of a
shift operator shall lie between
zero and one less than the width
in bits of the underlying type of
the left hand operand

MISRA C++:2008 Rule
5-8-1

MISRA C++:2008 Rule 6-2-1 Assignment operators shall not
be used in sub-expressions

MISRA C++:2008 Rule
6-2-1

MISRA C++:2008 Rule 6-2-2 Floating-point expressions shall
not be directly or indirectly
tested for equality or inequality

MISRA C++:2008 Rule
6-2-2

MISRA C++:2008 Rule 6-2-3 Before preprocessing, a null
statement shall only occur on a
line by itself; it may be followed
by a comment, provided that the
first character following the null
statement is a white-space
character

MISRA C++:2008 Rule
6-2-3

MISRA C++:2008 Rule 6-3-1 The statement forming the body
of a switch, while, do while or
for statement shall be a
compound statement

MISRA C++:2008 Rule
6-3-1

17 Polyspace Coverage of Coding Standards

17-94

MISRA C++:2008 Rule Description Polyspace Checker
MISRA C++:2008 Rule 6-4-1 An if (condition) construct

shall be followed by a compound
statement. The else keyword
shall be followed by either a
compound statement, or
another if statement

MISRA C++:2008 Rule
6-4-1

MISRA C++:2008 Rule 6-4-2 All if â€¦ else if constructs shall
be terminated with an else
clause

MISRA C++:2008 Rule
6-4-2

MISRA C++:2008 Rule 6-4-3 A switch statement shall be a
well-formed switch statement

MISRA C++:2008 Rule
6-4-3

MISRA C++:2008 Rule 6-4-4 A switch-label shall only be used
when the most closely-enclosing
compound statement is the body
of a switch statement

MISRA C++:2008 Rule
6-4-4

MISRA C++:2008 Rule 6-4-5 An unconditional throw or break
statement shall terminate every
non - empty switch-clause

MISRA C++:2008 Rule
6-4-5

MISRA C++:2008 Rule 6-4-6 The final clause of a switch
statement shall be the default-
clause

MISRA C++:2008 Rule
6-4-6

MISRA C++:2008 Rule 6-4-7 The condition of a switch
statement shall not have bool
type

MISRA C++:2008 Rule
6-4-7

MISRA C++:2008 Rule 6-4-8 Every switch statement shall
have at least one case-clause

MISRA C++:2008 Rule
6-4-8

MISRA C++:2008 Rule 6-5-1 A for loop shall contain a single
loop-counter which shall not
have floating type

MISRA C++:2008 Rule
6-5-1

MISRA C++:2008 Rule 6-5-2 If loop-counter is not modified
by -- or ++, then, within
condition, the loop-counter shall
only be used as an operand to
<=, <, > or >=

MISRA C++:2008 Rule
6-5-2

MISRA C++:2008 Rule 6-5-3 The loop-counter shall not be
modified within condition or
statement

MISRA C++:2008 Rule
6-5-3

MISRA C++:2008 Rule 6-5-4 The loop-counter shall be
modified by one of: --, ++, -=n,
or +=n ; where n remains
constant for the duration of the
loop

MISRA C++:2008 Rule
6-5-4

 Required MISRA C++:2008 Coding Rules Supported by Polyspace Bug Finder

17-95

MISRA C++:2008 Rule Description Polyspace Checker
MISRA C++:2008 Rule 6-5-5 A loop-control-variable other

than the loop-counter shall not
be modified within condition or
expression

MISRA C++:2008 Rule
6-5-5

MISRA C++:2008 Rule 6-5-6 A loop-control-variable other
than the loop-counter which is
modified in statement shall have
type bool

MISRA C++:2008 Rule
6-5-6

MISRA C++:2008 Rule 6-6-1 Any label referenced by a goto
statement shall be declared in
the same block, or in a block
enclosing the goto statement

MISRA C++:2008 Rule
6-6-1

MISRA C++:2008 Rule 6-6-2 The goto statement shall jump
to a label declared later in the
same function body

MISRA C++:2008 Rule
6-6-2

MISRA C++:2008 Rule 6-6-3 The continue statement shall
only be used within a well-
formed for loop

MISRA C++:2008 Rule
6-6-3

MISRA C++:2008 Rule 6-6-4 For any iteration statement
there shall be no more than one
break or goto statement used
for loop termination

MISRA C++:2008 Rule
6-6-4

MISRA C++:2008 Rule 6-6-5 A function shall have a single
point of exit at the end of the
function

MISRA C++:2008 Rule
6-6-5

MISRA C++:2008 Rule 7-1-1 A variable which is not modified
shall be const qualified

MISRA C++:2008 Rule
7-1-1

MISRA C++:2008 Rule 7-1-2 A pointer or reference
parameter in a function shall be
declared as pointer to const or
reference to const if the
corresponding object is not
modified

MISRA C++:2008 Rule
7-1-2

MISRA C++:2008 Rule 7-2-1 An expression with enum
underlying type shall only have
values corresponding to the
enumerators of the
enumeration.

MISRA C++:2008 Rule
7-2-1

MISRA C++:2008 Rule 7-3-1 The global namespace shall only
contain main, namespace
declarations and extern "C"
declarations

MISRA C++:2008 Rule
7-3-1

MISRA C++:2008 Rule 7-3-2 The identifier main shall not be
used for a function other than
the global function main

MISRA C++:2008 Rule
7-3-2

17 Polyspace Coverage of Coding Standards

17-96

MISRA C++:2008 Rule Description Polyspace Checker
MISRA C++:2008 Rule 7-3-3 There shall be no unnamed

namespaces in header files
MISRA C++:2008 Rule
7-3-3

MISRA C++:2008 Rule 7-3-4 using-directives shall not be
used

MISRA C++:2008 Rule
7-3-4

MISRA C++:2008 Rule 7-3-5 Multiple declarations for an
identifier in the same
namespace shall not straddle a
using-declaration for that
identifier

MISRA C++:2008 Rule
7-3-5

MISRA C++:2008 Rule 7-3-6 using-directives and using-
declarations (excluding class
scope or function scope using-
declarations) shall not be used
in header files

MISRA C++:2008 Rule
7-3-6

MISRA C++:2008 Rule 7-4-2 Assembler instructions shall
only be introduced using the
asm declaration

MISRA C++:2008 Rule
7-4-2

MISRA C++:2008 Rule 7-4-3 Assembly language shall be
encapsulated and isolated

MISRA C++:2008 Rule
7-4-3

MISRA C++:2008 Rule 7-5-1 A function shall not return a
reference or a pointer to an
automatic variable (including
parameters), defined within the
function

MISRA C++:2008 Rule
7-5-1

MISRA C++:2008 Rule 7-5-2 The address of an object with
automatic storage shall not be
assigned to another object that
may persist after the first object
has ceased to exist

MISRA C++:2008 Rule
7-5-2

MISRA C++:2008 Rule 7-5-3 A function shall not return a
reference or a pointer to a
parameter that is passed by
reference or const reference

MISRA C++:2008 Rule
7-5-3

MISRA C++:2008 Rule 8-0-1 An init-declarator-list or a
member-declarator-list shall
consist of a single init-
declarator or member-
declarator respectively

MISRA C++:2008 Rule
8-0-1

MISRA C++:2008 Rule 8-3-1 Parameters in an overriding
virtual function shall either use
the same default arguments as
the function they override, or
else shall not specify any default
arguments

MISRA C++:2008 Rule
8-3-1

MISRA C++:2008 Rule 8-4-1 Functions shall not be defined
using the ellipsis notation

MISRA C++:2008 Rule
8-4-1

 Required MISRA C++:2008 Coding Rules Supported by Polyspace Bug Finder

17-97

MISRA C++:2008 Rule Description Polyspace Checker
MISRA C++:2008 Rule 8-4-2 The identifiers used for the

parameters in a re-declaration
of a function shall be identical
to those in the declaration

MISRA C++:2008 Rule
8-4-2

MISRA C++:2008 Rule 8-4-3 All exit paths from a function
with non- void return type shall
have an explicit return
statement with an expression

MISRA C++:2008 Rule
8-4-3

MISRA C++:2008 Rule 8-4-4 A function identifier shall either
be used to call the function or it
shall be preceded by &

MISRA C++:2008 Rule
8-4-4

MISRA C++:2008 Rule 8-5-1 All variables shall have a
defined value before they are
used

MISRA C++:2008 Rule
8-5-1

MISRA C++:2008 Rule 8-5-2 Braces shall be used to indicate
and match the structure in the
non- zero initialization of arrays
and structures

MISRA C++:2008 Rule
8-5-2

MISRA C++:2008 Rule 8-5-3 In an enumerator list, the =
construct shall not be used to
explicitly initialize members
other than the first, unless all
items are explicitly initialized

MISRA C++:2008 Rule
8-5-3

MISRA C++:2008 Rule 9-3-1 const member functions shall
not return non-const pointers or
references to class-data

MISRA C++:2008 Rule
9-3-1

MISRA C++:2008 Rule 9-3-2 Member functions shall not
return non-const handles to
class-data

MISRA C++:2008 Rule
9-3-2

MISRA C++:2008 Rule 9-3-3 If a member function can be
made static then it shall be
made static, otherwise if it can
be made const then it shall be
made const

MISRA C++:2008 Rule
9-3-3

MISRA C++:2008 Rule 9-5-1 Unions shall not be used MISRA C++:2008 Rule
9-5-1

MISRA C++:2008 Rule 9-6-2 Bit-fields shall be either bool
type or an explicitly unsigned or
signed integral type

MISRA C++:2008 Rule
9-6-2

MISRA C++:2008 Rule 9-6-3 Bit-fields shall not have enum
type

MISRA C++:2008 Rule
9-6-3

MISRA C++:2008 Rule 9-6-4 Named bit-fields with signed
integer type shall have a length
of more than one bit

MISRA C++:2008 Rule
9-6-4

17 Polyspace Coverage of Coding Standards

17-98

Unsupported Rules
Polyspace does not supports these Required rules:

Rule Description
5-17-1 The semantic equivalence between a binary

operator and its assignment operator form shall
be preserved.

14-7-1 All class templates, function templates, class
template member functions and class template
static members shall be instantiated at least
once.

14-7-2 For any given template specialization, an explicit
instantiation of the template with the template-
arguments used in the specialization shall not
render the program ill-formed.

See Also
Check MISRA C++:2008 (-misra-cpp)

More About
• “Check for and Review Coding Standard Violations” on page 16-2
• “Coding Standards”
• “Required AUTOSAR C++14 Coding Rules Supported by Polyspace Bug Finder” on page 17-125
• “Statically Enforceable AUTOSAR C++14 Rules Supported by Polyspace Bug Finder” on page

17-156
• “Checkers Deactivated in Polyspace as You Code Analysis” on page 11-78

 Required MISRA C++:2008 Coding Rules Supported by Polyspace Bug Finder

17-99

JSF AV C++ Coding Rules

Supported JSF C++ Coding Rules
Code Size and Complexity

N. JSF++ Definition Polyspace Implementation
1 Any one function (or method) will contain no more

than 200 logical source lines of code (L-SLOCs).
Message in report file:

<function name> has <num> logical source lines
of code.

3 All functions shall have a cyclomatic complexity
number of 20 or less.

Message in report file:

<function name> has cyclomatic complexity
number equal to <num>.

Environment

N. JSF++ Definition Polyspace Implementation
8 All code shall conform to ISO/IEC 14882:2002(E)

standard C++.
Reports the compilation error message

9 Only those characters specified in the C++ basic
source character set will be used.

11 Trigraphs will not be used.
12 The following digraphs will not be used: <%, %>,

<:, :>, %:, %:%:.
Message in report file:

The following digraph will not be used:
<digraph>.

Reports the digraph. If the rule level is set to
warning, the digraph will be allowed even if it is
not supported in -compiler iso.

13 Multi-byte characters and wide string literals will
not be used.

Report L'c', L"string", and use of wchar_t.

14 Literal suffixes shall use uppercase rather than
lowercase letters.

15 Provision shall be made for run-time checking
(defensive programming).

Done with checks in the software.

Libraries

N. JSF++ Definition Polyspace Implementation
17 The error indicator errno shall not be used. errno should not be used as a macro or a global

with external "C" linkage.
18 The macro offsetof, in library <stddef.h>,

shall not be used.
offsetof should not be used as a macro or a
global with external "C" linkage.

17 Polyspace Coverage of Coding Standards

17-100

N. JSF++ Definition Polyspace Implementation
19 <locale.h> and the setlocale function shall

not be used.
setlocale and localeconv should not be used
as a macro or a global with external "C" linkage.

20 The setjmp macro and the longjmp function
shall not be used.

setjmp and longjmp should not be used as a
macro or a global with external "C" linkage.

21 The signal handling facilities of <signal.h>
shall not be used.

signal and raise should not be used as a macro
or a global with external "C" linkage.

22 The input/output library <stdio.h> shall not be
used.

all standard functions of <stdio.h> should not
be used as a macro or a global with external "C"
linkage.

23 The library functions atof, atoi and atol from
library <stdlib.h> shall not be used.

atof, atoi and atol should not be used as a
macro or a global with external "C" linkage.

24 The library functions abort, exit, getenv and
system from library <stdlib.h> shall not be
used.

abort, exit, getenv and system should not be
used as a macro or a global with external "C"
linkage.

25 The time handling functions of library <time.h>
shall not be used.

clock, difftime, mktime, asctime, ctime,
gmtime, localtime and strftime should not be
used as a macro or a global with external "C"
linkage.

Pre-Processing Directives

N. JSF++ Definition Polyspace Implementation
26 Only the following preprocessor directives shall

be used: #ifndef, #define, #endif,
#include.

27 #ifndef, #define and #endif will be used to
prevent multiple inclusions of the same header
file. Other techniques to prevent the multiple
inclusions of header files will not be used.

Detects the patterns #if !defined, #pragma
once, #ifdef, and missing #define.

28 The #ifndef and #endif preprocessor directives
will only be used as defined in AV Rule 27 to
prevent multiple inclusions of the same header
file.

Detects any use that does not comply with AV Rule
27. Assuming 35/27 is not violated, reports only
#ifndef.

29 The #define preprocessor directive shall not be
used to create inline macros. Inline functions shall
be used instead.

Rule is split into two parts: the definition of a
macro function (29.def) and the call of a
macrofunction (29.use).

Messages in report file:

• 29.1 : The #define preprocessor directive
shall not be used to create inline macros.

• 29.2 : Inline functions shall be used instead of
inline macros.

 JSF AV C++ Coding Rules

17-101

N. JSF++ Definition Polyspace Implementation
30 The #define preprocessor directive shall not be

used to define constant values. Instead, the const
qualifier shall be applied to variable declarations
to specify constant values.

Reports #define of simple constants.

31 The #define preprocessor directive will only be
used as part of the technique to prevent multiple
inclusions of the same header file.

Detects use of #define that are not used to guard
for multiple inclusion, assuming that rules 35 and
27 are not violated.

32 The #include preprocessor directive will only be
used to include header (*.h) files.

Header Files

N. JSF++ Definition Polyspace Implementation
33 The #include directive shall use the

<filename.h> notation to include header files.

35 A header file will contain a mechanism that
prevents multiple inclusions of itself.

39 Header files (*.h) will not contain non-const
variable definitions or function definitions.

Reports definitions of global variables / function in
header.

Style

N. JSF++ Definition Polyspace Implementation
40 Every implementation file shall include the header

files that uniquely define the inline functions,
types, and templates used.

Reports when type, template, or inline function is
defined in source file.

41 Source lines will be kept to a length of 120
characters or less.

Polyspace ignores the newline character (\n)
when counting the line length.

42 Each expression-statement will be on a separate
line.

Reports when two consecutive expression
statements are on the same line (unless the
statements are part of a macro definition).

43 Tabs should be avoided.
44 All indentations will be at least two spaces and be

consistent within the same source file.
Reports when a statement indentation is not at
least two spaces more than the statement
containing it. Does not report bad indentation
between opening braces following if/else, do/
while, for, and while statements. NB: in final
release it will accept any indentation

46 User-specified identifiers (internal and external)
will not rely on significance of more than 64
characters.

This checker is deactivated in a default Polyspace
as You Code analysis. See “Checkers Deactivated
in Polyspace as You Code Analysis” on page 11-78.

47 Identifiers will not begin with the underscore
character '_'.

17 Polyspace Coverage of Coding Standards

17-102

N. JSF++ Definition Polyspace Implementation
48 Identifiers will not differ by:

• Only a mixture of case
• The presence/absence of the underscore

character
• The interchange of the letter 'O'; with the

number '0' or the letter 'D'
• The interchange of the letter 'I'; with the

number '1' or the letter 'l'
• The interchange of the letter 'S' with the

number '5'
• The interchange of the letter 'Z' with the

number 2
• The interchange of the letter 'n' with the letter

'h'

Checked regardless of scope. Not checked
between macros and other identifiers.

Messages in report file:

• Identifier Idf1 (file1.cpp line l1
column c1) and Idf2 (file2.cpp line l2
column c2) only differ by the presence/
absence of the underscore character.

• Identifier Idf1 (file1.cpp line l1
column c1) and Idf2 (file2.cpp line l2
column c2) only differ by a mixture of case.

• Identifier Idf1 (file1.cpp line l1
column c1) and Idf2 (file2.cpp line l2
column c2) only differ by letter O, with the
number 0.

50 The first word of the name of a class, structure,
namespace, enumeration, or type created with
typedef will begin with an uppercase letter. All
others letters will be lowercase.

Messages in report file:

• The first word of the name of a class will begin
with an uppercase letter.

• The first word of the namespace of a class will
begin with an uppercase letter.

51 All letters contained in function and variables
names will be composed entirely of lowercase
letters.

Messages in report file:

• All letters contained in variable names will be
composed entirely of lowercase letters.

• All letters contained in function names will be
composed entirely of lowercase letters.

52 Identifiers for constant and enumerator values
shall be lowercase.

Messages in report file:

• Identifier for enumerator value shall be
lowercase.

• Identifier for template constant parameter
shall be lowercase.

53 Header files will always have file name extension
of ".h".

.H is allowed if you set the option -dos.

53.1 The following character sequences shall not
appear in header file names: ', \, /*, //, or ".

54 Implementation files will always have a file name
extension of ".cpp".

Not case sensitive if you set the option -dos.

57 The public, protected, and private sections of a
class will be declared in that order.

 JSF AV C++ Coding Rules

17-103

N. JSF++ Definition Polyspace Implementation
58 When declaring and defining functions with more

than two parameters, the leading parenthesis and
the first argument will be written on the same line
as the function name. Each additional argument
will be written on a separate line (with the closing
parenthesis directly after the last argument).

Detects that two parameters are not on the same
line, The first parameter should be on the same
line as function name. Does not check for the
closing parenthesis.

59 The statements forming the body of an if, else if,
else, while, do ... while or for statement shall
always be enclosed in braces, even if the braces
form an empty block.

Messages in report file:

• The statements forming the body of an if
statement shall always be enclosed in braces.

• The statements forming the body of an else
statement shall always be enclosed in braces.

• The statements forming the body of a while
statement shall always be enclosed in braces.

• The statements forming the body of a do ...
while statement shall always be enclosed in
braces.

• The statements forming the body of a for
statement shall always be enclosed in braces.

60 Braces ("{}") which enclose a block will be placed
in the same column, on separate lines directly
before and after the block.

Detects that statement-block braces should be in
the same columns.

61 Braces ("{}") which enclose a block will have
nothing else on the line except comments.

62 The dereference operator ‘*’ and the address-of
operator ‘&’ will be directly connected with the
type-specifier.

Reports when there is a space between type and
"*" "&" for variables, parameters and fields
declaration.

63 Spaces will not be used around ‘.’ or ‘->’, nor
between unary operators and operands.

Reports when the following characters are not
directly connected to a white space:

• .
• ->
• !
• ~
• -
• ++
• —

Note that a violation will be reported for “.” used
in float/double definition.

17 Polyspace Coverage of Coding Standards

17-104

Classes

N. JSF++ Definition Polyspace Implementation
67 Public and protected data should only be used in

structs - not classes.

68 Unneeded implicitly generated member functions
shall be explicitly disallowed.

Reports when default constructor, assignment
operator, copy constructor or destructor is not
declared.

71.1 A class’s virtual functions shall not be invoked
from its destructor or any of its constructors.

Reports when a constructor or destructor directly
calls a virtual function.

74 Initialization of nonstatic class members will be
performed through the member initialization list
rather than through assignment in the body of a
constructor.

All data should be initialized in the initialization
list except for array. Does not report that an
assignment exists in ctor body.

Message in report file:

Initialization of nonstatic class members
"<field>" will be performed through the member
initialization list.

75 Members of the initialization list shall be listed in
the order in which they are declared in the class.

76 A copy constructor and an assignment operator
shall be declared for classes that contain pointers
to data items or nontrivial destructors.

Messages in report file:

• no copy constructor and no copy
assign

• no copy constructor
• no copy assign

77.1 The definition of a member function shall not
contain default arguments that produce a
signature identical to that of the implicitly-
declared copy constructor for the corresponding
class/structure.

Does not report when an explicit copy constructor
exists.

78 All base classes with a virtual function shall
define a virtual destructor.

79 All resources acquired by a class shall be released
by the class’s destructor.

Reports when the number of “new” called in a
constructor is greater than the number of “delete”
called in its destructor.

Note A violation is raised even if “new” is done in
a “if/else”.

 JSF AV C++ Coding Rules

17-105

N. JSF++ Definition Polyspace Implementation
81 The assignment operator shall handle self-

assignment correctly
Reports when copy assignment body does not
begin with “if (this != arg)”

A violation is not raised if an empty else
statement follows the if, or the body contains
only a return statement.

A violation is raised when the if statement is
followed by a statement other than the return
statement.

82 An assignment operator shall return a reference
to *this.

The following operators should return *this on
method, and *first_arg on plain function:

• operator=
• operator+=
• operator-=
• operator*=
• operator >>=
• operator <<=
• operator /=
• operator %=
• operator |=
• operator &=
• operator ^=
• Prefix operator++
• Prefix operator--

Does not report when no return exists.

No special message if type does not match.

Messages in report file:

• An assignment operator shall return a
reference to *this.

• An assignment operator shall return a
reference to its first arg.

83 An assignment operator shall assign all data
members and bases that affect the class invariant
(a data element representing a cache, for
example, would not need to be copied).

Reports when a copy assignment does not assign
all data members. In a derived class, it also
reports when a copy assignment does not call
inherited copy assignments.

17 Polyspace Coverage of Coding Standards

17-106

N. JSF++ Definition Polyspace Implementation
88 Multiple inheritance shall only be allowed in the

following restricted form: n interfaces plus m
private implementations, plus at most one
protected implementation.

Messages in report file:

• Multiple inheritance on public implementation
shall not be allowed: <public_base_class>
is not an interface.

• Multiple inheritance on protected
implementation shall not be allowed :
<protected_base_class_1>.

• <protected_base_class_2> are not
interfaces.

88.1 A stateful virtual base shall be explicitly declared
in each derived class that accesses it.

89 A base class shall not be both virtual and
nonvirtual in the same hierarchy.

94 An inherited nonvirtual function shall not be
redefined in a derived class.

Does not report for destructor.

Message in report file:

Inherited nonvirtual function %s shall not be
redefined in a derived class.

95 An inherited default parameter shall never be
redefined.

96 Arrays shall not be treated polymorphically. Reports pointer arithmetic and array like access
on expressions whose pointed type is used as a
base class.

97 Arrays shall not be used in interface. Only to prevent array-to-pointer-decay. Not
checked on private methods

97.1 Neither operand of an equality operator (== or !=)
shall be a pointer to a virtual member function.

Reports == and != on pointer to member function
of polymorphic classes (cannot determine
statically if it is virtual or not), except when one
argument is the null constant.

Namespaces

N. JSF++ Definition Polyspace Implementation
98 Every nonlocal name, except main(), should be

placed in some namespace.

99 Namespaces will not be nested more than two
levels deep.

Templates

N. JSF++ Definition Polyspace Implementation
104 A template specialization shall be declared before

its use.
Reports the actual compilation error message.

 JSF AV C++ Coding Rules

17-107

Functions

N. JSF++ Definition Polyspace Implementation
107 Functions shall always be declared at file scope.
108 Functions with variable numbers of arguments

shall not be used.

109 A function definition should not be placed in a
class specification unless the function is intended
to be inlined.

Reports when "inline" is not in the definition of a
member function inside the class definition.

110 Functions with more than 7 arguments will not
be used.

111 A function shall not return a pointer or reference
to a non-static local object.

Simple cases without alias effect detected.

113 Functions will have a single exit point. Reports first return, or once per function.
114 All exit points of value-returning functions shall

be through return statements.

116 Small, concrete-type arguments (two or three
words in size) should be passed by value if
changes made to formal parameters should not be
reflected in the calling function.

Report constant parameters references with
sizeof <= 2 * sizeof(int). Does not report
for copy-constructor.

117 Arguments should be passed by reference if
NULL values are not possible:

• 117.1: An object should be passed as const
T& if the function should not change the value
of the object.

• 117.2: An object should be passed as T& if the
function may change the value of the object.

The checker flags a parameter passed by pointer if
the parameter is not compared against NULL or
nullptr in the function body. The absence of a
check for null indicates that the parameter cannot
be null and therefore can be passed by reference.

The checker does not raise a violation:

• If a parameter is passed using a smart pointer.

Only raw pointers are considered.
• If the pointer parameter is not dereferenced

within the function.
119 Functions shall not call themselves, either

directly or indirectly (i.e. recursion shall not be
allowed).

The checker reports each function that calls itself,
directly or indirectly. Even if several functions are
involved in one recursion cycle, each function is
individually reported.

You can calculate the total number of recursion
cycles using the code complexity metric Number
of Recursions. Note that unlike the checker,
the metric also considers implicit calls, for
instance, to compiler-generated constructors
during object creation.

121 Only functions with 1 or 2 statements should be
considered candidates for inline functions.

Reports inline functions with more than 2
statements.

17 Polyspace Coverage of Coding Standards

17-108

N. JSF++ Definition Polyspace Implementation
122 Trivial accessor and mutator functions should be

inlined.
The checker uses the following criteria to
determine if a method is trivial:

• An accessor method is trivial if it has no
parameters and contains one return
statement that returns a non-static data
member or a reference to a non-static data
member.

The return type of the method must exactly
match or be a reference to the type of the data
member.

• A mutator method is trivial if it has a void
return type, one parameter and contains one
assignment statement that assigns the
parameter to a non-static data member.

The parameter type must exactly match or be a
reference to the type of the data member.

The checker reports trivial accessor and mutator
methods defined outside their classes without the
inline keyword.

The checker does not flag template methods or
virtual methods.

Comments

N. JSF++ Definition Polyspace Implementation
126 Only valid C++ style comments (//) shall be

used.

 JSF AV C++ Coding Rules

17-109

N. JSF++ Definition Polyspace Implementation
127 Code that is not used (commented out) shall be

deleted.
The checker uses internal heuristics to detect
commented out code. For instance, characters
such as #, ;, { or } indicate comments that might
potentially contain code. These comments are
then evaluated against other metrics to determine
the likelihood of code masquerading as comment.
For instance, several successive words without a
symbol in between reduces this likelihood.

The checker does not flag the following comments
even if they contain code:

• Doxygen comments beginning with /**, /
*!, /// or //!.

• Comments that repeat the same symbol several
times, for instance, the symbol = here:

// ================================
// A comment
// ================================*/

• Comments on the first line of a file.
• Comments that mix the C style (/* */) and C

++ style (//).

The checker considers that these comments are
meant for documentation purposes or entered
deliberately with some forethought.

133 Every source file will be documented with an
introductory comment that provides information
on the file name, its contents, and any program-
required information (e.g. legal statements,
copyright information, etc).

Reports when a file does not begin with two
comment lines.

Note: This rule cannot be annotated in the source
code.

Declarations and Definitions

N. JSF++ Definition Polyspace Implementation
135 Identifiers in an inner scope shall not use the

same name as an identifier in an outer scope, and
therefore hide that identifier.

17 Polyspace Coverage of Coding Standards

17-110

N. JSF++ Definition Polyspace Implementation
136 Declarations should be at the smallest feasible

scope.
Reports when:

• A global variable is used in only one function.
• A local variable is not used in a statement

(expr, return, init …) of the same level of
its declaration (in the same block) or is not
used in two sub-statements of its declaration.

Note

• Non-used variables are reported.
• Initializations at definition are ignored (not

considered an access)

137 All declarations at file scope should be static
where possible.

Starting in R2021a, this checker is raised on
declarations of nonstatic objects that you use in
only one file. The checker is raised even if you
analyze a singe file. The checker is not raised on
the declarations of objects that remain unused,
such as:

• Noninstantiated templates
• Uncalled static or extern functions
• Uncalled and undefined local functions
• Unused types and variables

This checker is deactivated in a default Polyspace
as You Code analysis. See “Checkers Deactivated
in Polyspace as You Code Analysis” on page 11-
78.

138 Identifiers shall not simultaneously have both
internal and external linkage in the same
translation unit.

139 External objects will not be declared in more than
one file.

Reports all duplicate declarations inside a
translation unit. Reports when the declaration
localization is not the same in all translation
units.

140 The register storage class specifier shall not be
used.

141 A class, structure, or enumeration will not be
declared in the definition of its type.

 JSF AV C++ Coding Rules

17-111

Initialization

N. JSF++ Definition Polyspace Implementation
142 All variables shall be initialized before use. Polyspace reports a violation of this rule if your

code contains these issues:

• Non-initialized variable
• Member not initialized in

constructor
• Non-initialized pointer

144 Braces shall be used to indicate and match the
structure in the non-zero initialization of arrays
and structures.

This covers partial initialization.

145 In an enumerator list, the '=' construct shall not
be used to explicitly initialize members other than
the first, unless all items are explicitly initialized.

Generates one report for an enumerator list.

Types

N. JSF++ Definition Polyspace Implementation
147 The underlying bit representations of floating

point numbers shall not be used in any way by
the programmer.

Reports on casts with float pointers (except with
void*).

148 Enumeration types shall be used instead of
integer types (and constants) to select from a
limited series of choices.

Reports when non enumeration types are used in
switches.

Constants

N. JSF++ Definition Polyspace Implementation
149 Octal constants (other than zero) shall not be

used.

150 Hexadecimal constants will be represented using
all uppercase letters.

151 Numeric values in code will not be used; symbolic
values will be used instead.

Reports direct numeric constants (except integer/
float value 1, 0) in expressions, non -const
initializations. and switch cases. char constants
are allowed. Does not report on templates non-
type parameter.

151.1 A string literal shall not be modified. The rule checker flags assignment of string
literals to:

• Pointers other than pointers to const objects.
• Arrays that are not const-qualified.

17 Polyspace Coverage of Coding Standards

17-112

Variables

N. JSF++ Definition Polyspace Implementation
152 Multiple variable declarations shall not be

allowed on the same line.
Reports when two consecutive declaration
statements are on the same line (unless the
statements are part of a macro definition).

Unions and Bit Fields

N. JSF++ Definition Polyspace Implementation
153 Unions shall not be used.
154 Bit-fields shall have explicitly unsigned integral or

enumeration types only.

156 All the members of a structure (or class) shall be
named and shall only be accessed via their names.

Reports unnamed bit-fields (unnamed fields are
not allowed).

Operators

N. JSF++ Definition Polyspace Implementation
157 The right hand operand of a && or || operator

shall not contain side effects.
Assumes rule 159 is not violated.

Messages in report file:

• The right hand operand of a && operator shall
not contain side effects.

• The right hand operand of a || operator shall
not contain side effects.

158 The operands of a logical && or || shall be
parenthesized if the operands contain binary
operators.

Messages in report file:

• The operands of a logical && shall be
parenthesized if the operands contain binary
operators.

• The operands of a logical || shall be
parenthesized if the operands contain binary
operators.

Exception for: X || Y || Z , Z&&Y &&Z
159 Operators ||, &&, and unary & shall not be

overloaded.
Messages in report file:

• Unary operator & shall not be overloaded.
• Operator || shall not be overloaded.
• Operator && shall not be overloaded.

160 An assignment expression shall be used only as
the expression in an expression statement.

Only simple assignment, not +=, ++, etc.

162 Signed and unsigned values shall not be mixed in
arithmetic or comparison operations.

163 Unsigned arithmetic shall not be used.

 JSF AV C++ Coding Rules

17-113

N. JSF++ Definition Polyspace Implementation
164 The right hand operand of a shift operator shall

lie between zero and one less than the width in
bits of the left-hand operand (inclusive).

164.1 The left-hand operand of a right-shift operator
shall not have a negative value.

Detects constant case +. Found by the software for
dynamic cases.

165 The unary minus operator shall not be applied to
an unsigned expression.

166 The sizeof operator will not be used on
expressions that contain side effects.

168 The comma operator shall not be used.

Pointers and References

N. JSF++ Definition Polyspace Implementation
169 Pointers to pointers should be avoided when

possible.
Reports second-level pointers, except for
arguments of main.

170 More than 2 levels of pointer indirection shall not
be used.

Only reports on variables/parameters.

171 Relational operators shall not be applied to
pointer types except where both operands are of
the same type and point to:

• the same object,
• the same function,
• members of the same object, or
• elements of the same array (including one past

the end of the same array).

Reports when relational operator are used on
pointer types (casts ignored).

173 The address of an object with automatic storage
shall not be assigned to an object which persists
after the object has ceased to exist.

174 The null pointer shall not be de-referenced. Done with checks in software.
175 A pointer shall not be compared to NULL or be

assigned NULL; use plain 0 instead.
Reports usage of NULL macro in pointer contexts.

176 A typedef will be used to simplify program
syntax when declaring function pointers.

Reports non-typedef function pointers, or
pointers to member functions for types of
variables, fields, parameters. Returns type of
function, cast, and exception specification.

17 Polyspace Coverage of Coding Standards

17-114

Type Conversions

N. JSF++ Definition Polyspace Implementation
177 User-defined conversion functions should be

avoided.
Reports user defined conversion function, non-
explicit constructor with one parameter or default
value for others (even undefined ones).

Does not report copy-constructor.

Additional message for constructor case:

This constructor should be flagged as "explicit".
178 Down casting (casting from base to derived class)

shall only be allowed through one of the following
mechanism:

• Virtual functions that act like dynamic casts
(most likely useful in relatively simple cases).

• Use of the visitor (or similar) pattern (most
likely useful in complicated cases).

Reports explicit down casting, dynamic_cast
included. (Visitor patter does not have a special
case.)

179 A pointer to a virtual base class shall not be
converted to a pointer to a derived class.

Reports this specific down cast. Allows
dynamic_cast.

180 Implicit conversions that may result in a loss of
information shall not be used.

Reports the following implicit casts :

integer => smaller integer unsigned =>
smaller or eq signed signed => smaller
or eq un-signed integer => float float
=> integer

Does not report for cast to bool reports for
implicit cast on constant done with the option -
scalar-overflows-checks signed-and-
unsigned

181 Redundant explicit casts will not be used. Reports useless cast: cast T to T. Casts to
equivalent typedefs are also reported.

182 Type casting from any type to or from pointers
shall not be used.

Does not report when Rule 181 applies.

184 Floating point numbers shall not be converted to
integers unless such a conversion is a specified
algorithmic requirement or is necessary for a
hardware interface.

Reports float->int conversions. Does not
report implicit ones.

185 C++ style casts (const_cast,
reinterpret_cast, and static_cast) shall be
used instead of the traditional C-style casts.

Flow Control Standards

N. JSF++ Definition Polyspace Implementation
186 There shall be no unreachable code. Done with gray checks in the software.

 JSF AV C++ Coding Rules

17-115

N. JSF++ Definition Polyspace Implementation
187 All non-null statements shall potentially have a

side-effect.

188 Labels will not be used, except in switch
statements.

189 The goto statement shall not be used.
190 The continue statement shall not be used.
191 The break statement shall not be used (except to

terminate the cases of a switch statement).

192 All if, else if constructs will contain either a
final else clause or a comment indicating why a
final else clause is not necessary.

else if should contain an else clause.

193 Every non-empty case clause in a switch
statement shall be terminated with a break
statement.

194 All switch statements that do not intend to test
for every enumeration value shall contain a final
default clause.

Reports only for missing default.

195 A switch expression will not represent a Boolean
value.

196 Every switch statement will have at least two
cases and a potential default.

197 Floating point variables shall not be used as loop
counters.

Assumes 1 loop parameter.

198 The initialization expression in a for loop will
perform no actions other than to initialize the
value of a single for loop parameter.

Reports if loop parameter cannot be determined.
Assumes Rule 200 is not violated. The loop
variable parameter is assumed to be a variable.

199 The increment expression in a for loop will
perform no action other than to change a single
loop parameter to the next value for the loop.

Assumes 1 loop parameter (Rule 198), with non
class type. Rule 200 must not be violated for this
rule to be reported.

200 Null initialize or increment expressions in for
loops will not be used; a while loop will be used
instead.

201 Numeric variables being used within a for loop for
iteration counting shall not be modified in the
body of the loop.

Assumes 1 loop parameter (AV rule 198), and no
alias writes.

Expressions

N. JSF++ Definition Polyspace Implementation
202 Floating point variables shall not be tested for

exact equality or inequality.
Reports only direct equality/inequality. Check
done for all expressions.

203 Evaluation of expressions shall not lead to
overflow/underflow.

Done with overflow checks in the software.

17 Polyspace Coverage of Coding Standards

17-116

N. JSF++ Definition Polyspace Implementation
204 A single operation with side-effects shall only be

used in the following contexts:

• by itself
• the right-hand side of an assignment
• a condition
• the only argument expression with a side-effect

in a function call
• condition of a loop
• switch condition
• single part of a chained operation

Reports when:

• A side effect is found in a return statement
• A side effect exists on a single value, and only

one operand of the function call has a side
effect.

204.1 The value of an expression shall be the same
under any order of evaluation that the standard
permits.

Reports when:

• A variable is written and reused within the
same expression.

• A volatile variable is accessed more than once.
205 The volatile keyword shall not be used unless

directly interfacing with hardware.
Reports if volatile keyword is used.

Memory Allocation

N. JSF++ Definition Polyspace Implementation
206 Allocation/deallocation from/to the free store

(heap) shall not occur after initialization.
Reports calls to C library functions: malloc /
calloc / realloc / free and all new/delete
operators in functions or methods.

Fault Handling

N. JSF++ Definition Polyspace Implementation
208 C++ exceptions shall not be used. Reports try, catch, throw spec, and throw.

Portable Code

N. JSF++ Definition Polyspace Implementation
209 The basic types of int, short, long, float and

double shall not be used, but specific-length
equivalents should be typedef'd accordingly for
each compiler, and these type names used in the
code.

Only allows use of basic types through direct
typedefs.

213 No dependence shall be placed on C++’s operator
precedence rules, below arithmetic operators, in
expressions.

Reports when a binary operation has one operand
that is not parenthesized and is an operation with
inferior precedence level.

Reports bitwise and shifts operators that are used
without parenthesis and binary operation
arguments.

 JSF AV C++ Coding Rules

17-117

N. JSF++ Definition Polyspace Implementation
215 Pointer arithmetic will not be used. Reports:p + Ip - Ip++p--p+=p-=

Allows p[i].

Unsupported JSF++ Rules
• “Code Size and Complexity” on page 17-118
• “Rules” on page 17-118
• “Environment” on page 17-119
• “Libraries” on page 17-119
• “Header Files” on page 17-119
• “Style” on page 17-119
• “Classes” on page 17-120
• “Namespaces” on page 17-121
• “Templates” on page 17-121
• “Functions” on page 17-121
• “Comments” on page 17-121
• “Initialization” on page 17-122
• “Types” on page 17-122
• “Unions and Bit Fields” on page 17-122
• “Operators” on page 17-122
• “Type Conversions” on page 17-122
• “Expressions” on page 17-123
• “Memory Allocation” on page 17-123
• “Portable Code” on page 17-123
• “Efficiency Considerations” on page 17-123
• “Miscellaneous” on page 17-123
• “Testing” on page 17-124

Code Size and Complexity

N. JSF++ Definition
2 There shall not be any self-modifying code.

Rules

N. JSF++ Definition
4 To break a “should” rule, the following approval must be received by the developer:

• approval from the software engineering lead (obtained by the unit approval in the developmental
CM tool)

17 Polyspace Coverage of Coding Standards

17-118

N. JSF++ Definition
5 To break a “will” or a “shall” rule, the following approvals must be received by the developer:

• approval from the software engineering lead (obtained by the unit approval in the developmental
CM tool)

• approval from the software product manager (obtained by the unit approval in the developmental
CM tool)

6 Each deviation from a “shall” rule shall be documented in the file that contains the deviation.
Deviations from this rule shall not be allowed, AV Rule 5 notwithstanding.

7 Approval will not be required for a deviation from a “shall” or “will” rule that complies with an
exception specified by that rule.

Environment

N. JSF++ Definition
10 Values of character types will be restricted to a defined and documented subset of ISO 10646 1.

Libraries

N. JSF++ Definition
16 Only DO-178B level A [15] certifiable or SEAL 1 C/C++ libraries shall be used with safety-critical (i.e.

SEAL 1) code.

Header Files

N. JSF++ Definition
34 Header files should contain logically related declarations only.
36 Compilation dependencies should be minimized when possible.
37 Header (include) files should include only those header files that are required for them to successfully

compile. Files that are only used by the associated .cpp file should be placed in the .cpp file — not
the .h file.

38 Declarations of classes that are only accessed via pointers (*) or references (&) should be supplied by
forward headers that contain only forward declarations.

Style

N. JSF++ Definition
45 All words in an identifier will be separated by the ‘_’ character.
49 All acronyms in an identifier will be composed of uppercase letters.
55 The name of a header file should reflect the logical entity for which it provides declarations.
56 The name of an implementation file should reflect the logical entity for which it provides definitions

and have a “.cpp” extension (this name will normally be identical to the header file that provides the
corresponding declarations.)

At times, more than one .cpp file for a given logical entity will be required. In these cases, a suffix
should be appended to reflect a logical differentiation.

 JSF AV C++ Coding Rules

17-119

Classes

N. JSF++ Definition
64 A class interface should be complete and minimal.
65 A structure should be used to model an entity that does not require an invariant.
66 A class should be used to model an entity that maintains an invariant.
69 A member function that does not affect the state of an object (its instance variables) will be declared

const. Member functions should be const by default. Only when there is a clear, explicit reason should
the const modifier on member functions be omitted.

70 A class will have friends only when a function or object requires access to the private elements of the
class, but is unable to be a member of the class for logical or efficiency reasons.

70.1 An object shall not be improperly used before its lifetime begins or after its lifetime ends.
71 Calls to an externally visible operation of an object, other than its constructors, shall not be allowed

until the object has been fully initialized.
72 The invariant for a class should be:

• A part of the postcondition of every class constructor,
• A part of the precondition of the class destructor (if any),
• A part of the precondition and postcondition of every other publicly accessible operation.

73 Unnecessary default constructors shall not be defined.
77 A copy constructor shall copy all data members and bases that affect the class invariant (a data

element representing a cache, for example, would not need to be copied).
80 The default copy and assignment operators will be used for classes when those operators offer

reasonable semantics.
84 Operator overloading will be used sparingly and in a conventional manner.
85 When two operators are opposites (such as == and !=), both will be defined and one will be defined in

terms of the other.
86 Concrete types should be used to represent simple independent concepts.
87 Hierarchies should be based on abstract classes.
90 Heavily used interfaces should be minimal, general and abstract.
91 Public inheritance will be used to implement “is-a” relationships.
92 A subtype (publicly derived classes) will conform to the following guidelines with respect to all classes

involved in the polymorphic assignment of different subclass instances to the same variable or
parameter during the execution of the system:

• Preconditions of derived methods must be at least as weak as the preconditions of the methods
they override.

• Postconditions of derived methods must be at least as strong as the postconditions of the methods
they override.

In other words, subclass methods must expect less and deliver more than the base class methods they
override. This rule implies that subtypes will conform to the Liskov Substitution Principle.

93 “has-a” or “is-implemented-in-terms-of” relationships will be modeled through membership or non-
public inheritance.

17 Polyspace Coverage of Coding Standards

17-120

Namespaces

N. JSF++ Definition
100 Elements from a namespace should be selected as follows:

• using declaration or explicit qualification for few (approximately five) names,
• using directive for many names.

Templates

N. JSF++ Definition
101 Templates shall be reviewed as follows:

1 with respect to the template in isolation considering assumptions or requirements placed on its
arguments.

2 with respect to all functions instantiated by actual arguments.
102 Template tests shall be created to cover all actual template instantiations.
103 Constraint checks should be applied to template arguments.
105 A template definition’s dependence on its instantiation contexts should be minimized.
106 Specializations for pointer types should be made where appropriate.

Functions

N. JSF++ Definition
112 Function return values should not obscure resource ownership.
115 If a function returns error information, then that error information will be tested.
118 Arguments should be passed via pointers if NULL values are possible:

• 118.1 – An object should be passed as const T* if its value should not be modified.
• 118.2 – An object should be passed as T* if its value may be modified.

120 Overloaded operations or methods should form families that use the same semantics, share the same
name, have the same purpose, and that are differentiated by formal parameters.

123 The number of accessor and mutator functions should be minimized.
124 Trivial forwarding functions should be inlined.
125 Unnecessary temporary objects should be avoided.

Comments

N. JSF++ Definition
128 Comments that document actions or sources (e.g. tables, figures, paragraphs, etc.) outside of the file

being documented will not be allowed.
129 Comments in header files should describe the externally visible behavior of the functions or classes

being documented.
130 The purpose of every line of executable code should be explained by a comment, although one

comment may describe more than one line of code.

 JSF AV C++ Coding Rules

17-121

N. JSF++ Definition
131 One should avoid stating in comments what is better stated in code (i.e. do not simply repeat what is

in the code).
132 Each variable declaration, typedef, enumeration value, and structure member will be commented.
134 Assumptions (limitations) made by functions should be documented in the function’s preamble.

Initialization

N. JSF++ Definition
143 Variables will not be introduced until they can be initialized with meaningful values. (See also AV Rule

136, AV Rule 142, and AV Rule 73 concerning declaration scope, initialization before use, and default
constructors respectively.)

Types

N. JSF++ Definition
146 Floating point implementations shall comply with a defined floating point standard.

The standard that will be used is the ANSI/IEEE® Std 754 [1].

Unions and Bit Fields

N. JSF++ Definition
155 Bit-fields will not be used to pack data into a word for the sole purpose of saving space.

Operators

N. JSF++ Definition
167 The implementation of integer division in the chosen compiler shall be determined, documented and

taken into account.

Type Conversions

N. JSF++ Definition
183 Every possible measure should be taken to avoid type casting.

17 Polyspace Coverage of Coding Standards

17-122

Expressions

N. JSF++ Definition
204 A single operation with side-effects shall only be used in the following contexts:

1 by itself
2 the right-hand side of an assignment
3 a condition
4 the only argument expression with a side-effect in a function call
5 condition of a loop
6 switch condition
7 single part of a chained operation

Memory Allocation

N. JSF++ Definition
207 Unencapsulated global data will be avoided.

Portable Code

N. JSF++ Definition
210 Algorithms shall not make assumptions concerning how data is represented in memory (e.g. big

endian vs. little endian, base class subobject ordering in derived classes, nonstatic data member
ordering across access specifiers, etc.).

210.1 Algorithms shall not make assumptions concerning the order of allocation of nonstatic data members
separated by an access specifier.

211 Algorithms shall not assume that shorts, ints, longs, floats, doubles or long doubles begin at particular
addresses.

212 Underflow or overflow functioning shall not be depended on in any special way.
214 Assuming that non-local static objects, in separate translation units, are initialized in a special order

shall not be done.

Efficiency Considerations

N. JSF++ Definition
216 Programmers should not attempt to prematurely optimize code.

Miscellaneous

N. JSF++ Definition
217 Compile-time and link-time errors should be preferred over run-time errors.
218 Compiler warning levels will be set in compliance with project policies.

 JSF AV C++ Coding Rules

17-123

Testing

N. JSF++ Definition
219 All tests applied to a base class interface shall be applied to all derived class interfaces as well. If the

derived class poses stronger postconditions/invariants, then the new postconditions /invariants shall
be substituted in the derived class tests.

220 Structural coverage algorithms shall be applied against flattened classes.
221 Structural coverage of a class within an inheritance hierarchy containing virtual functions shall

include testing every possible resolution for each set of identical polymorphic references.

17 Polyspace Coverage of Coding Standards

17-124

Required AUTOSAR C++14 Coding Rules Supported by
Polyspace Bug Finder

The AUTOSAR C++14 standard classifies the rules that compliant C++ code must follow as
Required. Polyspace Bug Finder supports 337 out of 362 Required AUTOSAR C++14 coding rules.

Supported Rules
As of R2023a, Polyspace supports these Required rules.

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule A0-1-1 A project shall not contain

instances of non-volatile
variables being given values
that are not subsequently used

AUTOSAR C++14 Rule
A0-1-1

AUTOSAR C++14 Rule A0-1-2 The value returned by a function
having a non-void return type
that is not an overloaded
operator shall be used

AUTOSAR C++14 Rule
A0-1-2

AUTOSAR C++14 Rule A0-1-3 Every function defined in an
anonymous namespace, or static
function with internal linkage,
or private member function
shall be used

AUTOSAR C++14 Rule
A0-1-3

AUTOSAR C++14 Rule A0-1-4 There shall be no unused named
parameters in non-virtual
functions

AUTOSAR C++14 Rule
A0-1-4

AUTOSAR C++14 Rule A0-1-5 There shall be no unused named
parameters in the set of
parameters for a virtual function
and all the functions that
override it

AUTOSAR C++14 Rule
A0-1-5

AUTOSAR C++14 Rule A0-4-2 Type long double shall not be
used

AUTOSAR C++14 Rule
A0-4-2

AUTOSAR C++14 Rule A0-4-4 Range, domain and pole errors
shall be checked when using
math functions

AUTOSAR C++14 Rule
A0-4-4

AUTOSAR C++14 Rule A1-1-1 All code shall conform to
ISO/IEC 14882:2014 -
Programming Language C++
and shall not use deprecated
features

AUTOSAR C++14 Rule
A1-1-1

AUTOSAR C++14 Rule A10-1-1 Class shall not be derived from
more than one base class which
is not an interface class

AUTOSAR C++14 Rule
A10-1-1

 Required AUTOSAR C++14 Coding Rules Supported by Polyspace Bug Finder

17-125

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule A10-2-1 Non-virtual public or protected

member functions shall not be
redefined in derived classes

AUTOSAR C++14 Rule
A10-2-1

AUTOSAR C++14 Rule A10-3-1 Virtual function declaration
shall contain exactly one of the
three specifiers: (1) virtual, (2)
override, (3) final

AUTOSAR C++14 Rule
A10-3-1

AUTOSAR C++14 Rule A10-3-2 Each overriding virtual function
shall be declared with the
override or final specifier

AUTOSAR C++14 Rule
A10-3-2

AUTOSAR C++14 Rule A10-3-3 Virtual functions shall not be
introduced in a final class

AUTOSAR C++14 Rule
A10-3-3

AUTOSAR C++14 Rule A10-3-5 A user-defined assignment
operator shall not be virtual

AUTOSAR C++14 Rule
A10-3-5

AUTOSAR C++14 Rule A11-0-2 A type defined as struct shall:
(1) provide only public data
members, (2) not provide any
special member functions or
methods, (3) not be a base of
another struct or class, (4) not
inherit from another struct or
class

AUTOSAR C++14 Rule
A11-0-2

AUTOSAR C++14 Rule A11-3-1 Friend declarations shall not be
used

AUTOSAR C++14 Rule
A11-3-1

AUTOSAR C++14 Rule A12-0-1 If a class declares a copy or
move operation, or a destructor,
either via "=default", "=delete",
or via a user-provided
declaration, then all others of
these five special member
functions shall be declared as
well

AUTOSAR C++14 Rule
A12-0-1

AUTOSAR C++14 Rule A12-0-2 Bitwise operations and
operations that assume data
representation in memory shall
not be performed on objects

AUTOSAR C++14 Rule
A12-0-2

AUTOSAR C++14 Rule A12-1-1 Constructors shall explicitly
initialize all virtual base classes,
all direct non-virtual base
classes and all non-static data
members

AUTOSAR C++14 Rule
A12-1-1

AUTOSAR C++14 Rule A12-1-2 Both NSDMI and a non-static
member initializer in a
constructor shall not be used in
the same type

AUTOSAR C++14 Rule
A12-1-2

17 Polyspace Coverage of Coding Standards

17-126

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule A12-1-3 If all user-defined constructors

of a class initialize data
members with constant values
that are the same across all
constructors, then data
members shall be initialized
using NSDMI instead

AUTOSAR C++14 Rule
A12-1-3

AUTOSAR C++14 Rule A12-1-4 All constructors that are
callable with a single argument
of fundamental type shall be
declared explicit

AUTOSAR C++14 Rule
A12-1-4

AUTOSAR C++14 Rule A12-1-5 Common class initialization for
non-constant members shall be
done by a delegating
constructor

AUTOSAR C++14 Rule
A12-1-5

AUTOSAR C++14 Rule A12-1-6 Derived classes that do not need
further explicit initialization and
require all the constructors
from the base class shall use
inheriting constructors

AUTOSAR C++14 Rule
A12-1-6

AUTOSAR C++14 Rule A12-4-1 Destructor of a base class shall
be public virtual, public override
or protected non-virtual

AUTOSAR C++14 Rule
A12-4-1

AUTOSAR C++14 Rule A12-6-1 All class data members that are
initialized by the constructor
shall be initialized using
member initializers

AUTOSAR C++14 Rule
A12-6-1

AUTOSAR C++14 Rule A12-7-1 If the behavior of a user-defined
special member function is
identical to implicitly defined
special member function, then it
shall be defined "=default" or be
left undefined

AUTOSAR C++14 Rule
A12-7-1

AUTOSAR C++14 Rule A12-8-1 Move and copy constructors
shall move and respectively
copy base classes and data
members of a class, without any
side effects

AUTOSAR C++14 Rule
A12-8-1

AUTOSAR C++14 Rule A12-8-3 Moved-from object shall not be
read-accessed

AUTOSAR C++14 Rule
A12-8-3

AUTOSAR C++14 Rule A12-8-4 Move constructor shall not
initialize its class members and
base classes using copy
semantics

AUTOSAR C++14 Rule
A12-8-4

 Required AUTOSAR C++14 Coding Rules Supported by Polyspace Bug Finder

17-127

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule A12-8-5 A copy assignment and a move

assignment operators shall
handle self-assignment

AUTOSAR C++14 Rule
A12-8-5

AUTOSAR C++14 Rule A12-8-6 Copy and move constructors
and copy assignment and move
assignment operators shall be
declared protected or defined
"=delete" in base class

AUTOSAR C++14 Rule
A12-8-6

AUTOSAR C++14 Rule A13-1-2 User defined suffixes of the user
defined literal operators shall
start with underscore followed
by one or more letters

AUTOSAR C++14 Rule
A13-1-2

AUTOSAR C++14 Rule A13-1-3 User defined literals operators
shall only perform conversion of
passed parameters

AUTOSAR C++14 Rule
A13-1-3

AUTOSAR C++14 Rule A13-2-1 An assignment operator shall
return a reference to "this"

AUTOSAR C++14 Rule
A13-2-1

AUTOSAR C++14 Rule A13-2-2 A binary arithmetic operator
and a bitwise operator shall
return a "prvalue"

AUTOSAR C++14 Rule
A13-2-2

AUTOSAR C++14 Rule A13-2-3 A relational operator shall
return a boolean value

AUTOSAR C++14 Rule
A13-2-3

AUTOSAR C++14 Rule A13-3-1 A function that contains
"forwarding reference" as its
argument shall not be
overloaded

AUTOSAR C++14 Rule
A13-3-1

AUTOSAR C++14 Rule A13-5-1 If "operator[]" is to be
overloaded with a non-const
version, const version shall also
be implemented

AUTOSAR C++14 Rule
A13-5-1

AUTOSAR C++14 Rule A13-5-2 All user-defined conversion
operators shall be defined
explicit

AUTOSAR C++14 Rule
A13-5-2

AUTOSAR C++14 Rule A13-5-4 If two opposite operators are
defined, one shall be defined in
terms of the other

AUTOSAR C++14 Rule
A13-5-4

AUTOSAR C++14 Rule A13-5-5 Comparison operators shall be
non-member functions with
identical parameter types and
noexcept

AUTOSAR C++14 Rule
A13-5-5

AUTOSAR C++14 Rule A13-6-1 Digit sequences separators '
shall only be used as follows: (1)
for decimal, every 3 digits, (2)
for hexadecimal, every 2 digits,
(3) for binary, every 4 digits

AUTOSAR C++14 Rule
A13-6-1

17 Polyspace Coverage of Coding Standards

17-128

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule A14-5-1 A template constructor shall not

participate in overload
resolution for a single argument
of the enclosing class type

AUTOSAR C++14 Rule
A14-5-1

AUTOSAR C++14 Rule A14-7-1 A type used as a template
argument shall provide all
members that are used by the
template

AUTOSAR C++14 Rule
A14-7-1

AUTOSAR C++14 Rule A14-7-2 Template specialization shall be
declared in the same file (1) as
the primary template (2) as a
user-defined type, for which the
specialization is declared

AUTOSAR C++14 Rule
A14-7-2

AUTOSAR C++14 Rule A14-8-2 Explicit specializations of
function templates shall not be
used

AUTOSAR C++14 Rule
A14-8-2

AUTOSAR C++14 Rule A15-0-2 At least the basic guarantee for
exception safety shall be
provided for all operations. In
addition, each function may
offer either the strong
guarantee or the nothrow
guarantee

AUTOSAR C++14 Rule
A15-0-2

AUTOSAR C++14 Rule A15-0-3 Exception safety guarantee of a
called function shall be
considered

AUTOSAR C++14 Rule
A15-0-3

AUTOSAR C++14 Rule A15-0-7 Exception handling mechanism
shall guarantee a deterministic
worst-case time execution time

AUTOSAR C++14 Rule
A15-0-7

AUTOSAR C++14 Rule A15-1-2 An exception object shall not be
a pointer

AUTOSAR C++14 Rule
A15-1-2

AUTOSAR C++14 Rule A15-1-4 If a function exits with an
exception, then before a throw,
the function shall place all
objects/resources that the
function constructed in valid
states or it shall delete them.

AUTOSAR C++14 Rule
A15-1-4

AUTOSAR C++14 Rule A15-1-5 Exceptions shall not be thrown
across execution boundaries

AUTOSAR C++14 Rule
A15-1-5

AUTOSAR C++14 Rule A15-2-1 Constructors that are not
noexcept shall not be invoked
before program startup

AUTOSAR C++14 Rule
A15-2-1

 Required AUTOSAR C++14 Coding Rules Supported by Polyspace Bug Finder

17-129

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule A15-2-2 If a constructor is not noexcept

and the constructor cannot
finish object initialization, then
it shall deallocate the object's
resources and it shall throw an
exception

AUTOSAR C++14 Rule
A15-2-2

AUTOSAR C++14 Rule A15-3-3 Main function and a task main
function shall catch at least:
base class exceptions from all
third-party libraries used,
std::exception and all otherwise
unhandled exceptions

AUTOSAR C++14 Rule
A15-3-3

AUTOSAR C++14 Rule A15-3-4 Catch-all (ellipsis and
std::exception) handlers shall be
used only in (a) main, (b) task
main functions, (c) in functions
that are supposed to isolate
independent components and
(d) when calling third-party
code that uses exceptions not
according to AUTOSAR C++14
guidelines

AUTOSAR C++14 Rule
A15-3-4

AUTOSAR C++14 Rule A15-3-5 A class type exception shall be
caught by reference or const
reference

AUTOSAR C++14 Rule
A15-3-5

AUTOSAR C++14 Rule A15-4-1 Dynamic exception-specification
shall not be used

AUTOSAR C++14 Rule
A15-4-1

AUTOSAR C++14 Rule A15-4-2 If a function is declared to be
noexcept, noexcept(true) or
noexcept(<true condition>),
then it shall not exit with an
exception

AUTOSAR C++14 Rule
A15-4-2

AUTOSAR C++14 Rule A15-4-3 The noexcept specification of a
function shall either be identical
across all translation units, or
identical or more restrictive
between a virtual member
function and an overrider

AUTOSAR C++14 Rule
A15-4-3

AUTOSAR C++14 Rule A15-4-4 A declaration of non-throwing
function shall contain noexcept
specification

AUTOSAR C++14 Rule
A15-4-4

17 Polyspace Coverage of Coding Standards

17-130

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule A15-4-5 Checked exceptions that could

be thrown from a function shall
be specified together with the
function declaration and they
shall be identical in all function
declarations and for all its
overriders

AUTOSAR C++14 Rule
A15-4-5

AUTOSAR C++14 Rule A15-5-1 All user-provided class
destructors, deallocation
functions, move constructors,
move assignment operators and
swap functions shall not exit
with an exception. A noexcept
exception specification shall be
added to these functions as
appropriate

AUTOSAR C++14 Rule
A15-5-1

AUTOSAR C++14 Rule A15-5-2 Program shall not be abruptly
terminated. In particular, an
implicit or explicit invocation of
std::abort(), std::quick_exit(),
std::_Exit(), std::terminate()
shall not be done

AUTOSAR C++14 Rule
A15-5-2

AUTOSAR C++14 Rule A15-5-3 The std::terminate() function
shall not be called implicitly

AUTOSAR C++14 Rule
A15-5-3

AUTOSAR C++14 Rule A16-0-1 The preprocessor shall only be
used for unconditional and
conditional file inclusion and
include guards, and using
specific directives

AUTOSAR C++14 Rule
A16-0-1

AUTOSAR C++14 Rule A16-2-1 The ', ", /*, //, \ characters shall
not occur in a header file name
or in #include directive

AUTOSAR C++14 Rule
A16-2-1

AUTOSAR C++14 Rule A16-2-2 There shall be no unused
include directives

AUTOSAR C++14 Rule
A16-2-2

AUTOSAR C++14 Rule A16-2-3 An include directive shall be
added explicitly for every
symbol used in a file

AUTOSAR C++14 Rule
A16-2-3

AUTOSAR C++14 Rule A16-6-1 #error directive shall not be
used

AUTOSAR C++14 Rule
A16-6-1

AUTOSAR C++14 Rule A16-7-1 The #pragma directive shall not
be used

AUTOSAR C++14 Rule
A16-7-1

AUTOSAR C++14 Rule A17-0-1 Reserved identifiers, macros
and functions in the C++
standard library shall not be
defined, redefined or undefined

AUTOSAR C++14 Rule
A17-0-1

 Required AUTOSAR C++14 Coding Rules Supported by Polyspace Bug Finder

17-131

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule A17-1-1 Use of the C Standard Library

shall be encapsulated and
isolated

AUTOSAR C++14 Rule
A17-1-1

AUTOSAR C++14 Rule A17-6-1 Non-standard entities shall not
be added to standard
namespaces

AUTOSAR C++14 Rule
A17-6-1

AUTOSAR C++14 Rule A18-0-1 The C library facilities shall only
be accessed through C++
library headers

AUTOSAR C++14 Rule
A18-0-1

AUTOSAR C++14 Rule A18-0-2 The error state of a conversion
from string to a numeric value
shall be checked

AUTOSAR C++14 Rule
A18-0-2

AUTOSAR C++14 Rule A18-0-3 The library <clocale> (locale.h)
and the setlocale function shall
not be used

AUTOSAR C++14 Rule
A18-0-3

AUTOSAR C++14 Rule A18-1-1 C-style arrays shall not be used AUTOSAR C++14 Rule
A18-1-1

AUTOSAR C++14 Rule A18-1-2 The std::vector<bool>
specialization shall not be used

AUTOSAR C++14 Rule
A18-1-2

AUTOSAR C++14 Rule A18-1-3 The std::auto_ptr shall not be
used

AUTOSAR C++14 Rule
A18-1-3

AUTOSAR C++14 Rule A18-1-4 A pointer pointing to an element
of an array of objects shall not
be passed to a smart pointer of
single object type

AUTOSAR C++14 Rule
A18-1-4

AUTOSAR C++14 Rule A18-1-6 All std::hash specializations for
user-defined types shall have a
noexcept function call operator

AUTOSAR C++14 Rule
A18-1-6

AUTOSAR C++14 Rule A18-5-1 Functions malloc, calloc, realloc
and free shall not be used

AUTOSAR C++14 Rule
A18-5-1

AUTOSAR C++14 Rule
A18-5-10

Placement new shall be used
only with properly aligned
pointers to sufficient storage
capacity

AUTOSAR C++14 Rule
A18-5-10

AUTOSAR C++14 Rule
A18-5-11

"operator new" and "operator
delete" shall be defined together

AUTOSAR C++14 Rule
A18-5-11

AUTOSAR C++14 Rule A18-5-2 Non-placement new or delete
expressions shall not be used

AUTOSAR C++14 Rule
A18-5-2

AUTOSAR C++14 Rule A18-5-3 The form of delete operator
shall match the form of new
operator used to allocate the
memory

AUTOSAR C++14 Rule
A18-5-3

17 Polyspace Coverage of Coding Standards

17-132

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule A18-5-4 If a project has sized or unsized

version of operator 'delete'
globally defined, then both sized
and unsized versions shall be
defined

AUTOSAR C++14 Rule
A18-5-4

AUTOSAR C++14 Rule A18-5-5 Memory management functions
shall ensure the following: (a)
deterministic behavior resulting
with the existence of worst-case
execution time, (b) avoiding
memory fragmentation, (c)
avoid running out of memory,
(d) avoiding mismatched
allocations or deallocations, (e)
no dependence on non-
deterministic calls to kernel

AUTOSAR C++14 Rule
A18-5-5

AUTOSAR C++14 Rule A18-5-7 If non-real-time implementation
of dynamic memory
management functions is used
in the project, then memory
shall only be allocated and
deallocated during non-real-
time program phases

AUTOSAR C++14 Rule
A18-5-7

AUTOSAR C++14 Rule A18-5-8 Objects that do not outlive a
function shall have automatic
storage duration

AUTOSAR C++14 Rule
A18-5-8

AUTOSAR C++14 Rule A18-5-9 Custom implementations of
dynamic memory allocation and
deallocation functions shall
meet the semantic requirements
specified in the corresponding
"Required behaviour" clause
from the C++ Standard

AUTOSAR C++14 Rule
A18-5-9

AUTOSAR C++14 Rule A18-9-1 The std::bind shall not be used AUTOSAR C++14 Rule
A18-9-1

AUTOSAR C++14 Rule A18-9-2 Forwarding values to other
functions shall be done via: (1)
std::move if the value is an
rvalue reference, (2)
std::forward if the value is
forwarding reference

AUTOSAR C++14 Rule
A18-9-2

AUTOSAR C++14 Rule A18-9-3 The std::move shall not be used
on objects declared const or
const&

AUTOSAR C++14 Rule
A18-9-3

AUTOSAR C++14 Rule A18-9-4 An argument to std::forward
shall not be subsequently used

AUTOSAR C++14 Rule
A18-9-4

 Required AUTOSAR C++14 Coding Rules Supported by Polyspace Bug Finder

17-133

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule A2-10-1 An identifier declared in an

inner scope shall not hide an
identifier declared in an outer
scope

AUTOSAR C++14 Rule
A2-10-1

AUTOSAR C++14 Rule A2-10-4 The identifier name of a non-
member object with static
storage duration or static
function shall not be reused
within a namespace

AUTOSAR C++14 Rule
A2-10-4

AUTOSAR C++14 Rule A2-10-6 A class or enumeration name
shall not be hidden by a
variable, function or enumerator
declaration in the same scope

AUTOSAR C++14 Rule
A2-10-6

AUTOSAR C++14 Rule A2-11-1 Volatile keyword shall not be
used

AUTOSAR C++14 Rule
A2-11-1

AUTOSAR C++14 Rule A2-13-1 Only those escape sequences
that are defined in ISO/IEC
14882:2014 shall be used

AUTOSAR C++14 Rule
A2-13-1

AUTOSAR C++14 Rule A2-13-2 String literals with different
encoding prefixes shall not be
concatenated

AUTOSAR C++14 Rule
A2-13-2

AUTOSAR C++14 Rule A2-13-3 Type wchar_t shall not be used AUTOSAR C++14 Rule
A2-13-3

AUTOSAR C++14 Rule A2-13-4 String literals shall not be
assigned to non-constant
pointers

AUTOSAR C++14 Rule
A2-13-4

AUTOSAR C++14 Rule A2-13-6 Universal character names shall
be used only inside character or
string literals

AUTOSAR C++14 Rule
A2-13-6

AUTOSAR C++14 Rule A2-3-1 Only those characters specified
in the C++ Language Standard
basic source character set shall
be used in the source code

AUTOSAR C++14 Rule
A2-3-1

AUTOSAR C++14 Rule A2-5-1 Trigraphs shall not be used AUTOSAR C++14 Rule
A2-5-1

AUTOSAR C++14 Rule A2-5-2 Digraphs shall not be used AUTOSAR C++14 Rule
A2-5-2

AUTOSAR C++14 Rule A2-7-1 The character \ shall not occur
as a last character of a C++
comment

AUTOSAR C++14 Rule
A2-7-1

AUTOSAR C++14 Rule A2-7-2 Sections of code shall not be
"commented out"

AUTOSAR C++14 Rule
A2-7-2

17 Polyspace Coverage of Coding Standards

17-134

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule A2-7-3 All declarations of "user-

defined" types, static and non-
static data members, functions
and methods shall be preceded
by documentation

AUTOSAR C++14 Rule
A2-7-3

AUTOSAR C++14 Rule A2-8-1 A header file name should
reflect the logical entity for
which it provides declarations.

AUTOSAR C++14 Rule
A2-8-1

AUTOSAR C++14 Rule A20-8-1 An already-owned pointer value
shall not be stored in an
unrelated smart pointer

AUTOSAR C++14 Rule
A20-8-1

AUTOSAR C++14 Rule A20-8-2 A std::unique_ptr shall be used
to represent exclusive
ownership

AUTOSAR C++14 Rule
A20-8-2

AUTOSAR C++14 Rule A20-8-3 A std::shared_ptr shall be used
to represent shared ownership

AUTOSAR C++14 Rule
A20-8-3

AUTOSAR C++14 Rule A20-8-4 A std::unique_ptr shall be used
over std::shared_ptr if
ownership sharing is not
required

AUTOSAR C++14 Rule
A20-8-4

AUTOSAR C++14 Rule A20-8-5 std::make_unique shall be used
to construct objects owned by
std::unique_ptr

AUTOSAR C++14 Rule
A20-8-5

AUTOSAR C++14 Rule A20-8-6 std::make_shared shall be used
to construct objects owned by
std::shared_ptr

AUTOSAR C++14 Rule
A20-8-6

AUTOSAR C++14 Rule A20-8-7 A std::weak_ptr shall be used to
represent temporary shared
ownership.

AUTOSAR C++14 Rule
A20-8-7

AUTOSAR C++14 Rule A21-8-1 Arguments to character-
handling functions shall be
representable as an unsigned
char

AUTOSAR C++14 Rule
A21-8-1

AUTOSAR C++14 Rule A23-0-1 An iterator shall not be
implicitly converted to
const_iterator

AUTOSAR C++14 Rule
A23-0-1

AUTOSAR C++14 Rule A23-0-2 Elements of a container shall
only be accessed via valid
references, iterators, and
pointers

AUTOSAR C++14 Rule
A23-0-2

AUTOSAR C++14 Rule A25-1-1 Non-static data members or
captured values of predicate
function objects that are state
related to this object's identity
shall not be copied

AUTOSAR C++14 Rule
A25-1-1

 Required AUTOSAR C++14 Coding Rules Supported by Polyspace Bug Finder

17-135

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule A25-4-1 Ordering predicates used with

associative containers and STL
sorting and related algorithms
shall adhere to a strict weak
ordering relation

AUTOSAR C++14 Rule
A25-4-1

AUTOSAR C++14 Rule A26-5-1 Pseudorandom numbers shall
not be generated using
std::rand()

AUTOSAR C++14 Rule
A26-5-1

AUTOSAR C++14 Rule A26-5-2 Random number engines shall
not be default-initialized

AUTOSAR C++14 Rule
A26-5-2

AUTOSAR C++14 Rule A27-0-1 Inputs from independent
components shall be validated.

AUTOSAR C++14 Rule
A27-0-1

AUTOSAR C++14 Rule A27-0-3 Alternate input and output
operations on a file stream shall
not be used without an
intervening flush or positioning
call

AUTOSAR C++14 Rule
A27-0-3

AUTOSAR C++14 Rule A27-0-4 C-style strings shall not be used AUTOSAR C++14 Rule
A27-0-4

AUTOSAR C++14 Rule A3-1-1 It shall be possible to include
any header file in multiple
translation units without
violating the One Definition
Rule

AUTOSAR C++14 Rule
A3-1-1

AUTOSAR C++14 Rule A3-1-2 Header files, that are defined
locally in the project, shall have
a file name extension of one
of: .h, .hpp or .hxx

AUTOSAR C++14 Rule
A3-1-2

AUTOSAR C++14 Rule A3-1-4 When an array with external
linkage is declared, its size shall
be stated explicitly

AUTOSAR C++14 Rule
A3-1-4

AUTOSAR C++14 Rule A3-1-5 A function definition shall only
be placed in a class definition if
(1) the function is intended to
be inlined (2) it is a member
function template (3) it is a
member function of a class
template

AUTOSAR C++14 Rule
A3-1-5

AUTOSAR C++14 Rule A3-3-1 Objects or functions with
external linkage (including
members of named namespaces)
shall be declared in a header file

AUTOSAR C++14 Rule
A3-3-1

AUTOSAR C++14 Rule A3-3-2 Static and thread-local objects
shall be constant-initialized

AUTOSAR C++14 Rule
A3-3-2

17 Polyspace Coverage of Coding Standards

17-136

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule A3-8-1 An object shall not be accessed

outside of its lifetime
AUTOSAR C++14 Rule
A3-8-1

AUTOSAR C++14 Rule A3-9-1 Fixed width integer types from
<cstdint>, indicating the size
and signedness, shall be used in
place of the basic numerical
types

AUTOSAR C++14 Rule
A3-9-1

AUTOSAR C++14 Rule A4-10-1 Only nullptr literal shall be used
as the null-pointer-constraint

AUTOSAR C++14 Rule
A4-10-1

AUTOSAR C++14 Rule A4-5-1 Expressions with type enum or
enum class shall not be used as
operands to built-in and
overloaded operators other than
the subscript operator [], the
assignment operator =, the
equality operators == and !=,
the unary & operator, and the
relational operators <, <=, >,
>=

AUTOSAR C++14 Rule
A4-5-1

AUTOSAR C++14 Rule A4-7-1 An integer expression shall not
lead to data loss

AUTOSAR C++14 Rule
A4-7-1

AUTOSAR C++14 Rule A5-0-1 The value of an expression shall
be the same under any order of
evaluation that the standard
permits

AUTOSAR C++14 Rule
A5-0-1

AUTOSAR C++14 Rule A5-0-2 The condition of an if-statement
and the condition of an iteration
statement shall have type bool

AUTOSAR C++14 Rule
A5-0-2

AUTOSAR C++14 Rule A5-0-3 The declaration of objects shall
contain no more than two levels
of pointer indirection

AUTOSAR C++14 Rule
A5-0-3

AUTOSAR C++14 Rule A5-0-4 Pointer arithmetic shall not be
used with pointers to non-final
classes

AUTOSAR C++14 Rule
A5-0-4

AUTOSAR C++14 Rule A5-1-1 Literal values shall not be used
apart from type initialization,
otherwise symbolic names shall
be used instead

AUTOSAR C++14 Rule
A5-1-1

AUTOSAR C++14 Rule A5-1-2 Variables shall not be implicitly
captured in a lambda expression

AUTOSAR C++14 Rule
A5-1-2

AUTOSAR C++14 Rule A5-1-3 Parameter list (possibly empty)
shall be included in every
lambda expression

AUTOSAR C++14 Rule
A5-1-3

 Required AUTOSAR C++14 Coding Rules Supported by Polyspace Bug Finder

17-137

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule A5-1-4 A lambda expression object

shall not outlive any of its
reference-captured objects

AUTOSAR C++14 Rule
A5-1-4

AUTOSAR C++14 Rule A5-1-7 A lambda shall not be an
operand to decltype or typeid

AUTOSAR C++14 Rule
A5-1-7

AUTOSAR C++14 Rule A5-10-1 A pointer to member virtual
function shall only be tested for
equality with null-pointer-
constant

AUTOSAR C++14 Rule
A5-10-1

AUTOSAR C++14 Rule A5-16-1 The ternary conditional operator
shall not be used as a sub-
expression

AUTOSAR C++14 Rule
A5-16-1

AUTOSAR C++14 Rule A5-2-2 Traditional C-style casts shall
not be used

AUTOSAR C++14 Rule
A5-2-2

AUTOSAR C++14 Rule A5-2-3 A cast shall not remove any
const or volatile qualification
from the type of a pointer or
reference

AUTOSAR C++14 Rule
A5-2-3

AUTOSAR C++14 Rule A5-2-4 reinterpret_cast shall not be
used

AUTOSAR C++14 Rule
A5-2-4

AUTOSAR C++14 Rule A5-2-5 An array or container shall not
be accessed beyond its range

AUTOSAR C++14 Rule
A5-2-5

AUTOSAR C++14 Rule A5-2-6 The operands of a logical && or
|| shall be parenthesized if the
operands contain binary
operators

AUTOSAR C++14 Rule
A5-2-6

AUTOSAR C++14 Rule A5-3-1 Evaluation of the operand to the
typeid operator shall not contain
side effects

AUTOSAR C++14 Rule
A5-3-1

AUTOSAR C++14 Rule A5-3-2 Null pointers shall not be
dereferenced

AUTOSAR C++14 Rule
A5-3-2

AUTOSAR C++14 Rule A5-3-3 Pointers to incomplete class
types shall not be deleted

AUTOSAR C++14 Rule
A5-3-3

AUTOSAR C++14 Rule A5-5-1 A pointer to member shall not
access non-existent class
members

AUTOSAR C++14 Rule
A5-5-1

AUTOSAR C++14 Rule A5-6-1 The right hand operand of the
integer division or remainder
operators shall not be equal to
zero

AUTOSAR C++14 Rule
A5-6-1

AUTOSAR C++14 Rule A6-2-1 Move and copy assignment
operators shall either move or
respectively copy base classes
and data members of a class,
without any side effects

AUTOSAR C++14 Rule
A6-2-1

17 Polyspace Coverage of Coding Standards

17-138

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule A6-2-2 Expression statements shall not

be explicit calls to constructors
of temporary objects only

AUTOSAR C++14 Rule
A6-2-2

AUTOSAR C++14 Rule A6-4-1 A switch statement shall have
at least two case-clauses,
distinct from the default label

AUTOSAR C++14 Rule
A6-4-1

AUTOSAR C++14 Rule A6-5-1 A for-loop that loops through all
elements of the container and
does not use its loop-counter
shall not be used

AUTOSAR C++14 Rule
A6-5-1

AUTOSAR C++14 Rule A6-5-2 A for loop shall contain a single
loop-counter which shall not
have floating-point type

AUTOSAR C++14 Rule
A6-5-2

AUTOSAR C++14 Rule A6-6-1 The goto statement shall not be
used

AUTOSAR C++14 Rule
A6-6-1

AUTOSAR C++14 Rule A7-1-1 Constexpr or const specifiers
shall be used for immutable
data declaration

AUTOSAR C++14 Rule
A7-1-1

AUTOSAR C++14 Rule A7-1-2 The constexpr specifier shall be
used for values that can be
determined at compile time

AUTOSAR C++14 Rule
A7-1-2

AUTOSAR C++14 Rule A7-1-3 CV-qualifiers shall be placed on
the right hand side of the type
that is a typedef or a using
name

AUTOSAR C++14 Rule
A7-1-3

AUTOSAR C++14 Rule A7-1-4 The register keyword shall not
be used

AUTOSAR C++14 Rule
A7-1-4

AUTOSAR C++14 Rule A7-1-5 The auto specifier shall not be
used apart from following cases:
(1) to declare that a variable has
the same type as return type of
a function call, (2) to declare
that a variable has the same
type as initializer of non-
fundamental type, (3) to declare
parameters of a generic lambda
expression, (4) to declare a
function template using trailing
return type syntax

AUTOSAR C++14 Rule
A7-1-5

AUTOSAR C++14 Rule A7-1-6 The typedef specifier shall not
be used

AUTOSAR C++14 Rule
A7-1-6

AUTOSAR C++14 Rule A7-1-7 Each expression statement and
identifier declaration shall be
placed on a separate line

AUTOSAR C++14 Rule
A7-1-7

 Required AUTOSAR C++14 Coding Rules Supported by Polyspace Bug Finder

17-139

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule A7-1-8 A non-type specifier shall be

placed before a type specifier in
a declaration

AUTOSAR C++14 Rule
A7-1-8

AUTOSAR C++14 Rule A7-1-9 A class, structure, or
enumeration shall not be
declared in the definition of its
type

AUTOSAR C++14 Rule
A7-1-9

AUTOSAR C++14 Rule A7-2-1 An expression with enum
underlying type shall only have
values corresponding to the
enumerators of the enumeration

AUTOSAR C++14 Rule
A7-2-1

AUTOSAR C++14 Rule A7-2-2 Enumeration underlying type
shall be explicitly defined

AUTOSAR C++14 Rule
A7-2-2

AUTOSAR C++14 Rule A7-2-3 Enumerations shall be declared
as scoped enum classes

AUTOSAR C++14 Rule
A7-2-3

AUTOSAR C++14 Rule A7-2-4 In an enumeration, either (1)
none, (2) the first or (3) all
enumerators shall be initialized

AUTOSAR C++14 Rule
A7-2-4

AUTOSAR C++14 Rule A7-3-1 All overloads of a function shall
be visible from where it is called

AUTOSAR C++14 Rule
A7-3-1

AUTOSAR C++14 Rule A7-4-1 The asm declaration shall not be
used

AUTOSAR C++14 Rule
A7-4-1

AUTOSAR C++14 Rule A7-5-1 A function shall not return a
reference or a pointer to a
parameter that is passed by
reference to const

AUTOSAR C++14 Rule
A7-5-1

AUTOSAR C++14 Rule A7-5-2 Functions shall not call
themselves, either directly or
indirectly

AUTOSAR C++14 Rule
A7-5-2

AUTOSAR C++14 Rule A7-6-1 Functions declared with the
[[noreturn]] attribute shall not
return

AUTOSAR C++14 Rule
A7-6-1

AUTOSAR C++14 Rule A8-2-1 When declaring function
templates, the trailing return
type syntax shall be used if the
return type depends on the type
of parameters

AUTOSAR C++14 Rule
A8-2-1

AUTOSAR C++14 Rule A8-4-1 Functions shall not be defined
using the ellipsis notation

AUTOSAR C++14 Rule
A8-4-1

AUTOSAR C++14 Rule A8-4-10 A parameter shall be passed by
reference if it can't be NULL

AUTOSAR C++14 Rule
A8-4-10

AUTOSAR C++14 Rule A8-4-11 A smart pointer shall only be
used as a parameter type if it
expresses lifetime semantics

AUTOSAR C++14 Rule
A8-4-11

17 Polyspace Coverage of Coding Standards

17-140

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule A8-4-12 A std::unique_ptr shall be

passed to a function as: (1) a
copy to express the function
assumes ownership (2) an lvalue
reference to express that the
function replaces the managed
object.

AUTOSAR C++14 Rule
A8-4-12

AUTOSAR C++14 Rule A8-4-13 A std::shared_ptr shall be
passed to a function as: (1) a
copy to express the function
shares ownership (2) an lvalue
reference to express that the
function replaces the managed
object (3) a const lvalue
reference to express that the
function retains a reference
count.

AUTOSAR C++14 Rule
A8-4-13

AUTOSAR C++14 Rule A8-4-14 Interfaces shall be precisely and
strongly typed

AUTOSAR C++14 Rule
A8-4-14

AUTOSAR C++14 Rule A8-4-2 All exit paths from a function
with non-void return type shall
have an explicit return
statement with an expression

AUTOSAR C++14 Rule
A8-4-2

AUTOSAR C++14 Rule A8-4-5 "consume" parameters declared
as X && shall always be moved
from

AUTOSAR C++14 Rule
A8-4-5

AUTOSAR C++14 Rule A8-4-6 "forward" parameters declared
as T && shall always be
forwarded

AUTOSAR C++14 Rule
A8-4-6

AUTOSAR C++14 Rule A8-4-7 "in" parameters for "cheap to
copy" types shall be passed by
value

AUTOSAR C++14 Rule
A8-4-7

AUTOSAR C++14 Rule A8-4-8 Output parameters shall not be
used

AUTOSAR C++14 Rule
A8-4-8

AUTOSAR C++14 Rule A8-4-9 "in-out" parameters declared as
T & shall be modified

AUTOSAR C++14 Rule
A8-4-9

AUTOSAR C++14 Rule A8-5-0 All memory shall be initialized
before it is read

AUTOSAR C++14 Rule
A8-5-0

 Required AUTOSAR C++14 Coding Rules Supported by Polyspace Bug Finder

17-141

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule A8-5-1 In an initialization list, the order

of initialization shall be
following: (1) virtual base
classes in depth and left to right
order of the inheritance graph,
(2) direct base classes in left to
right order of inheritance list,
(3) non-static data members in
the order they were declared in
the class definition

AUTOSAR C++14 Rule
A8-5-1

AUTOSAR C++14 Rule A8-5-2 Braced-initialization {}, without
equals sign, shall be used for
variable initialization

AUTOSAR C++14 Rule
A8-5-2

AUTOSAR C++14 Rule A8-5-3 A variable of type auto shall not
be initialized using {} or ={}
braced-initialization

AUTOSAR C++14 Rule
A8-5-3

AUTOSAR C++14 Rule A9-3-1 Member functions shall not
return non-constant "raw"
pointers or references to private
or protected data owned by the
class

AUTOSAR C++14 Rule
A9-3-1

AUTOSAR C++14 Rule A9-5-1 Unions shall not be used AUTOSAR C++14 Rule
A9-5-1

AUTOSAR C++14 Rule A9-6-1 Data types used for interfacing
with hardware or conforming to
communication protocols shall
be trivial, standard-layout and
only contain members of types
with defined sizes

AUTOSAR C++14 Rule
A9-6-1

AUTOSAR C++14 Rule M0-1-1 A project shall not contain
unreachable code

AUTOSAR C++14 Rule
M0-1-1

AUTOSAR C++14 Rule M0-1-2 A project shall not contain
infeasible paths

AUTOSAR C++14 Rule
M0-1-2

AUTOSAR C++14 Rule M0-1-3 A project shall not contain
unused variables

AUTOSAR C++14 Rule
M0-1-3

AUTOSAR C++14 Rule M0-1-4 A project shall not contain non-
volatile POD variables having
only one use

AUTOSAR C++14 Rule
M0-1-4

AUTOSAR C++14 Rule M0-1-8 All functions with void return
type shall have external side
effect(s)

AUTOSAR C++14 Rule
M0-1-8

AUTOSAR C++14 Rule M0-1-9 There shall be no dead code AUTOSAR C++14 Rule
M0-1-9

AUTOSAR C++14 Rule M0-2-1 An object shall not be assigned
to an overlapping object

AUTOSAR C++14 Rule
M0-2-1

17 Polyspace Coverage of Coding Standards

17-142

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule M0-3-2 If a function generates error

information, then that error
information shall be tested

AUTOSAR C++14 Rule
M0-3-2

AUTOSAR C++14 Rule M10-1-2 A base class shall only be
declared virtual if it is used in a
diamond hierarchy

AUTOSAR C++14 Rule
M10-1-2

AUTOSAR C++14 Rule M10-1-3 An accessible base class shall
not be both virtual and non-
virtual in the same hierarchy

AUTOSAR C++14 Rule
M10-1-3

AUTOSAR C++14 Rule M10-3-3 A virtual function shall only be
overridden by a pure virtual
function if it is itself declared as
pure virtual

AUTOSAR C++14 Rule
M10-3-3

AUTOSAR C++14 Rule M11-0-1 Member data in non-POD class
types shall be private

AUTOSAR C++14 Rule
M11-0-1

AUTOSAR C++14 Rule M12-1-1 An object's dynamic type shall
not be used from the body of its
constructor or destructor

AUTOSAR C++14 Rule
M12-1-1

AUTOSAR C++14 Rule M14-5-3 A copy assignment operator
shall be declared when there is
a template assignment operator
with a parameter that is a
generic parameter

AUTOSAR C++14 Rule
M14-5-3

AUTOSAR C++14 Rule M14-6-1 In a class template with a
dependent base, any name that
may be found in that dependent
base shall be referred to using a
qualified-id or this->

AUTOSAR C++14 Rule
M14-6-1

AUTOSAR C++14 Rule M15-0-3 Control shall not be transferred
into a try or catch block using a
goto or a switch statement

AUTOSAR C++14 Rule
M15-0-3

AUTOSAR C++14 Rule M15-1-1 The assignment-expression of a
throw statement shall not itself
cause an exception to be thrown

AUTOSAR C++14 Rule
M15-1-1

AUTOSAR C++14 Rule M15-1-2 NULL shall not be thrown
explicitly

AUTOSAR C++14 Rule
M15-1-2

AUTOSAR C++14 Rule M15-1-3 An empty throw (throw;) shall
only be used in the compound
statement of a catch handler

AUTOSAR C++14 Rule
M15-1-3

AUTOSAR C++14 Rule M15-3-1 Exceptions shall be raised only
after start-up and before
termination

AUTOSAR C++14 Rule
M15-3-1

 Required AUTOSAR C++14 Coding Rules Supported by Polyspace Bug Finder

17-143

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule M15-3-3 Handlers of a function-try-block

implementation of a class
constructor or destructor shall
not reference non-static
members from this class or its
bases

AUTOSAR C++14 Rule
M15-3-3

AUTOSAR C++14 Rule M15-3-4 Each exception explicitly thrown
in the code shall have a handler
of a compatible type in all call
paths that could lead to that
point

AUTOSAR C++14 Rule
M15-3-4

AUTOSAR C++14 Rule M15-3-6 Where multiple handlers are
provided in a single try-catch
statement or function-try-block
for a derived class and some or
all of its bases, the handlers
shall be ordered most-derived to
base class

AUTOSAR C++14 Rule
M15-3-6

AUTOSAR C++14 Rule M15-3-7 Where multiple handlers are
provided in a single try-catch
statement or function-try-block,
any ellipsis (catch-all) handler
shall occur last

AUTOSAR C++14 Rule
M15-3-7

AUTOSAR C++14 Rule M16-0-1 #include directives in a file shall
only be preceded by other
preprocessor directives or
comments

AUTOSAR C++14 Rule
M16-0-1

AUTOSAR C++14 Rule M16-0-2 Macros shall only be #define'd
or #undef'd in the global
namespace

AUTOSAR C++14 Rule
M16-0-2

AUTOSAR C++14 Rule M16-0-5 Arguments to a function-like
macro shall not contain tokens
that look like pre-processing
directives

AUTOSAR C++14 Rule
M16-0-5

AUTOSAR C++14 Rule M16-0-6 In the definition of a function-
like macro, each instance of a
parameter shall be enclosed in
parentheses, unless it is used as
the operand of # or ##

AUTOSAR C++14 Rule
M16-0-6

AUTOSAR C++14 Rule M16-0-7 Undefined macro identifiers
shall not be used in #if or #elif
pre-processor directives, except
as operands to the defined
operator

AUTOSAR C++14 Rule
M16-0-7

17 Polyspace Coverage of Coding Standards

17-144

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule M16-0-8 If the # token appears as the

first token on a line, then it shall
be immediately followed by a
preprocessing token

AUTOSAR C++14 Rule
M16-0-8

AUTOSAR C++14 Rule M16-1-1 The defined pre-processor
operator shall only be used in
one of the two standard forms

AUTOSAR C++14 Rule
M16-1-1

AUTOSAR C++14 Rule M16-1-2 All #else, #elif and #endif pre-
processor directives shall reside
in the same file as the #if or
#ifdef directive to which they
are related

AUTOSAR C++14 Rule
M16-1-2

AUTOSAR C++14 Rule M16-2-3 Include guards shall be
provided

AUTOSAR C++14 Rule
M16-2-3

AUTOSAR C++14 Rule M16-3-1 There shall be at most one
occurrence of the # or ##
operators in a single macro
definition

AUTOSAR C++14 Rule
M16-3-1

AUTOSAR C++14 Rule M17-0-2 The names of standard library
macros and objects shall not be
reused

AUTOSAR C++14 Rule
M17-0-2

AUTOSAR C++14 Rule M17-0-3 The names of standard library
functions shall not be
overridden

AUTOSAR C++14 Rule
M17-0-3

AUTOSAR C++14 Rule M17-0-5 The setjmp macro and the
longjmp function shall not be
used

AUTOSAR C++14 Rule
M17-0-5

AUTOSAR C++14 Rule M18-0-3 The library functions abort, exit,
getenv and system from library
<cstdlib> shall not be used

AUTOSAR C++14 Rule
M18-0-3

AUTOSAR C++14 Rule M18-0-4 The time handling functions of
library <ctime> shall not be
used

AUTOSAR C++14 Rule
M18-0-4

AUTOSAR C++14 Rule M18-0-5 The unbounded functions of
library <cstring> shall not be
used

AUTOSAR C++14 Rule
M18-0-5

AUTOSAR C++14 Rule M18-2-1 The macro offsetof shall not be
used

AUTOSAR C++14 Rule
M18-2-1

AUTOSAR C++14 Rule M18-7-1 The signal handling facilities of
<csignal> shall not be used

AUTOSAR C++14 Rule
M18-7-1

AUTOSAR C++14 Rule M19-3-1 The error indicator errno shall
not be used

AUTOSAR C++14 Rule
M19-3-1

AUTOSAR C++14 Rule M2-10-1 Different identifiers shall be
typographically unambiguous

AUTOSAR C++14 Rule
M2-10-1

 Required AUTOSAR C++14 Coding Rules Supported by Polyspace Bug Finder

17-145

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule M2-13-2 Octal constants (other than

zero) and octal escape
sequences (other than "\0")
shall not be used

AUTOSAR C++14 Rule
M2-13-2

AUTOSAR C++14 Rule M2-13-3 A "U" suffix shall be applied to
all octal or hexadecimal integer
literals of unsigned type

AUTOSAR C++14 Rule
M2-13-3

AUTOSAR C++14 Rule M2-13-4 Literal suffixes shall be upper
case

AUTOSAR C++14 Rule
M2-13-4

AUTOSAR C++14 Rule M2-7-1 The character sequence /* shall
not be used within a C-style
comment

AUTOSAR C++14 Rule
M2-7-1

AUTOSAR C++14 Rule M27-0-1 The stream input/output library
<cstdio> shall not be used

AUTOSAR C++14 Rule
M27-0-1

AUTOSAR C++14 Rule M3-1-2 Functions shall not be declared
at block scope

AUTOSAR C++14 Rule
M3-1-2

AUTOSAR C++14 Rule M3-2-1 All declarations of an object or
function shall have compatible
types

AUTOSAR C++14 Rule
M3-2-1

AUTOSAR C++14 Rule M3-2-2 The One Definition Rule shall
not be violated

AUTOSAR C++14 Rule
M3-2-2

AUTOSAR C++14 Rule M3-2-3 A type, object or function that is
used in multiple translation
units shall be declared in one
and only one file

AUTOSAR C++14 Rule
M3-2-3

AUTOSAR C++14 Rule M3-2-4 An identifier with external
linkage shall have exactly one
definition

AUTOSAR C++14 Rule
M3-2-4

AUTOSAR C++14 Rule M3-3-2 If a function has internal linkage
then all re-declarations shall
include the static storage class
specifier

AUTOSAR C++14 Rule
M3-3-2

AUTOSAR C++14 Rule M3-4-1 An identifier declared to be an
object or type shall be defined in
a block that minimizes its
visibility

AUTOSAR C++14 Rule
M3-4-1

AUTOSAR C++14 Rule M3-9-1 The types used for an object, a
function return type, or a
function parameter shall be
token-for-token identical in all
declarations and re-declarations

AUTOSAR C++14 Rule
M3-9-1

AUTOSAR C++14 Rule M3-9-3 The underlying bit
representations of floating-point
values shall not be used

AUTOSAR C++14 Rule
M3-9-3

17 Polyspace Coverage of Coding Standards

17-146

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule M4-10-1 NULL shall not be used as an

integer value
AUTOSAR C++14 Rule
M4-10-1

AUTOSAR C++14 Rule M4-10-2 Literal zero (0) shall not be used
as the null-pointer-constant

AUTOSAR C++14 Rule
M4-10-2

AUTOSAR C++14 Rule M4-5-1 Expressions with type bool shall
not be used as operands to built-
in operators other than the
assignment operator =, the
logical operators &&, ||, !, the
equality operators == and ! =,
the unary & operator, and the
conditional operator

AUTOSAR C++14 Rule
M4-5-1

AUTOSAR C++14 Rule M4-5-3 Expressions with type (plain)
char and wchar_t shall not be
used as operands to built-in
operators other than the
assignment operator =, the
equality operators == and ! =,
and the unary & operator

AUTOSAR C++14 Rule
M4-5-3

AUTOSAR C++14 Rule M5-0-10 If the bitwise operators ~and
<< are applied to an operand
with an underlying type of
unsigned char or unsigned
short, the result shall be
immediately cast to the
underlying type of the operand

AUTOSAR C++14 Rule
M5-0-10

AUTOSAR C++14 Rule M5-0-11 The plain char type shall only be
used for the storage and use of
character values

AUTOSAR C++14 Rule
M5-0-11

AUTOSAR C++14 Rule M5-0-12 Signed char and unsigned char
type shall only be used for the
storage and use of numeric
values

AUTOSAR C++14 Rule
M5-0-12

AUTOSAR C++14 Rule M5-0-14 The first operand of a
conditional-operator shall have
type bool

AUTOSAR C++14 Rule
M5-0-14

AUTOSAR C++14 Rule M5-0-15 Array indexing shall be the only
form of pointer arithmetic

AUTOSAR C++14 Rule
M5-0-15

AUTOSAR C++14 Rule M5-0-16 A pointer operand and any
pointer resulting from pointer
arithmetic using that operand
shall both address elements of
the same array

AUTOSAR C++14 Rule
M5-0-16

 Required AUTOSAR C++14 Coding Rules Supported by Polyspace Bug Finder

17-147

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule M5-0-17 Subtraction between pointers

shall only be applied to pointers
that address elements of the
same array

AUTOSAR C++14 Rule
M5-0-17

AUTOSAR C++14 Rule M5-0-18 >, >=, <, <= shall not be
applied to objects of pointer
type, except where they point to
the same array

AUTOSAR C++14 Rule
M5-0-18

AUTOSAR C++14 Rule M5-0-20 Non-constant operands to a
binary bitwise operator shall
have the same underlying type

AUTOSAR C++14 Rule
M5-0-20

AUTOSAR C++14 Rule M5-0-21 Bitwise operators shall only be
applied to operands of unsigned
underlying type

AUTOSAR C++14 Rule
M5-0-21

AUTOSAR C++14 Rule M5-0-3 A cvalue expression shall not be
implicitly converted to a
different underlying type

AUTOSAR C++14 Rule
M5-0-3

AUTOSAR C++14 Rule M5-0-4 An implicit integral conversion
shall not change the signedness
of the underlying type

AUTOSAR C++14 Rule
M5-0-4

AUTOSAR C++14 Rule M5-0-5 There shall be no implicit
floating-integral conversions

AUTOSAR C++14 Rule
M5-0-5

AUTOSAR C++14 Rule M5-0-6 An implicit integral or floating-
point conversion shall not
reduce the size of the
underlying type

AUTOSAR C++14 Rule
M5-0-6

AUTOSAR C++14 Rule M5-0-7 There shall be no explicit
floating-integral conversions of
a cvalue expression

AUTOSAR C++14 Rule
M5-0-7

AUTOSAR C++14 Rule M5-0-8 An explicit integral or floating-
point conversion shall not
increase the size of the
underlying type of a cvalue
expression

AUTOSAR C++14 Rule
M5-0-8

AUTOSAR C++14 Rule M5-0-9 An explicit integral conversion
shall not change the signedness
of the underlying type of a
cvalue expression

AUTOSAR C++14 Rule
M5-0-9

AUTOSAR C++14 Rule M5-14-1 The right hand operand of a
logical &&, || operators shall not
contain side effects

AUTOSAR C++14 Rule
M5-14-1

AUTOSAR C++14 Rule M5-18-1 The comma operator shall not
be used

AUTOSAR C++14 Rule
M5-18-1

17 Polyspace Coverage of Coding Standards

17-148

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule M5-19-1 Evaluation of constant unsigned

integer expressions shall not
lead to wrap-around

AUTOSAR C++14 Rule
M5-19-1

AUTOSAR C++14 Rule M5-2-10 The increment (++) and
decrement (--) operators shall
not be mixed with other
operators in an expression

AUTOSAR C++14 Rule
M5-2-10

AUTOSAR C++14 Rule M5-2-11 The comma operator, &&
operator and the || operator
shall not be overloaded

AUTOSAR C++14 Rule
M5-2-11

AUTOSAR C++14 Rule M5-2-12 An identifier with array type
passed as a function argument
shall not decay to a pointer

AUTOSAR C++14 Rule
M5-2-12

AUTOSAR C++14 Rule M5-2-2 A pointer to a virtual base class
shall only be cast to a pointer to
a derived class by means of
dynamic_cast

AUTOSAR C++14 Rule
M5-2-2

AUTOSAR C++14 Rule M5-2-6 A cast shall not convert a
pointer to a function to any
other pointer type, including a
pointer to function type

AUTOSAR C++14 Rule
M5-2-6

AUTOSAR C++14 Rule M5-2-8 An object with integer type or
pointer to void type shall not be
converted to an object with
pointer type

AUTOSAR C++14 Rule
M5-2-8

AUTOSAR C++14 Rule M5-2-9 A cast shall not convert a
pointer type to an integral type

AUTOSAR C++14 Rule
M5-2-9

AUTOSAR C++14 Rule M5-3-1 Each operand of the ! operator,
the logical && or the logical ||
operators shall have type bool

AUTOSAR C++14 Rule
M5-3-1

AUTOSAR C++14 Rule M5-3-2 The unary minus operator shall
not be applied to an expression
whose underlying type is
unsigned

AUTOSAR C++14 Rule
M5-3-2

AUTOSAR C++14 Rule M5-3-3 The unary & operator shall not
be overloaded

AUTOSAR C++14 Rule
M5-3-3

AUTOSAR C++14 Rule M5-3-4 Evaluation of the operand to the
sizeof operator shall not contain
side effects

AUTOSAR C++14 Rule
M5-3-4

AUTOSAR C++14 Rule M5-8-1 The right hand operand of a
shift operator shall lie between
zero and one less than the width
in bits of the underlying type of
the left hand operand

AUTOSAR C++14 Rule
M5-8-1

 Required AUTOSAR C++14 Coding Rules Supported by Polyspace Bug Finder

17-149

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule M6-2-1 Assignment operators shall not

be used in sub-expressions
AUTOSAR C++14 Rule
M6-2-1

AUTOSAR C++14 Rule M6-2-2 Floating-point expressions shall
not be directly or indirectly
tested for equality or inequality

AUTOSAR C++14 Rule
M6-2-2

AUTOSAR C++14 Rule M6-2-3 Before preprocessing, a null
statement shall only occur on a
line by itself; it may be followed
by a comment, provided that the
first character following the null
statement is a white-space
character

AUTOSAR C++14 Rule
M6-2-3

AUTOSAR C++14 Rule M6-3-1 The statement forming the body
of a switch, while, do ... while or
for statement shall be a
compound statement

AUTOSAR C++14 Rule
M6-3-1

AUTOSAR C++14 Rule M6-4-1 An if (condition) construct
shall be followed by a compound
statement. The else keyword
shall be followed by either a
compound statement, or
another if statement

AUTOSAR C++14 Rule
M6-4-1

AUTOSAR C++14 Rule M6-4-2 All if ... else if constructs shall
be terminated with an else
clause

AUTOSAR C++14 Rule
M6-4-2

AUTOSAR C++14 Rule M6-4-3 A switch statement shall be a
well-formed switch statement

AUTOSAR C++14 Rule
M6-4-3

AUTOSAR C++14 Rule M6-4-4 A switch-label shall only be used
when the most closely-enclosing
compound statement is the body
of a switch statement

AUTOSAR C++14 Rule
M6-4-4

AUTOSAR C++14 Rule M6-4-5 An unconditional throw or break
statement shall terminate every
non-empty switch-clause

AUTOSAR C++14 Rule
M6-4-5

AUTOSAR C++14 Rule M6-4-6 The final clause of a switch
statement shall be the default-
clause

AUTOSAR C++14 Rule
M6-4-6

AUTOSAR C++14 Rule M6-4-7 The condition of a switch
statement shall not have bool
type

AUTOSAR C++14 Rule
M6-4-7

AUTOSAR C++14 Rule M6-5-2 If loop-counter is not modified
by -- or ++, then, within
condition, the loop-counter shall
only be used as an operand to
<=, <, > or >=

AUTOSAR C++14 Rule
M6-5-2

17 Polyspace Coverage of Coding Standards

17-150

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule M6-5-3 The loop-counter shall not be

modified within condition or
statement

AUTOSAR C++14 Rule
M6-5-3

AUTOSAR C++14 Rule M6-5-4 The loop-counter shall be
modified by one of: --, ++, -=n,
or +=n; where n remains
constant for the duration of the
loop

AUTOSAR C++14 Rule
M6-5-4

AUTOSAR C++14 Rule M6-5-5 A loop-control-variable other
than the loop-counter shall not
be modified within condition or
expression

AUTOSAR C++14 Rule
M6-5-5

AUTOSAR C++14 Rule M6-5-6 A loop-control-variable other
than the loop-counter which is
modified in statement shall have
type bool

AUTOSAR C++14 Rule
M6-5-6

AUTOSAR C++14 Rule M6-6-1 Any label referenced by a goto
statement shall be declared in
the same block, or in a block
enclosing the goto statement

AUTOSAR C++14 Rule
M6-6-1

AUTOSAR C++14 Rule M6-6-2 The goto statement shall jump
to a label declared later in the
same function body

AUTOSAR C++14 Rule
M6-6-2

AUTOSAR C++14 Rule M6-6-3 The continue statement shall
only be used within a well-
formed for loop

AUTOSAR C++14 Rule
M6-6-3

AUTOSAR C++14 Rule M7-1-2 A pointer or reference
parameter in a function shall be
declared as pointer to const or
reference to const if the
corresponding object is not
modified

AUTOSAR C++14 Rule
M7-1-2

AUTOSAR C++14 Rule M7-3-1 The global namespace shall only
contain main, namespace
declarations and extern "C"
declarations

AUTOSAR C++14 Rule
M7-3-1

AUTOSAR C++14 Rule M7-3-2 The identifier main shall not be
used for a function other than
the global function main

AUTOSAR C++14 Rule
M7-3-2

AUTOSAR C++14 Rule M7-3-3 There shall be no unnamed
namespaces in header files

AUTOSAR C++14 Rule
M7-3-3

AUTOSAR C++14 Rule M7-3-4 Using-directives shall not be
used

AUTOSAR C++14 Rule
M7-3-4

 Required AUTOSAR C++14 Coding Rules Supported by Polyspace Bug Finder

17-151

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule M7-3-6 Using-directives and using-

declarations (excluding class
scope or function scope using-
declarations) shall not be used
in header files

AUTOSAR C++14 Rule
M7-3-6

AUTOSAR C++14 Rule M7-4-2 Assembler instructions shall
only be introduced using the
asm declaration

AUTOSAR C++14 Rule
M7-4-2

AUTOSAR C++14 Rule M7-4-3 Assembly language shall be
encapsulated and isolated

AUTOSAR C++14 Rule
M7-4-3

AUTOSAR C++14 Rule M7-5-1 A function shall not return a
reference or a pointer to an
automatic variable (including
parameters), defined within the
function

AUTOSAR C++14 Rule
M7-5-1

AUTOSAR C++14 Rule M7-5-2 The address of an object with
automatic storage shall not be
assigned to another object that
may persist after the first object
has ceased to exist

AUTOSAR C++14 Rule
M7-5-2

AUTOSAR C++14 Rule M8-0-1 An init-declarator-list or a
member-declarator-list shall
consist of a single init-
declarator or member-
declarator respectively

AUTOSAR C++14 Rule
M8-0-1

AUTOSAR C++14 Rule M8-3-1 Parameters in an overriding
virtual function shall either use
the same default arguments as
the function they override, or
else shall not specify any default
arguments

AUTOSAR C++14 Rule
M8-3-1

AUTOSAR C++14 Rule M8-4-2 The identifiers used for the
parameters in a re-declaration
of a function shall be identical
to those in the declaration

AUTOSAR C++14 Rule
M8-4-2

AUTOSAR C++14 Rule M8-4-4 A function identifier shall either
be used to call the function or it
shall be preceded by &

AUTOSAR C++14 Rule
M8-4-4

AUTOSAR C++14 Rule M8-5-2 Braces shall be used to indicate
and match the structure in the
non-zero initialization of arrays
and structures

AUTOSAR C++14 Rule
M8-5-2

AUTOSAR C++14 Rule M9-3-1 Const member functions shall
not return non-const pointers
or references to class-data

AUTOSAR C++14 Rule
M9-3-1

17 Polyspace Coverage of Coding Standards

17-152

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule M9-3-3 If a member function can be

made static then it shall be
made static, otherwise if it can
be made const then it shall be
made const

AUTOSAR C++14 Rule
M9-3-3

AUTOSAR C++14 Rule M9-6-4 Named bit-fields with signed
integer type shall have a length
of more than one bit

AUTOSAR C++14 Rule
M9-6-4

Unsupported Rules
Polyspace does not support these Required rules:

Rule Description
M0-3-1 Minimization of run-time failures shall be ensured

by the use of at least one of:\n (a) static analysis
tools/techniques;\n (b) dynamic analysis tools/
techniques;\n (c) explicit coding of checks to
handle run-time faults.

M0-4-1 Use of scaled-integer or fixed-point arithmetic
shall be documented.

M0-4-2 Use of floating-point arithmetic shall be
documented.

A0-4-1 Floating-point implementation shall comply with
IEEE 754 standard.

A0-4-3 The implementations in the chosen compiler shall
strictly comply with the C++14 Language
Standard.

M1-0-2 Multiple compilers shall only be used if they have
a common, defined interface.

A1-1-2 A warning level of the compilation process shall
be set in compliance with project policies.

A1-1-3 An optimization option that disregards strict
standard compliance shall not be turned on in the
chosen compiler.

A1-2-1 When using a compiler toolchain (including
preprocessor, compiler itself, linker, C++
standard libraries) in safety-related software, the
tool confidence level (TCL) shall be determined.
In case of TCL2 or TCL3, the compiler shall
undergo a "Qualification of a software tool", as
per ISO 26262-8.11.4.6 [5].

A1-4-1 Code metrics and their valid boundaries shall be
defined and code shall comply with defined
boundaries of code metrics.

 Required AUTOSAR C++14 Coding Rules Supported by Polyspace Bug Finder

17-153

Rule Description
A2-7-5 Comments shall not document any actions or

sources (e.g. tables, figures, paragraphs, etc.)
that are outside of the file.

M5-17-1 The semantic equivalence between a binary
operator and its assignment operator form shall
be preserved.

M7-4-1 All usage of assembler shall be documented.
M9-6-1 When the absolute positioning of bits

representing a bit-field is required, then the
behavior and packing of bit-fields shall be
documented.

A9-6-2 Bit-fields shall be used only when interfacing to
hardware or conforming to communication
protocols.

A10-0-1 Public inheritance shall be used to implement "is-
a" relationship.

A10-0-2 Membership or non-public inheritance shall be
used to implement "has-a" relationship.

A15-0-1 A function shall not exit with an exception if it is
able to complete its task.

A15-0-4 Unchecked exceptions shall be used to represent
errors from which the caller cannot reasonably
be expected to recover.

A15-0-5 Checked exceptions shall be used to represent
errors from which the caller can reasonably be
expected to recover.

A15-0-6 An analysis shall be performed to analyze the
failure modes of exception handling. In particular,
the following failure modes shall be analyzed:\n
(a) worst time execution time not existing or
cannot be determined,\n (b) stack not correctly
unwound,\n (c) exception not thrown, other
exception thrown, wrong catch activated,\n (d)
memory not available while exception handling.

A15-0-8 A worst-case execution time (WCET) analysis
shall be performed to determine maximum
execution time constraints of the software,
covering in particular the exceptions processing.

A15-3-2 If a function throws an exception, it shall be
handled when meaningful actions can be taken,
otherwise it shall be propagated.

A17-0-2 All project's code including used libraries
(including standard and user-defined libraries)
and any third-party user code shall conform to
the AUTOSAR C++14 Coding Guidelines.

17 Polyspace Coverage of Coding Standards

17-154

Rule Description
A18-5-6 An analysis shall be performed to analyze the

failure modes of dynamic memory management.
In particular, the following failure modes shall be
analyzed:\n (a) non-deterministic behavior
resulting with nonexistence of worst-case
execution time,\n (b) memory fragmentation,\n (c)
running out of memory,\n (d) mismatched
allocations and deallocations,\n (e) dependence
on non-deterministic calls to kernel.

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

More About
• “Check for and Review Coding Standard Violations” on page 16-2
• “Coding Standards”
• “Statically Enforceable AUTOSAR C++14 Rules Supported by Polyspace Bug Finder” on page

17-156
• “Required MISRA C++:2008 Coding Rules Supported by Polyspace Bug Finder” on page 17-83
• “Checkers Deactivated in Polyspace as You Code Analysis” on page 11-78

 Required AUTOSAR C++14 Coding Rules Supported by Polyspace Bug Finder

17-155

Statically Enforceable AUTOSAR C++14 Rules Supported by
Polyspace Bug Finder

The AUTOSAR C++14 standard classifies the rules that are statically enforceable as Automated and
Partially Automated. In total, Polyspace supports 349 out of 349 2AUTOSAR C++14 coding rules
that are enforceable by a static analysis tool.

Automated Rules
According to the AUTOSAR C++14 standard, static analysis detects all violations of the Automated
rules. Polyspace Bug Finder supports 327 out of 327 Automated rules that can be enforced by a
static analysis tool. The AUTOSAR C++14 standard contains two Automated rules that cannot be
enforced by a static analysis tool.

Polyspace supports these Automated rules.

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule A0-1-1 A project shall not contain

instances of non-volatile
variables being given values
that are not subsequently used

AUTOSAR C++14 Rule
A0-1-1

AUTOSAR C++14 Rule A0-1-2 The value returned by a function
having a non-void return type
that is not an overloaded
operator shall be used

AUTOSAR C++14 Rule
A0-1-2

AUTOSAR C++14 Rule A0-1-3 Every function defined in an
anonymous namespace, or static
function with internal linkage,
or private member function
shall be used

AUTOSAR C++14 Rule
A0-1-3

AUTOSAR C++14 Rule A0-1-4 There shall be no unused named
parameters in non-virtual
functions

AUTOSAR C++14 Rule
A0-1-4

AUTOSAR C++14 Rule A0-1-5 There shall be no unused named
parameters in the set of
parameters for a virtual function
and all the functions that
override it

AUTOSAR C++14 Rule
A0-1-5

AUTOSAR C++14 Rule A0-1-6 There should be no unused type
declarations

AUTOSAR C++14 Rule
A0-1-6

AUTOSAR C++14 Rule A0-4-2 Type long double shall not be
used

AUTOSAR C++14 Rule
A0-4-2

2 The AUTOSAR C++14 standard contains 351 statically enforceable rules. The rules A0-4-3 and A1-4-3 are not
enforceable by a static analysis tool. These rules might be enforced by your compiler.

17 Polyspace Coverage of Coding Standards

17-156

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule A1-1-1 All code shall conform to

ISO/IEC 14882:2014 -
Programming Language C++
and shall not use deprecated
features

AUTOSAR C++14 Rule
A1-1-1

AUTOSAR C++14 Rule A10-1-1 Class shall not be derived from
more than one base class which
is not an interface class

AUTOSAR C++14 Rule
A10-1-1

AUTOSAR C++14 Rule A10-2-1 Non-virtual public or protected
member functions shall not be
redefined in derived classes

AUTOSAR C++14 Rule
A10-2-1

AUTOSAR C++14 Rule A10-3-1 Virtual function declaration
shall contain exactly one of the
three specifiers: (1) virtual, (2)
override, (3) final

AUTOSAR C++14 Rule
A10-3-1

AUTOSAR C++14 Rule A10-3-2 Each overriding virtual function
shall be declared with the
override or final specifier

AUTOSAR C++14 Rule
A10-3-2

AUTOSAR C++14 Rule A10-3-3 Virtual functions shall not be
introduced in a final class

AUTOSAR C++14 Rule
A10-3-3

AUTOSAR C++14 Rule A10-3-5 A user-defined assignment
operator shall not be virtual

AUTOSAR C++14 Rule
A10-3-5

AUTOSAR C++14 Rule A11-0-1 A non-POD type should be
defined as class

AUTOSAR C++14 Rule
A11-0-1

AUTOSAR C++14 Rule A11-0-2 A type defined as struct shall:
(1) provide only public data
members, (2) not provide any
special member functions or
methods, (3) not be a base of
another struct or class, (4) not
inherit from another struct or
class

AUTOSAR C++14 Rule
A11-0-2

AUTOSAR C++14 Rule A11-3-1 Friend declarations shall not be
used

AUTOSAR C++14 Rule
A11-3-1

AUTOSAR C++14 Rule A12-0-1 If a class declares a copy or
move operation, or a destructor,
either via "=default", "=delete",
or via a user-provided
declaration, then all others of
these five special member
functions shall be declared as
well

AUTOSAR C++14 Rule
A12-0-1

 Statically Enforceable AUTOSAR C++14 Rules Supported by Polyspace Bug Finder

17-157

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule A12-1-1 Constructors shall explicitly

initialize all virtual base classes,
all direct non-virtual base
classes and all non-static data
members

AUTOSAR C++14 Rule
A12-1-1

AUTOSAR C++14 Rule A12-1-2 Both NSDMI and a non-static
member initializer in a
constructor shall not be used in
the same type

AUTOSAR C++14 Rule
A12-1-2

AUTOSAR C++14 Rule A12-1-3 If all user-defined constructors
of a class initialize data
members with constant values
that are the same across all
constructors, then data
members shall be initialized
using NSDMI instead

AUTOSAR C++14 Rule
A12-1-3

AUTOSAR C++14 Rule A12-1-4 All constructors that are
callable with a single argument
of fundamental type shall be
declared explicit

AUTOSAR C++14 Rule
A12-1-4

AUTOSAR C++14 Rule A12-1-6 Derived classes that do not need
further explicit initialization and
require all the constructors
from the base class shall use
inheriting constructors

AUTOSAR C++14 Rule
A12-1-6

AUTOSAR C++14 Rule A12-4-1 Destructor of a base class shall
be public virtual, public override
or protected non-virtual

AUTOSAR C++14 Rule
A12-4-1

AUTOSAR C++14 Rule A12-4-2 If a public destructor of a class
is non-virtual, then the class
should be declared final

AUTOSAR C++14 Rule
A12-4-2

AUTOSAR C++14 Rule A12-6-1 All class data members that are
initialized by the constructor
shall be initialized using
member initializers

AUTOSAR C++14 Rule
A12-6-1

AUTOSAR C++14 Rule A12-7-1 If the behavior of a user-defined
special member function is
identical to implicitly defined
special member function, then it
shall be defined "=default" or be
left undefined

AUTOSAR C++14 Rule
A12-7-1

AUTOSAR C++14 Rule A12-8-1 Move and copy constructors
shall move and respectively
copy base classes and data
members of a class, without any
side effects

AUTOSAR C++14 Rule
A12-8-1

17 Polyspace Coverage of Coding Standards

17-158

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule A12-8-2 User-defined copy and move

assignment operators should
use user-defined no-throw swap
function

AUTOSAR C++14 Rule
A12-8-2

AUTOSAR C++14 Rule A12-8-4 Move constructor shall not
initialize its class members and
base classes using copy
semantics

AUTOSAR C++14 Rule
A12-8-4

AUTOSAR C++14 Rule A12-8-5 A copy assignment and a move
assignment operators shall
handle self-assignment

AUTOSAR C++14 Rule
A12-8-5

AUTOSAR C++14 Rule A12-8-6 Copy and move constructors
and copy assignment and move
assignment operators shall be
declared protected or defined
"=delete" in base class

AUTOSAR C++14 Rule
A12-8-6

AUTOSAR C++14 Rule A12-8-7 Assignment operators should be
declared with the ref-qualifier &

AUTOSAR C++14 Rule
A12-8-7

AUTOSAR C++14 Rule A13-1-2 User defined suffixes of the user
defined literal operators shall
start with underscore followed
by one or more letters

AUTOSAR C++14 Rule
A13-1-2

AUTOSAR C++14 Rule A13-1-3 User defined literals operators
shall only perform conversion of
passed parameters

AUTOSAR C++14 Rule
A13-1-3

AUTOSAR C++14 Rule A13-2-1 An assignment operator shall
return a reference to "this"

AUTOSAR C++14 Rule
A13-2-1

AUTOSAR C++14 Rule A13-2-2 A binary arithmetic operator
and a bitwise operator shall
return a "prvalue"

AUTOSAR C++14 Rule
A13-2-2

AUTOSAR C++14 Rule A13-2-3 A relational operator shall
return a boolean value

AUTOSAR C++14 Rule
A13-2-3

AUTOSAR C++14 Rule A13-3-1 A function that contains
"forwarding reference" as its
argument shall not be
overloaded

AUTOSAR C++14 Rule
A13-3-1

AUTOSAR C++14 Rule A13-5-1 If "operator[]" is to be
overloaded with a non-const
version, const version shall also
be implemented

AUTOSAR C++14 Rule
A13-5-1

AUTOSAR C++14 Rule A13-5-2 All user-defined conversion
operators shall be defined
explicit

AUTOSAR C++14 Rule
A13-5-2

AUTOSAR C++14 Rule A13-5-3 User-defined conversion
operators should not be used

AUTOSAR C++14 Rule
A13-5-3

 Statically Enforceable AUTOSAR C++14 Rules Supported by Polyspace Bug Finder

17-159

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule A13-5-4 If two opposite operators are

defined, one shall be defined in
terms of the other

AUTOSAR C++14 Rule
A13-5-4

AUTOSAR C++14 Rule A13-5-5 Comparison operators shall be
non-member functions with
identical parameter types and
noexcept

AUTOSAR C++14 Rule
A13-5-5

AUTOSAR C++14 Rule A13-6-1 Digit sequences separators '
shall only be used as follows: (1)
for decimal, every 3 digits, (2)
for hexadecimal, every 2 digits,
(3) for binary, every 4 digits

AUTOSAR C++14 Rule
A13-6-1

AUTOSAR C++14 Rule A14-5-1 A template constructor shall not
participate in overload
resolution for a single argument
of the enclosing class type

AUTOSAR C++14 Rule
A14-5-1

AUTOSAR C++14 Rule A14-5-3 A non-member generic operator
shall only be declared in a
namespace that does not
contain class (struct) type, enum
type or union type declarations

AUTOSAR C++14 Rule
A14-5-3

AUTOSAR C++14 Rule A14-7-1 A type used as a template
argument shall provide all
members that are used by the
template

AUTOSAR C++14 Rule
A14-7-1

AUTOSAR C++14 Rule A14-7-2 Template specialization shall be
declared in the same file (1) as
the primary template (2) as a
user-defined type, for which the
specialization is declared

AUTOSAR C++14 Rule
A14-7-2

AUTOSAR C++14 Rule A14-8-2 Explicit specializations of
function templates shall not be
used

AUTOSAR C++14 Rule
A14-8-2

AUTOSAR C++14 Rule A15-1-1 Only instances of types derived
from std::exception should be
thrown

AUTOSAR C++14 Rule
A15-1-1

AUTOSAR C++14 Rule A15-1-2 An exception object shall not be
a pointer

AUTOSAR C++14 Rule
A15-1-2

AUTOSAR C++14 Rule A15-1-3 All thrown exceptions should be
unique

AUTOSAR C++14 Rule
A15-1-3

AUTOSAR C++14 Rule A15-2-1 Constructors that are not
noexcept shall not be invoked
before program startup

AUTOSAR C++14 Rule
A15-2-1

17 Polyspace Coverage of Coding Standards

17-160

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule A15-3-5 A class type exception shall be

caught by reference or const
reference

AUTOSAR C++14 Rule
A15-3-5

AUTOSAR C++14 Rule A15-4-1 Dynamic exception-specification
shall not be used

AUTOSAR C++14 Rule
A15-4-1

AUTOSAR C++14 Rule A15-4-2 If a function is declared to be
noexcept, noexcept(true) or
noexcept(<true condition>),
then it shall not exit with an
exception

AUTOSAR C++14 Rule
A15-4-2

AUTOSAR C++14 Rule A15-4-3 The noexcept specification of a
function shall either be identical
across all translation units, or
identical or more restrictive
between a virtual member
function and an overrider

AUTOSAR C++14 Rule
A15-4-3

AUTOSAR C++14 Rule A15-4-4 A declaration of non-throwing
function shall contain noexcept
specification

AUTOSAR C++14 Rule
A15-4-4

AUTOSAR C++14 Rule A15-4-5 Checked exceptions that could
be thrown from a function shall
be specified together with the
function declaration and they
shall be identical in all function
declarations and for all its
overriders

AUTOSAR C++14 Rule
A15-4-5

AUTOSAR C++14 Rule A15-5-1 All user-provided class
destructors, deallocation
functions, move constructors,
move assignment operators and
swap functions shall not exit
with an exception. A noexcept
exception specification shall be
added to these functions as
appropriate

AUTOSAR C++14 Rule
A15-5-1

AUTOSAR C++14 Rule A15-5-3 The std::terminate() function
shall not be called implicitly

AUTOSAR C++14 Rule
A15-5-3

AUTOSAR C++14 Rule A16-0-1 The preprocessor shall only be
used for unconditional and
conditional file inclusion and
include guards, and using
specific directives

AUTOSAR C++14 Rule
A16-0-1

AUTOSAR C++14 Rule A16-2-1 The ', ", /*, //, \ characters shall
not occur in a header file name
or in #include directive

AUTOSAR C++14 Rule
A16-2-1

 Statically Enforceable AUTOSAR C++14 Rules Supported by Polyspace Bug Finder

17-161

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule A16-2-2 There shall be no unused

include directives
AUTOSAR C++14 Rule
A16-2-2

AUTOSAR C++14 Rule A16-6-1 #error directive shall not be
used

AUTOSAR C++14 Rule
A16-6-1

AUTOSAR C++14 Rule A16-7-1 The #pragma directive shall not
be used

AUTOSAR C++14 Rule
A16-7-1

AUTOSAR C++14 Rule A17-0-1 Reserved identifiers, macros
and functions in the C++
standard library shall not be
defined, redefined or undefined

AUTOSAR C++14 Rule
A17-0-1

AUTOSAR C++14 Rule A17-6-1 Non-standard entities shall not
be added to standard
namespaces

AUTOSAR C++14 Rule
A17-6-1

AUTOSAR C++14 Rule A18-0-1 The C library facilities shall only
be accessed through C++
library headers

AUTOSAR C++14 Rule
A18-0-1

AUTOSAR C++14 Rule A18-0-2 The error state of a conversion
from string to a numeric value
shall be checked

AUTOSAR C++14 Rule
A18-0-2

AUTOSAR C++14 Rule A18-0-3 The library <clocale> (locale.h)
and the setlocale function shall
not be used

AUTOSAR C++14 Rule
A18-0-3

AUTOSAR C++14 Rule A18-1-1 C-style arrays shall not be used AUTOSAR C++14 Rule
A18-1-1

AUTOSAR C++14 Rule A18-1-2 The std::vector<bool>
specialization shall not be used

AUTOSAR C++14 Rule
A18-1-2

AUTOSAR C++14 Rule A18-1-3 The std::auto_ptr shall not be
used

AUTOSAR C++14 Rule
A18-1-3

AUTOSAR C++14 Rule A18-1-4 A pointer pointing to an element
of an array of objects shall not
be passed to a smart pointer of
single object type

AUTOSAR C++14 Rule
A18-1-4

AUTOSAR C++14 Rule A18-1-6 All std::hash specializations for
user-defined types shall have a
noexcept function call operator

AUTOSAR C++14 Rule
A18-1-6

AUTOSAR C++14 Rule A18-5-1 Functions malloc, calloc, realloc
and free shall not be used

AUTOSAR C++14 Rule
A18-5-1

AUTOSAR C++14 Rule
A18-5-10

Placement new shall be used
only with properly aligned
pointers to sufficient storage
capacity

AUTOSAR C++14 Rule
A18-5-10

AUTOSAR C++14 Rule
A18-5-11

"operator new" and "operator
delete" shall be defined together

AUTOSAR C++14 Rule
A18-5-11

17 Polyspace Coverage of Coding Standards

17-162

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule A18-5-3 The form of delete operator

shall match the form of new
operator used to allocate the
memory

AUTOSAR C++14 Rule
A18-5-3

AUTOSAR C++14 Rule A18-5-4 If a project has sized or unsized
version of operator 'delete'
globally defined, then both sized
and unsized versions shall be
defined

AUTOSAR C++14 Rule
A18-5-4

AUTOSAR C++14 Rule A18-5-9 Custom implementations of
dynamic memory allocation and
deallocation functions shall
meet the semantic requirements
specified in the corresponding
"Required behaviour" clause
from the C++ Standard

AUTOSAR C++14 Rule
A18-5-9

AUTOSAR C++14 Rule A18-9-1 The std::bind shall not be used AUTOSAR C++14 Rule
A18-9-1

AUTOSAR C++14 Rule A18-9-2 Forwarding values to other
functions shall be done via: (1)
std::move if the value is an
rvalue reference, (2)
std::forward if the value is
forwarding reference

AUTOSAR C++14 Rule
A18-9-2

AUTOSAR C++14 Rule A18-9-3 The std::move shall not be used
on objects declared const or
const&

AUTOSAR C++14 Rule
A18-9-3

AUTOSAR C++14 Rule A18-9-4 An argument to std::forward
shall not be subsequently used

AUTOSAR C++14 Rule
A18-9-4

AUTOSAR C++14 Rule A2-10-1 An identifier declared in an
inner scope shall not hide an
identifier declared in an outer
scope

AUTOSAR C++14 Rule
A2-10-1

AUTOSAR C++14 Rule A2-10-4 The identifier name of a non-
member object with static
storage duration or static
function shall not be reused
within a namespace

AUTOSAR C++14 Rule
A2-10-4

AUTOSAR C++14 Rule A2-10-5 An identifier name of a function
with static storage duration or a
non-member object with
external or internal linkage
should not be reused

AUTOSAR C++14 Rule
A2-10-5

 Statically Enforceable AUTOSAR C++14 Rules Supported by Polyspace Bug Finder

17-163

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule A2-10-6 A class or enumeration name

shall not be hidden by a
variable, function or enumerator
declaration in the same scope

AUTOSAR C++14 Rule
A2-10-6

AUTOSAR C++14 Rule A2-11-1 Volatile keyword shall not be
used

AUTOSAR C++14 Rule
A2-11-1

AUTOSAR C++14 Rule A2-13-1 Only those escape sequences
that are defined in ISO/IEC
14882:2014 shall be used

AUTOSAR C++14 Rule
A2-13-1

AUTOSAR C++14 Rule A2-13-2 String literals with different
encoding prefixes shall not be
concatenated

AUTOSAR C++14 Rule
A2-13-2

AUTOSAR C++14 Rule A2-13-3 Type wchar_t shall not be used AUTOSAR C++14 Rule
A2-13-3

AUTOSAR C++14 Rule A2-13-4 String literals shall not be
assigned to non-constant
pointers

AUTOSAR C++14 Rule
A2-13-4

AUTOSAR C++14 Rule A2-13-5 Hexadecimal constants should
be uppercase

AUTOSAR C++14 Rule
A2-13-5

AUTOSAR C++14 Rule A2-13-6 Universal character names shall
be used only inside character or
string literals

AUTOSAR C++14 Rule
A2-13-6

AUTOSAR C++14 Rule A2-3-1 Only those characters specified
in the C++ Language Standard
basic source character set shall
be used in the source code

AUTOSAR C++14 Rule
A2-3-1

AUTOSAR C++14 Rule A2-5-1 Trigraphs shall not be used AUTOSAR C++14 Rule
A2-5-1

AUTOSAR C++14 Rule A2-5-2 Digraphs shall not be used AUTOSAR C++14 Rule
A2-5-2

AUTOSAR C++14 Rule A2-7-1 The character \ shall not occur
as a last character of a C++
comment

AUTOSAR C++14 Rule
A2-7-1

AUTOSAR C++14 Rule A2-7-3 All declarations of "user-
defined" types, static and non-
static data members, functions
and methods shall be preceded
by documentation

AUTOSAR C++14 Rule
A2-7-3

AUTOSAR C++14 Rule A20-8-1 An already-owned pointer value
shall not be stored in an
unrelated smart pointer

AUTOSAR C++14 Rule
A20-8-1

AUTOSAR C++14 Rule A20-8-2 A std::unique_ptr shall be used
to represent exclusive
ownership

AUTOSAR C++14 Rule
A20-8-2

17 Polyspace Coverage of Coding Standards

17-164

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule A20-8-3 A std::shared_ptr shall be used

to represent shared ownership
AUTOSAR C++14 Rule
A20-8-3

AUTOSAR C++14 Rule A20-8-4 A std::unique_ptr shall be used
over std::shared_ptr if
ownership sharing is not
required

AUTOSAR C++14 Rule
A20-8-4

AUTOSAR C++14 Rule A20-8-5 std::make_unique shall be used
to construct objects owned by
std::unique_ptr

AUTOSAR C++14 Rule
A20-8-5

AUTOSAR C++14 Rule A20-8-6 std::make_shared shall be used
to construct objects owned by
std::shared_ptr

AUTOSAR C++14 Rule
A20-8-6

AUTOSAR C++14 Rule A21-8-1 Arguments to character-
handling functions shall be
representable as an unsigned
char

AUTOSAR C++14 Rule
A21-8-1

AUTOSAR C++14 Rule A23-0-1 An iterator shall not be
implicitly converted to
const_iterator

AUTOSAR C++14 Rule
A23-0-1

AUTOSAR C++14 Rule A23-0-2 Elements of a container shall
only be accessed via valid
references, iterators, and
pointers

AUTOSAR C++14 Rule
A23-0-2

AUTOSAR C++14 Rule A25-1-1 Non-static data members or
captured values of predicate
function objects that are state
related to this object's identity
shall not be copied

AUTOSAR C++14 Rule
A25-1-1

AUTOSAR C++14 Rule A26-5-1 Pseudorandom numbers shall
not be generated using
std::rand()

AUTOSAR C++14 Rule
A26-5-1

AUTOSAR C++14 Rule A26-5-2 Random number engines shall
not be default-initialized

AUTOSAR C++14 Rule
A26-5-2

AUTOSAR C++14 Rule A27-0-2 A C-style string shall guarantee
sufficient space for data and the
null terminator

AUTOSAR C++14 Rule
A27-0-2

AUTOSAR C++14 Rule A27-0-3 Alternate input and output
operations on a file stream shall
not be used without an
intervening flush or positioning
call

AUTOSAR C++14 Rule
A27-0-3

AUTOSAR C++14 Rule A27-0-4 C-style strings shall not be used AUTOSAR C++14 Rule
A27-0-4

 Statically Enforceable AUTOSAR C++14 Rules Supported by Polyspace Bug Finder

17-165

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule A3-1-1 It shall be possible to include

any header file in multiple
translation units without
violating the One Definition
Rule

AUTOSAR C++14 Rule
A3-1-1

AUTOSAR C++14 Rule A3-1-2 Header files, that are defined
locally in the project, shall have
a file name extension of one
of: .h, .hpp or .hxx

AUTOSAR C++14 Rule
A3-1-2

AUTOSAR C++14 Rule A3-1-3 Implementation files, that are
defined locally in the project,
should have a file name
extension of ".cpp"

AUTOSAR C++14 Rule
A3-1-3

AUTOSAR C++14 Rule A3-1-4 When an array with external
linkage is declared, its size shall
be stated explicitly

AUTOSAR C++14 Rule
A3-1-4

AUTOSAR C++14 Rule A3-1-6 Trivial accessor and mutator
functions should be inlined

AUTOSAR C++14 Rule
A3-1-6

AUTOSAR C++14 Rule A3-3-1 Objects or functions with
external linkage (including
members of named namespaces)
shall be declared in a header file

AUTOSAR C++14 Rule
A3-3-1

AUTOSAR C++14 Rule A3-3-2 Static and thread-local objects
shall be constant-initialized

AUTOSAR C++14 Rule
A3-3-2

AUTOSAR C++14 Rule A3-9-1 Fixed width integer types from
<cstdint>, indicating the size
and signedness, shall be used in
place of the basic numerical
types

AUTOSAR C++14 Rule
A3-9-1

AUTOSAR C++14 Rule A4-10-1 Only nullptr literal shall be used
as the null-pointer-constraint

AUTOSAR C++14 Rule
A4-10-1

AUTOSAR C++14 Rule A4-5-1 Expressions with type enum or
enum class shall not be used as
operands to built-in and
overloaded operators other than
the subscript operator [], the
assignment operator =, the
equality operators == and !=,
the unary & operator, and the
relational operators <, <=, >,
>=

AUTOSAR C++14 Rule
A4-5-1

AUTOSAR C++14 Rule A4-7-1 An integer expression shall not
lead to data loss

AUTOSAR C++14 Rule
A4-7-1

17 Polyspace Coverage of Coding Standards

17-166

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule A5-0-1 The value of an expression shall

be the same under any order of
evaluation that the standard
permits

AUTOSAR C++14 Rule
A5-0-1

AUTOSAR C++14 Rule A5-0-2 The condition of an if-statement
and the condition of an iteration
statement shall have type bool

AUTOSAR C++14 Rule
A5-0-2

AUTOSAR C++14 Rule A5-0-3 The declaration of objects shall
contain no more than two levels
of pointer indirection

AUTOSAR C++14 Rule
A5-0-3

AUTOSAR C++14 Rule A5-0-4 Pointer arithmetic shall not be
used with pointers to non-final
classes

AUTOSAR C++14 Rule
A5-0-4

AUTOSAR C++14 Rule A5-1-2 Variables shall not be implicitly
captured in a lambda expression

AUTOSAR C++14 Rule
A5-1-2

AUTOSAR C++14 Rule A5-1-3 Parameter list (possibly empty)
shall be included in every
lambda expression

AUTOSAR C++14 Rule
A5-1-3

AUTOSAR C++14 Rule A5-1-4 A lambda expression object
shall not outlive any of its
reference-captured objects

AUTOSAR C++14 Rule
A5-1-4

AUTOSAR C++14 Rule A5-1-6 Return type of a non-void return
type lambda expression should
be explicitly specified

AUTOSAR C++14 Rule
A5-1-6

AUTOSAR C++14 Rule A5-1-7 A lambda shall not be an
operand to decltype or typeid

AUTOSAR C++14 Rule
A5-1-7

AUTOSAR C++14 Rule A5-1-8 Lambda expressions should not
be defined inside another
lambda expression

AUTOSAR C++14 Rule
A5-1-8

AUTOSAR C++14 Rule A5-1-9 Identical unnamed lambda
expressions shall be replaced
with a named function or a
named lambda expression

AUTOSAR C++14 Rule
A5-1-9

AUTOSAR C++14 Rule A5-10-1 A pointer to member virtual
function shall only be tested for
equality with null-pointer-
constant

AUTOSAR C++14 Rule
A5-10-1

AUTOSAR C++14 Rule A5-16-1 The ternary conditional operator
shall not be used as a sub-
expression

AUTOSAR C++14 Rule
A5-16-1

AUTOSAR C++14 Rule A5-2-1 dynamic_cast should not be
used

AUTOSAR C++14 Rule
A5-2-1

AUTOSAR C++14 Rule A5-2-2 Traditional C-style casts shall
not be used

AUTOSAR C++14 Rule
A5-2-2

 Statically Enforceable AUTOSAR C++14 Rules Supported by Polyspace Bug Finder

17-167

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule A5-2-3 A cast shall not remove any

const or volatile qualification
from the type of a pointer or
reference

AUTOSAR C++14 Rule
A5-2-3

AUTOSAR C++14 Rule A5-2-4 reinterpret_cast shall not be
used

AUTOSAR C++14 Rule
A5-2-4

AUTOSAR C++14 Rule A5-2-5 An array or container shall not
be accessed beyond its range

AUTOSAR C++14 Rule
A5-2-5

AUTOSAR C++14 Rule A5-2-6 The operands of a logical && or
|| shall be parenthesized if the
operands contain binary
operators

AUTOSAR C++14 Rule
A5-2-6

AUTOSAR C++14 Rule A5-3-3 Pointers to incomplete class
types shall not be deleted

AUTOSAR C++14 Rule
A5-3-3

AUTOSAR C++14 Rule A5-5-1 A pointer to member shall not
access non-existent class
members

AUTOSAR C++14 Rule
A5-5-1

AUTOSAR C++14 Rule A5-6-1 The right hand operand of the
integer division or remainder
operators shall not be equal to
zero

AUTOSAR C++14 Rule
A5-6-1

AUTOSAR C++14 Rule A6-2-1 Move and copy assignment
operators shall either move or
respectively copy base classes
and data members of a class,
without any side effects

AUTOSAR C++14 Rule
A6-2-1

AUTOSAR C++14 Rule A6-2-2 Expression statements shall not
be explicit calls to constructors
of temporary objects only

AUTOSAR C++14 Rule
A6-2-2

AUTOSAR C++14 Rule A6-4-1 A switch statement shall have
at least two case-clauses,
distinct from the default label

AUTOSAR C++14 Rule
A6-4-1

AUTOSAR C++14 Rule A6-5-1 A for-loop that loops through all
elements of the container and
does not use its loop-counter
shall not be used

AUTOSAR C++14 Rule
A6-5-1

AUTOSAR C++14 Rule A6-5-2 A for loop shall contain a single
loop-counter which shall not
have floating-point type

AUTOSAR C++14 Rule
A6-5-2

AUTOSAR C++14 Rule A6-5-3 Do statements should not be
used

AUTOSAR C++14 Rule
A6-5-3

AUTOSAR C++14 Rule A6-5-4 For-init-statement and
expression should not perform
actions other than loop-counter
initialization and modification

AUTOSAR C++14 Rule
A6-5-4

17 Polyspace Coverage of Coding Standards

17-168

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule A6-6-1 The goto statement shall not be

used
AUTOSAR C++14 Rule
A6-6-1

AUTOSAR C++14 Rule A7-1-1 Constexpr or const specifiers
shall be used for immutable
data declaration

AUTOSAR C++14 Rule
A7-1-1

AUTOSAR C++14 Rule A7-1-2 The constexpr specifier shall be
used for values that can be
determined at compile time

AUTOSAR C++14 Rule
A7-1-2

AUTOSAR C++14 Rule A7-1-3 CV-qualifiers shall be placed on
the right hand side of the type
that is a typedef or a using
name

AUTOSAR C++14 Rule
A7-1-3

AUTOSAR C++14 Rule A7-1-4 The register keyword shall not
be used

AUTOSAR C++14 Rule
A7-1-4

AUTOSAR C++14 Rule A7-1-5 The auto specifier shall not be
used apart from following cases:
(1) to declare that a variable has
the same type as return type of
a function call, (2) to declare
that a variable has the same
type as initializer of non-
fundamental type, (3) to declare
parameters of a generic lambda
expression, (4) to declare a
function template using trailing
return type syntax

AUTOSAR C++14 Rule
A7-1-5

AUTOSAR C++14 Rule A7-1-6 The typedef specifier shall not
be used

AUTOSAR C++14 Rule
A7-1-6

AUTOSAR C++14 Rule A7-1-7 Each expression statement and
identifier declaration shall be
placed on a separate line

AUTOSAR C++14 Rule
A7-1-7

AUTOSAR C++14 Rule A7-1-8 A non-type specifier shall be
placed before a type specifier in
a declaration

AUTOSAR C++14 Rule
A7-1-8

AUTOSAR C++14 Rule A7-1-9 A class, structure, or
enumeration shall not be
declared in the definition of its
type

AUTOSAR C++14 Rule
A7-1-9

AUTOSAR C++14 Rule A7-2-1 An expression with enum
underlying type shall only have
values corresponding to the
enumerators of the enumeration

AUTOSAR C++14 Rule
A7-2-1

AUTOSAR C++14 Rule A7-2-2 Enumeration underlying type
shall be explicitly defined

AUTOSAR C++14 Rule
A7-2-2

 Statically Enforceable AUTOSAR C++14 Rules Supported by Polyspace Bug Finder

17-169

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule A7-2-3 Enumerations shall be declared

as scoped enum classes
AUTOSAR C++14 Rule
A7-2-3

AUTOSAR C++14 Rule A7-2-4 In an enumeration, either (1)
none, (2) the first or (3) all
enumerators shall be initialized

AUTOSAR C++14 Rule
A7-2-4

AUTOSAR C++14 Rule A7-3-1 All overloads of a function shall
be visible from where it is called

AUTOSAR C++14 Rule
A7-3-1

AUTOSAR C++14 Rule A7-4-1 The asm declaration shall not be
used

AUTOSAR C++14 Rule
A7-4-1

AUTOSAR C++14 Rule A7-5-1 A function shall not return a
reference or a pointer to a
parameter that is passed by
reference to const

AUTOSAR C++14 Rule
A7-5-1

AUTOSAR C++14 Rule A7-5-2 Functions shall not call
themselves, either directly or
indirectly

AUTOSAR C++14 Rule
A7-5-2

AUTOSAR C++14 Rule A7-6-1 Functions declared with the
[[noreturn]] attribute shall not
return

AUTOSAR C++14 Rule
A7-6-1

AUTOSAR C++14 Rule A8-2-1 When declaring function
templates, the trailing return
type syntax shall be used if the
return type depends on the type
of parameters

AUTOSAR C++14 Rule
A8-2-1

AUTOSAR C++14 Rule A8-4-1 Functions shall not be defined
using the ellipsis notation

AUTOSAR C++14 Rule
A8-4-1

AUTOSAR C++14 Rule A8-4-10 A parameter shall be passed by
reference if it can't be NULL

AUTOSAR C++14 Rule
A8-4-10

AUTOSAR C++14 Rule A8-4-11 A smart pointer shall only be
used as a parameter type if it
expresses lifetime semantics

AUTOSAR C++14 Rule
A8-4-11

AUTOSAR C++14 Rule A8-4-12 A std::unique_ptr shall be
passed to a function as: (1) a
copy to express the function
assumes ownership (2) an lvalue
reference to express that the
function replaces the managed
object.

AUTOSAR C++14 Rule
A8-4-12

17 Polyspace Coverage of Coding Standards

17-170

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule A8-4-13 A std::shared_ptr shall be

passed to a function as: (1) a
copy to express the function
shares ownership (2) an lvalue
reference to express that the
function replaces the managed
object (3) a const lvalue
reference to express that the
function retains a reference
count.

AUTOSAR C++14 Rule
A8-4-13

AUTOSAR C++14 Rule A8-4-2 All exit paths from a function
with non-void return type shall
have an explicit return
statement with an expression

AUTOSAR C++14 Rule
A8-4-2

AUTOSAR C++14 Rule A8-4-4 Multiple output values from a
function should be returned as a
struct or tuple

AUTOSAR C++14 Rule
A8-4-4

AUTOSAR C++14 Rule A8-4-5 "consume" parameters declared
as X && shall always be moved
from

AUTOSAR C++14 Rule
A8-4-5

AUTOSAR C++14 Rule A8-4-6 "forward" parameters declared
as T && shall always be
forwarded

AUTOSAR C++14 Rule
A8-4-6

AUTOSAR C++14 Rule A8-4-7 "in" parameters for "cheap to
copy" types shall be passed by
value

AUTOSAR C++14 Rule
A8-4-7

AUTOSAR C++14 Rule A8-4-8 Output parameters shall not be
used

AUTOSAR C++14 Rule
A8-4-8

AUTOSAR C++14 Rule A8-4-9 "in-out" parameters declared as
T & shall be modified

AUTOSAR C++14 Rule
A8-4-9

AUTOSAR C++14 Rule A8-5-0 All memory shall be initialized
before it is read

AUTOSAR C++14 Rule
A8-5-0

AUTOSAR C++14 Rule A8-5-1 In an initialization list, the order
of initialization shall be
following: (1) virtual base
classes in depth and left to right
order of the inheritance graph,
(2) direct base classes in left to
right order of inheritance list,
(3) non-static data members in
the order they were declared in
the class definition

AUTOSAR C++14 Rule
A8-5-1

AUTOSAR C++14 Rule A8-5-2 Braced-initialization {}, without
equals sign, shall be used for
variable initialization

AUTOSAR C++14 Rule
A8-5-2

 Statically Enforceable AUTOSAR C++14 Rules Supported by Polyspace Bug Finder

17-171

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule A8-5-3 A variable of type auto shall not

be initialized using {} or ={}
braced-initialization

AUTOSAR C++14 Rule
A8-5-3

AUTOSAR C++14 Rule A8-5-4 If a class has a user-declared
constructor that takes a
parameter of type
std::initializer_list, then it shall
be the only constructor apart
from special member function
constructors

AUTOSAR C++14 Rule
A8-5-4

AUTOSAR C++14 Rule A9-5-1 Unions shall not be used AUTOSAR C++14 Rule
A9-5-1

AUTOSAR C++14 Rule M0-1-1 A project shall not contain
unreachable code

AUTOSAR C++14 Rule
M0-1-1

AUTOSAR C++14 Rule M0-1-10 Every defined function should
be called at least once

AUTOSAR C++14 Rule
M0-1-10

AUTOSAR C++14 Rule M0-1-2 A project shall not contain
infeasible paths

AUTOSAR C++14 Rule
M0-1-2

AUTOSAR C++14 Rule M0-1-3 A project shall not contain
unused variables

AUTOSAR C++14 Rule
M0-1-3

AUTOSAR C++14 Rule M0-1-4 A project shall not contain non-
volatile POD variables having
only one use

AUTOSAR C++14 Rule
M0-1-4

AUTOSAR C++14 Rule M0-1-8 All functions with void return
type shall have external side
effect(s)

AUTOSAR C++14 Rule
M0-1-8

AUTOSAR C++14 Rule M0-1-9 There shall be no dead code AUTOSAR C++14 Rule
M0-1-9

AUTOSAR C++14 Rule M0-2-1 An object shall not be assigned
to an overlapping object

AUTOSAR C++14 Rule
M0-2-1

AUTOSAR C++14 Rule M10-1-1 Classes should not be derived
from virtual bases

AUTOSAR C++14 Rule
M10-1-1

AUTOSAR C++14 Rule M10-1-2 A base class shall only be
declared virtual if it is used in a
diamond hierarchy

AUTOSAR C++14 Rule
M10-1-2

AUTOSAR C++14 Rule M10-1-3 An accessible base class shall
not be both virtual and non-
virtual in the same hierarchy

AUTOSAR C++14 Rule
M10-1-3

AUTOSAR C++14 Rule M10-2-1 All accessible entity names
within a multiple inheritance
hierarchy should be unique

AUTOSAR C++14 Rule
M10-2-1

17 Polyspace Coverage of Coding Standards

17-172

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule M10-3-3 A virtual function shall only be

overridden by a pure virtual
function if it is itself declared as
pure virtual

AUTOSAR C++14 Rule
M10-3-3

AUTOSAR C++14 Rule M11-0-1 Member data in non-POD class
types shall be private

AUTOSAR C++14 Rule
M11-0-1

AUTOSAR C++14 Rule M12-1-1 An object's dynamic type shall
not be used from the body of its
constructor or destructor

AUTOSAR C++14 Rule
M12-1-1

AUTOSAR C++14 Rule M14-5-3 A copy assignment operator
shall be declared when there is
a template assignment operator
with a parameter that is a
generic parameter

AUTOSAR C++14 Rule
M14-5-3

AUTOSAR C++14 Rule M14-6-1 In a class template with a
dependent base, any name that
may be found in that dependent
base shall be referred to using a
qualified-id or this->

AUTOSAR C++14 Rule
M14-6-1

AUTOSAR C++14 Rule M15-0-3 Control shall not be transferred
into a try or catch block using a
goto or a switch statement

AUTOSAR C++14 Rule
M15-0-3

AUTOSAR C++14 Rule M15-1-1 The assignment-expression of a
throw statement shall not itself
cause an exception to be thrown

AUTOSAR C++14 Rule
M15-1-1

AUTOSAR C++14 Rule M15-1-2 NULL shall not be thrown
explicitly

AUTOSAR C++14 Rule
M15-1-2

AUTOSAR C++14 Rule M15-1-3 An empty throw (throw;) shall
only be used in the compound
statement of a catch handler

AUTOSAR C++14 Rule
M15-1-3

AUTOSAR C++14 Rule M15-3-1 Exceptions shall be raised only
after start-up and before
termination

AUTOSAR C++14 Rule
M15-3-1

AUTOSAR C++14 Rule M15-3-3 Handlers of a function-try-block
implementation of a class
constructor or destructor shall
not reference non-static
members from this class or its
bases

AUTOSAR C++14 Rule
M15-3-3

AUTOSAR C++14 Rule M15-3-4 Each exception explicitly thrown
in the code shall have a handler
of a compatible type in all call
paths that could lead to that
point

AUTOSAR C++14 Rule
M15-3-4

 Statically Enforceable AUTOSAR C++14 Rules Supported by Polyspace Bug Finder

17-173

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule M15-3-6 Where multiple handlers are

provided in a single try-catch
statement or function-try-block
for a derived class and some or
all of its bases, the handlers
shall be ordered most-derived to
base class

AUTOSAR C++14 Rule
M15-3-6

AUTOSAR C++14 Rule M15-3-7 Where multiple handlers are
provided in a single try-catch
statement or function-try-block,
any ellipsis (catch-all) handler
shall occur last

AUTOSAR C++14 Rule
M15-3-7

AUTOSAR C++14 Rule M16-0-1 #include directives in a file shall
only be preceded by other
preprocessor directives or
comments

AUTOSAR C++14 Rule
M16-0-1

AUTOSAR C++14 Rule M16-0-2 Macros shall only be #define'd
or #undef'd in the global
namespace

AUTOSAR C++14 Rule
M16-0-2

AUTOSAR C++14 Rule M16-0-5 Arguments to a function-like
macro shall not contain tokens
that look like pre-processing
directives

AUTOSAR C++14 Rule
M16-0-5

AUTOSAR C++14 Rule M16-0-6 In the definition of a function-
like macro, each instance of a
parameter shall be enclosed in
parentheses, unless it is used as
the operand of # or ##

AUTOSAR C++14 Rule
M16-0-6

AUTOSAR C++14 Rule M16-0-7 Undefined macro identifiers
shall not be used in #if or #elif
pre-processor directives, except
as operands to the defined
operator

AUTOSAR C++14 Rule
M16-0-7

AUTOSAR C++14 Rule M16-0-8 If the # token appears as the
first token on a line, then it shall
be immediately followed by a
preprocessing token

AUTOSAR C++14 Rule
M16-0-8

AUTOSAR C++14 Rule M16-1-1 The defined pre-processor
operator shall only be used in
one of the two standard forms

AUTOSAR C++14 Rule
M16-1-1

AUTOSAR C++14 Rule M16-1-2 All #else, #elif and #endif pre-
processor directives shall reside
in the same file as the #if or
#ifdef directive to which they
are related

AUTOSAR C++14 Rule
M16-1-2

17 Polyspace Coverage of Coding Standards

17-174

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule M16-2-3 Include guards shall be

provided
AUTOSAR C++14 Rule
M16-2-3

AUTOSAR C++14 Rule M16-3-1 There shall be at most one
occurrence of the # or ##
operators in a single macro
definition

AUTOSAR C++14 Rule
M16-3-1

AUTOSAR C++14 Rule M16-3-2 The # and ## operators should
not be used

AUTOSAR C++14 Rule
M16-3-2

AUTOSAR C++14 Rule M17-0-2 The names of standard library
macros and objects shall not be
reused

AUTOSAR C++14 Rule
M17-0-2

AUTOSAR C++14 Rule M17-0-3 The names of standard library
functions shall not be
overridden

AUTOSAR C++14 Rule
M17-0-3

AUTOSAR C++14 Rule M17-0-5 The setjmp macro and the
longjmp function shall not be
used

AUTOSAR C++14 Rule
M17-0-5

AUTOSAR C++14 Rule M18-0-3 The library functions abort, exit,
getenv and system from library
<cstdlib> shall not be used

AUTOSAR C++14 Rule
M18-0-3

AUTOSAR C++14 Rule M18-0-4 The time handling functions of
library <ctime> shall not be
used

AUTOSAR C++14 Rule
M18-0-4

AUTOSAR C++14 Rule M18-0-5 The unbounded functions of
library <cstring> shall not be
used

AUTOSAR C++14 Rule
M18-0-5

AUTOSAR C++14 Rule M18-2-1 The macro offsetof shall not be
used

AUTOSAR C++14 Rule
M18-2-1

AUTOSAR C++14 Rule M18-7-1 The signal handling facilities of
<csignal> shall not be used

AUTOSAR C++14 Rule
M18-7-1

AUTOSAR C++14 Rule M19-3-1 The error indicator errno shall
not be used

AUTOSAR C++14 Rule
M19-3-1

AUTOSAR C++14 Rule M2-10-1 Different identifiers shall be
typographically unambiguous

AUTOSAR C++14 Rule
M2-10-1

AUTOSAR C++14 Rule M2-13-2 Octal constants (other than
zero) and octal escape
sequences (other than "\0")
shall not be used

AUTOSAR C++14 Rule
M2-13-2

AUTOSAR C++14 Rule M2-13-3 A "U" suffix shall be applied to
all octal or hexadecimal integer
literals of unsigned type

AUTOSAR C++14 Rule
M2-13-3

AUTOSAR C++14 Rule M2-13-4 Literal suffixes shall be upper
case

AUTOSAR C++14 Rule
M2-13-4

 Statically Enforceable AUTOSAR C++14 Rules Supported by Polyspace Bug Finder

17-175

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule M2-7-1 The character sequence /* shall

not be used within a C-style
comment

AUTOSAR C++14 Rule
M2-7-1

AUTOSAR C++14 Rule M27-0-1 The stream input/output library
<cstdio> shall not be used

AUTOSAR C++14 Rule
M27-0-1

AUTOSAR C++14 Rule M3-1-2 Functions shall not be declared
at block scope

AUTOSAR C++14 Rule
M3-1-2

AUTOSAR C++14 Rule M3-2-1 All declarations of an object or
function shall have compatible
types

AUTOSAR C++14 Rule
M3-2-1

AUTOSAR C++14 Rule M3-2-2 The One Definition Rule shall
not be violated

AUTOSAR C++14 Rule
M3-2-2

AUTOSAR C++14 Rule M3-2-3 A type, object or function that is
used in multiple translation
units shall be declared in one
and only one file

AUTOSAR C++14 Rule
M3-2-3

AUTOSAR C++14 Rule M3-2-4 An identifier with external
linkage shall have exactly one
definition

AUTOSAR C++14 Rule
M3-2-4

AUTOSAR C++14 Rule M3-3-2 If a function has internal linkage
then all re-declarations shall
include the static storage class
specifier

AUTOSAR C++14 Rule
M3-3-2

AUTOSAR C++14 Rule M3-4-1 An identifier declared to be an
object or type shall be defined in
a block that minimizes its
visibility

AUTOSAR C++14 Rule
M3-4-1

AUTOSAR C++14 Rule M3-9-1 The types used for an object, a
function return type, or a
function parameter shall be
token-for-token identical in all
declarations and re-declarations

AUTOSAR C++14 Rule
M3-9-1

AUTOSAR C++14 Rule M3-9-3 The underlying bit
representations of floating-point
values shall not be used

AUTOSAR C++14 Rule
M3-9-3

AUTOSAR C++14 Rule M4-10-1 NULL shall not be used as an
integer value

AUTOSAR C++14 Rule
M4-10-1

AUTOSAR C++14 Rule M4-10-2 Literal zero (0) shall not be used
as the null-pointer-constant

AUTOSAR C++14 Rule
M4-10-2

17 Polyspace Coverage of Coding Standards

17-176

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule M4-5-1 Expressions with type bool shall

not be used as operands to built-
in operators other than the
assignment operator =, the
logical operators &&, ||, !, the
equality operators == and ! =,
the unary & operator, and the
conditional operator

AUTOSAR C++14 Rule
M4-5-1

AUTOSAR C++14 Rule M4-5-3 Expressions with type (plain)
char and wchar_t shall not be
used as operands to built-in
operators other than the
assignment operator =, the
equality operators == and ! =,
and the unary & operator

AUTOSAR C++14 Rule
M4-5-3

AUTOSAR C++14 Rule M5-0-10 If the bitwise operators ~and
<< are applied to an operand
with an underlying type of
unsigned char or unsigned
short, the result shall be
immediately cast to the
underlying type of the operand

AUTOSAR C++14 Rule
M5-0-10

AUTOSAR C++14 Rule M5-0-11 The plain char type shall only be
used for the storage and use of
character values

AUTOSAR C++14 Rule
M5-0-11

AUTOSAR C++14 Rule M5-0-12 Signed char and unsigned char
type shall only be used for the
storage and use of numeric
values

AUTOSAR C++14 Rule
M5-0-12

AUTOSAR C++14 Rule M5-0-14 The first operand of a
conditional-operator shall have
type bool

AUTOSAR C++14 Rule
M5-0-14

AUTOSAR C++14 Rule M5-0-15 Array indexing shall be the only
form of pointer arithmetic

AUTOSAR C++14 Rule
M5-0-15

AUTOSAR C++14 Rule M5-0-16 A pointer operand and any
pointer resulting from pointer
arithmetic using that operand
shall both address elements of
the same array

AUTOSAR C++14 Rule
M5-0-16

AUTOSAR C++14 Rule M5-0-17 Subtraction between pointers
shall only be applied to pointers
that address elements of the
same array

AUTOSAR C++14 Rule
M5-0-17

AUTOSAR C++14 Rule M5-0-18 >, >=, <, <= shall not be
applied to objects of pointer
type, except where they point to
the same array

AUTOSAR C++14 Rule
M5-0-18

 Statically Enforceable AUTOSAR C++14 Rules Supported by Polyspace Bug Finder

17-177

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule M5-0-20 Non-constant operands to a

binary bitwise operator shall
have the same underlying type

AUTOSAR C++14 Rule
M5-0-20

AUTOSAR C++14 Rule M5-0-21 Bitwise operators shall only be
applied to operands of unsigned
underlying type

AUTOSAR C++14 Rule
M5-0-21

AUTOSAR C++14 Rule M5-0-3 A cvalue expression shall not be
implicitly converted to a
different underlying type

AUTOSAR C++14 Rule
M5-0-3

AUTOSAR C++14 Rule M5-0-4 An implicit integral conversion
shall not change the signedness
of the underlying type

AUTOSAR C++14 Rule
M5-0-4

AUTOSAR C++14 Rule M5-0-5 There shall be no implicit
floating-integral conversions

AUTOSAR C++14 Rule
M5-0-5

AUTOSAR C++14 Rule M5-0-6 An implicit integral or floating-
point conversion shall not
reduce the size of the
underlying type

AUTOSAR C++14 Rule
M5-0-6

AUTOSAR C++14 Rule M5-0-7 There shall be no explicit
floating-integral conversions of
a cvalue expression

AUTOSAR C++14 Rule
M5-0-7

AUTOSAR C++14 Rule M5-0-8 An explicit integral or floating-
point conversion shall not
increase the size of the
underlying type of a cvalue
expression

AUTOSAR C++14 Rule
M5-0-8

AUTOSAR C++14 Rule M5-0-9 An explicit integral conversion
shall not change the signedness
of the underlying type of a
cvalue expression

AUTOSAR C++14 Rule
M5-0-9

AUTOSAR C++14 Rule M5-14-1 The right hand operand of a
logical &&, || operators shall not
contain side effects

AUTOSAR C++14 Rule
M5-14-1

AUTOSAR C++14 Rule M5-18-1 The comma operator shall not
be used

AUTOSAR C++14 Rule
M5-18-1

AUTOSAR C++14 Rule M5-19-1 Evaluation of constant unsigned
integer expressions shall not
lead to wrap-around

AUTOSAR C++14 Rule
M5-19-1

AUTOSAR C++14 Rule M5-2-10 The increment (++) and
decrement (--) operators shall
not be mixed with other
operators in an expression

AUTOSAR C++14 Rule
M5-2-10

AUTOSAR C++14 Rule M5-2-11 The comma operator, &&
operator and the || operator
shall not be overloaded

AUTOSAR C++14 Rule
M5-2-11

17 Polyspace Coverage of Coding Standards

17-178

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule M5-2-12 An identifier with array type

passed as a function argument
shall not decay to a pointer

AUTOSAR C++14 Rule
M5-2-12

AUTOSAR C++14 Rule M5-2-2 A pointer to a virtual base class
shall only be cast to a pointer to
a derived class by means of
dynamic_cast

AUTOSAR C++14 Rule
M5-2-2

AUTOSAR C++14 Rule M5-2-3 Casts from a base class to a
derived class should not be
performed on polymorphic types

AUTOSAR C++14 Rule
M5-2-3

AUTOSAR C++14 Rule M5-2-6 A cast shall not convert a
pointer to a function to any
other pointer type, including a
pointer to function type

AUTOSAR C++14 Rule
M5-2-6

AUTOSAR C++14 Rule M5-2-8 An object with integer type or
pointer to void type shall not be
converted to an object with
pointer type

AUTOSAR C++14 Rule
M5-2-8

AUTOSAR C++14 Rule M5-2-9 A cast shall not convert a
pointer type to an integral type

AUTOSAR C++14 Rule
M5-2-9

AUTOSAR C++14 Rule M5-3-1 Each operand of the ! operator,
the logical && or the logical ||
operators shall have type bool

AUTOSAR C++14 Rule
M5-3-1

AUTOSAR C++14 Rule M5-3-2 The unary minus operator shall
not be applied to an expression
whose underlying type is
unsigned

AUTOSAR C++14 Rule
M5-3-2

AUTOSAR C++14 Rule M5-3-3 The unary & operator shall not
be overloaded

AUTOSAR C++14 Rule
M5-3-3

AUTOSAR C++14 Rule M5-3-4 Evaluation of the operand to the
sizeof operator shall not contain
side effects

AUTOSAR C++14 Rule
M5-3-4

AUTOSAR C++14 Rule M6-2-1 Assignment operators shall not
be used in sub-expressions

AUTOSAR C++14 Rule
M6-2-1

AUTOSAR C++14 Rule M6-2-3 Before preprocessing, a null
statement shall only occur on a
line by itself; it may be followed
by a comment, provided that the
first character following the null
statement is a white-space
character

AUTOSAR C++14 Rule
M6-2-3

AUTOSAR C++14 Rule M6-3-1 The statement forming the body
of a switch, while, do ... while or
for statement shall be a
compound statement

AUTOSAR C++14 Rule
M6-3-1

 Statically Enforceable AUTOSAR C++14 Rules Supported by Polyspace Bug Finder

17-179

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule M6-4-1 An if (condition) construct

shall be followed by a compound
statement. The else keyword
shall be followed by either a
compound statement, or
another if statement

AUTOSAR C++14 Rule
M6-4-1

AUTOSAR C++14 Rule M6-4-2 All if ... else if constructs shall
be terminated with an else
clause

AUTOSAR C++14 Rule
M6-4-2

AUTOSAR C++14 Rule M6-4-3 A switch statement shall be a
well-formed switch statement

AUTOSAR C++14 Rule
M6-4-3

AUTOSAR C++14 Rule M6-4-4 A switch-label shall only be used
when the most closely-enclosing
compound statement is the body
of a switch statement

AUTOSAR C++14 Rule
M6-4-4

AUTOSAR C++14 Rule M6-4-5 An unconditional throw or break
statement shall terminate every
non-empty switch-clause

AUTOSAR C++14 Rule
M6-4-5

AUTOSAR C++14 Rule M6-4-6 The final clause of a switch
statement shall be the default-
clause

AUTOSAR C++14 Rule
M6-4-6

AUTOSAR C++14 Rule M6-4-7 The condition of a switch
statement shall not have bool
type

AUTOSAR C++14 Rule
M6-4-7

AUTOSAR C++14 Rule M6-5-2 If loop-counter is not modified
by -- or ++, then, within
condition, the loop-counter shall
only be used as an operand to
<=, <, > or >=

AUTOSAR C++14 Rule
M6-5-2

AUTOSAR C++14 Rule M6-5-3 The loop-counter shall not be
modified within condition or
statement

AUTOSAR C++14 Rule
M6-5-3

AUTOSAR C++14 Rule M6-5-4 The loop-counter shall be
modified by one of: --, ++, -=n,
or +=n; where n remains
constant for the duration of the
loop

AUTOSAR C++14 Rule
M6-5-4

AUTOSAR C++14 Rule M6-5-5 A loop-control-variable other
than the loop-counter shall not
be modified within condition or
expression

AUTOSAR C++14 Rule
M6-5-5

AUTOSAR C++14 Rule M6-5-6 A loop-control-variable other
than the loop-counter which is
modified in statement shall have
type bool

AUTOSAR C++14 Rule
M6-5-6

17 Polyspace Coverage of Coding Standards

17-180

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule M6-6-1 Any label referenced by a goto

statement shall be declared in
the same block, or in a block
enclosing the goto statement

AUTOSAR C++14 Rule
M6-6-1

AUTOSAR C++14 Rule M6-6-2 The goto statement shall jump
to a label declared later in the
same function body

AUTOSAR C++14 Rule
M6-6-2

AUTOSAR C++14 Rule M6-6-3 The continue statement shall
only be used within a well-
formed for loop

AUTOSAR C++14 Rule
M6-6-3

AUTOSAR C++14 Rule M7-1-2 A pointer or reference
parameter in a function shall be
declared as pointer to const or
reference to const if the
corresponding object is not
modified

AUTOSAR C++14 Rule
M7-1-2

AUTOSAR C++14 Rule M7-3-1 The global namespace shall only
contain main, namespace
declarations and extern "C"
declarations

AUTOSAR C++14 Rule
M7-3-1

AUTOSAR C++14 Rule M7-3-2 The identifier main shall not be
used for a function other than
the global function main

AUTOSAR C++14 Rule
M7-3-2

AUTOSAR C++14 Rule M7-3-3 There shall be no unnamed
namespaces in header files

AUTOSAR C++14 Rule
M7-3-3

AUTOSAR C++14 Rule M7-3-4 Using-directives shall not be
used

AUTOSAR C++14 Rule
M7-3-4

AUTOSAR C++14 Rule M7-3-6 Using-directives and using-
declarations (excluding class
scope or function scope using-
declarations) shall not be used
in header files

AUTOSAR C++14 Rule
M7-3-6

AUTOSAR C++14 Rule M7-4-2 Assembler instructions shall
only be introduced using the
asm declaration

AUTOSAR C++14 Rule
M7-4-2

AUTOSAR C++14 Rule M7-4-3 Assembly language shall be
encapsulated and isolated

AUTOSAR C++14 Rule
M7-4-3

AUTOSAR C++14 Rule M8-0-1 An init-declarator-list or a
member-declarator-list shall
consist of a single init-
declarator or member-
declarator respectively

AUTOSAR C++14 Rule
M8-0-1

 Statically Enforceable AUTOSAR C++14 Rules Supported by Polyspace Bug Finder

17-181

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule M8-3-1 Parameters in an overriding

virtual function shall either use
the same default arguments as
the function they override, or
else shall not specify any default
arguments

AUTOSAR C++14 Rule
M8-3-1

AUTOSAR C++14 Rule M8-4-2 The identifiers used for the
parameters in a re-declaration
of a function shall be identical
to those in the declaration

AUTOSAR C++14 Rule
M8-4-2

AUTOSAR C++14 Rule M8-4-4 A function identifier shall either
be used to call the function or it
shall be preceded by &

AUTOSAR C++14 Rule
M8-4-4

AUTOSAR C++14 Rule M8-5-2 Braces shall be used to indicate
and match the structure in the
non-zero initialization of arrays
and structures

AUTOSAR C++14 Rule
M8-5-2

AUTOSAR C++14 Rule M9-3-1 Const member functions shall
not return non-const pointers
or references to class-data

AUTOSAR C++14 Rule
M9-3-1

AUTOSAR C++14 Rule M9-3-3 If a member function can be
made static then it shall be
made static, otherwise if it can
be made const then it shall be
made const

AUTOSAR C++14 Rule
M9-3-3

AUTOSAR C++14 Rule M9-6-4 Named bit-fields with signed
integer type shall have a length
of more than one bit

AUTOSAR C++14 Rule
M9-6-4

Partially Automated Rules
According to the AUTOSAR C++14 standard, static analysis detects only a subset of all possible
violation of Partially Automated rules. Polyspace Bug Finder supports 22 out of 22 Partially
Automated rules. For details about which error scenarios of a rule Polyspace detects, see the
Polyspace Implementation section in the reference page of the rule.

Polyspace supports these Partially Automated rules.

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule A0-4-4 Range, domain and pole errors

shall be checked when using
math functions

AUTOSAR C++14 Rule
A0-4-4

AUTOSAR C++14 Rule A12-0-2 Bitwise operations and
operations that assume data
representation in memory shall
not be performed on objects

AUTOSAR C++14 Rule
A12-0-2

17 Polyspace Coverage of Coding Standards

17-182

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule A12-1-5 Common class initialization for

non-constant members shall be
done by a delegating
constructor

AUTOSAR C++14 Rule
A12-1-5

AUTOSAR C++14 Rule A12-8-3 Moved-from object shall not be
read-accessed

AUTOSAR C++14 Rule
A12-8-3

AUTOSAR C++14 Rule A14-5-2 Class members that are not
dependent on template class
parameters should be defined in
a separate base class

AUTOSAR C++14 Rule
A14-5-2

AUTOSAR C++14 Rule A15-0-2 At least the basic guarantee for
exception safety shall be
provided for all operations. In
addition, each function may
offer either the strong
guarantee or the nothrow
guarantee

AUTOSAR C++14 Rule
A15-0-2

AUTOSAR C++14 Rule A15-0-7 Exception handling mechanism
shall guarantee a deterministic
worst-case time execution time

AUTOSAR C++14 Rule
A15-0-7

AUTOSAR C++14 Rule A15-1-4 If a function exits with an
exception, then before a throw,
the function shall place all
objects/resources that the
function constructed in valid
states or it shall delete them.

AUTOSAR C++14 Rule
A15-1-4

AUTOSAR C++14 Rule A15-2-2 If a constructor is not noexcept
and the constructor cannot
finish object initialization, then
it shall deallocate the object's
resources and it shall throw an
exception

AUTOSAR C++14 Rule
A15-2-2

AUTOSAR C++14 Rule A15-3-3 Main function and a task main
function shall catch at least:
base class exceptions from all
third-party libraries used,
std::exception and all otherwise
unhandled exceptions

AUTOSAR C++14 Rule
A15-3-3

AUTOSAR C++14 Rule A15-5-2 Program shall not be abruptly
terminated. In particular, an
implicit or explicit invocation of
std::abort(), std::quick_exit(),
std::_Exit(), std::terminate()
shall not be done

AUTOSAR C++14 Rule
A15-5-2

AUTOSAR C++14 Rule A18-5-2 Non-placement new or delete
expressions shall not be used

AUTOSAR C++14 Rule
A18-5-2

 Statically Enforceable AUTOSAR C++14 Rules Supported by Polyspace Bug Finder

17-183

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule A18-5-5 Memory management functions

shall ensure the following: (a)
deterministic behavior resulting
with the existence of worst-case
execution time, (b) avoiding
memory fragmentation, (c)
avoid running out of memory,
(d) avoiding mismatched
allocations or deallocations, (e)
no dependence on non-
deterministic calls to kernel

AUTOSAR C++14 Rule
A18-5-5

AUTOSAR C++14 Rule A18-5-8 Objects that do not outlive a
function shall have automatic
storage duration

AUTOSAR C++14 Rule
A18-5-8

AUTOSAR C++14 Rule A3-1-5 A function definition shall only
be placed in a class definition if
(1) the function is intended to
be inlined (2) it is a member
function template (3) it is a
member function of a class
template

AUTOSAR C++14 Rule
A3-1-5

AUTOSAR C++14 Rule A5-1-1 Literal values shall not be used
apart from type initialization,
otherwise symbolic names shall
be used instead

AUTOSAR C++14 Rule
A5-1-1

AUTOSAR C++14 Rule A5-3-2 Null pointers shall not be
dereferenced

AUTOSAR C++14 Rule
A5-3-2

AUTOSAR C++14 Rule A9-3-1 Member functions shall not
return non-constant "raw"
pointers or references to private
or protected data owned by the
class

AUTOSAR C++14 Rule
A9-3-1

AUTOSAR C++14 Rule A9-6-1 Data types used for interfacing
with hardware or conforming to
communication protocols shall
be trivial, standard-layout and
only contain members of types
with defined sizes

AUTOSAR C++14 Rule
A9-6-1

AUTOSAR C++14 Rule M5-0-2 Limited dependence should be
placed on C++ operator
precedence rules in expressions

AUTOSAR C++14 Rule
M5-0-2

AUTOSAR C++14 Rule M5-8-1 The right hand operand of a
shift operator shall lie between
zero and one less than the width
in bits of the underlying type of
the left hand operand

AUTOSAR C++14 Rule
M5-8-1

17 Polyspace Coverage of Coding Standards

17-184

AUTOSAR C++14 Rule Description Polyspace Checker
AUTOSAR C++14 Rule M6-2-2 Floating-point expressions shall

not be directly or indirectly
tested for equality or inequality

AUTOSAR C++14 Rule
M6-2-2

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

More About
• “Check for and Review Coding Standard Violations” on page 16-2
• “Coding Standards”
• “Required AUTOSAR C++14 Coding Rules Supported by Polyspace Bug Finder” on page 17-125
• “Required MISRA C++:2008 Coding Rules Supported by Polyspace Bug Finder” on page 17-83
• “Checkers Deactivated in Polyspace as You Code Analysis” on page 11-78

 Statically Enforceable AUTOSAR C++14 Rules Supported by Polyspace Bug Finder

17-185

Configure Bug Finder Checkers

• “Choose Specific Bug Finder Defect Checkers” on page 18-2
• “Modify Default Behavior of Bug Finder Checkers” on page 18-3
• “Modify Bug Finder Checkers Through Code Behavior Specifications” on page 18-12
• “Flag Deprecated or Unsafe Functions, Keywords, or Macros Using Bug Finder Checkers”

on page 18-21
• “Extend Bug Finder Checkers for Standard Library Functions to Custom Libraries”

on page 18-24
• “Extend Bug Finder Checkers to Find Defects from Specific System Input Values” on page 18-26
• “Extend Concurrency Defect Checkers to Unsupported Multithreading Environments”

on page 18-30
• “Extend Checkers for Initialization to Check Function Arguments Passed by Pointers”

on page 18-33
• “Extend Data Race Checkers to Atomic Operations” on page 18-35
• “Prepare Checkers Configuration for Polyspace Bug Finder Analysis” on page 18-38
• “Bug Finder Defect Groups” on page 18-43
• “Classification of Defects by Impact” on page 18-49
• “Sources of Tainting in a Polyspace Analysis” on page 18-61
• “Polyspace Bug Finder Defects Checkers Enabled by Default” on page 18-65
• “Polyspace Bug Finder Defects Checkers Enabled by Default for Generated Code” on page 18-70
• “Bug Finder Results Found in Fast Analysis Mode” on page 18-72
• “Extend CWE Coding Standard Coverage Using Polyspace Defect Checkers” on page 18-97

18

Choose Specific Bug Finder Defect Checkers
You can check your C/C++ code using the predefined subsets of defect checkers in Bug Finder.
However, you can also customize which defects to check for during the analysis.

You can use a spreadsheet to keep track of the defect checkers that you enable and add notes
explaining why you do not enable the other checkers. A spreadsheet of checkers is provided in
polyspaceroot\polyspace\resources. Here, polyspaceroot is the Polyspace installation
folder, such as C:\Program Files\Polyspace\R2019a.

User Interface (Desktop Products Only)
1 On the Configuration pane, select Bug Finder Analysis.
2 From the Find defects menu, select a set of defects. The options are:

• default for the default list of defects. This list contains defects that are applicable to most
coding projects.

See “Polyspace Bug Finder Defects Checkers Enabled by Default” on page 18-65.
• all for all defects.
• CWE for defects related to CWE coding standard.

For more information, see “Extend CWE Coding Standard Coverage Using Polyspace Defect
Checkers” on page 18-97.

• custom to add defects to the default list or remove defects from it.

To standardize the bug finding across your organization, you can save your list of defect checkers as a
configuration template and share with others. See “Create Project in Polyspace Desktop User
Interface Using Configuration Template” on page 2-13.

Command Line
Use the option Find defects (-checkers). Specify a comma-separated list of checkers as
arguments. For instance, to run a Bug Finder analysis on a server with only the data race checkers
enabled, enter:
polyspace-bug-finder-server -sources filename -checkers DATA_RACE,DATA_RACE_STD_LIB

Use short names for the Bug Finder checkers instead of their full names. See “Short Names of Bug
Finder Defect Groups and Defect Checkers” on page 30-11.

See Also
Find defects (-checkers)

More About
• “Bug Finder Defect Groups” on page 18-43
• “Short Names of Bug Finder Defect Groups and Defect Checkers” on page 30-11

18 Configure Bug Finder Checkers

18-2

Modify Default Behavior of Bug Finder Checkers
A Polyspace Bug Finder analysis checks C/C++ code for bugs and external coding standard
violations. By default, the Bug Finder checkers are designed to:

• Show as few false positives as possible.
• Require minimal setup upfront.

However, for specific projects, you might want to modify the default behavior of some checkers. For
instance, you might want to treat some user defined data types as effectively boolean or detect data
races involving operations that Bug Finder considers as atomic by default.

Use this topic to find the modifications allowed for Bug Finder checkers. Alternatively, you can search
for these options in the analysis report to see if the default behavior of checkers were modified.

Note that:

• The options do not enable or disable a checker.

To enable or disable specific checkers, see “Choose Specific Bug Finder Defect Checkers” on page
18-2.

• You can use these options solely to modify the behavior of an existing checker.

Options such as target processor type, multitasking options and external constraints can also
modify the behavior of a checker. However, the modification happens as a side effect. You typically
specify these options to accurately reflect your target environment.

Defect Checkers and Coding Rules Modified by Analysis Options
When using Bug Finder, use the analysis option in two different ways. You can:

• Modify how a checker behaves.
• Modify how Polyspace interprets the code behavior.

Modify Checker Behavior

Use the following options to change the default behavior of Bug Finder defects and coding rule
checkers. For instance, use -checks-using-system-input-values to run a stricter check.

Option Option Value Checkers Modified Modification
Run stricter
checks considering
all values of
system inputs (-
checks-using-
system-input-
values)

 Checkers and coding
rules that rely on
numerical values of
system inputs. See
“Checkers That Can Be
Extended” on page 18-
27.

See “Extend Bug Finder
Checkers to Find
Defects from Specific
System Input Values” on
page 18-26.

 Modify Default Behavior of Bug Finder Checkers

18-3

Option Option Value Checkers Modified Modification
-consider-
analysis-
perimeter-as-
trust-boundary

 Tainted Data Defects
and related coding rule
violations. See
“Polyspace Tainted Data
Checkers” on page 18-
63.

By default, the tainted
data defects consider
externally obtained data
as tainted. By using this
option, the following are
also considered as
tainted data:

• Formal parameters
of externally visible
function that do not
have a visible caller.

• Return values of
stubbed functions.

• Global variables
external to the unit.

See “Sources of
Tainting in a Polyspace
Analysis” on page 18-
61

Check guidelines
(-guidelines)

XML file.

Entries in the XML file
define the thresholds
for software complexity
checkers

Software Complexity
Guidelines

See “Reduce Software
Complexity by Using
Polyspace Checkers” on
page 16-11

-detect-atomic-
data-race

 • CERT C: Rule
CON43-C

• CERT C++: CON43-
C

• Data race

By default, these
checkers flags data
races involving non-
atomic operations. If an
operation is atomic, it
cannot be interrupted
by operations in another
task or thread. If you
use this option, all
operations are
considered when
flagging data races.

See also “Extend Data
Race Checkers to
Atomic Operations” on
page 18-35.

18 Configure Bug Finder Checkers

18-4

Option Option Value Checkers Modified Modification
-detect-bad-float-
op-on-zero

 Checkers and coding
rules related to floating
point equality checks,
such as Floating
point comparison
with equality
operators

By default, the checker
ignores floating point
comparisons with
equality operators if one
of the operands is 0.0. If
you use this option,
comparisons with 0.0
are also flagged.

Modify Polyspace Interpretation of Code

Use these options to modify how Polyspace interprets the code. For instance, use -boolean-types
to indicate that certain data types in your code are effectively Boolean or use the option -code-
behavior-specification to specify certain behaviors of your code.

Option Option Value Checkers Modified Modification
Effective boolean
types (-boolean-
types)

Data types • MISRA C:2004 rules
12.6, 13.2, 15.4

• MISRA C:2012 rules
10.1, 10.3, 10.5,
14.4, 16.7

The rules covered by
these checkers involve
boolean types. If you
use this option, you can
treat user-defined types
as effectively boolean.

Consider non
finite floats (-
allow-non-finite-
floats)

 Checkers and coding
rules related to float
numerical operations.
See Consider non
finite floats (-
allow-non-finite-
floats).

If you use this option,
Polyspace incorporates
infinities and NaNs in
floating point checks.
Checkers that flag
infinities and NaNs in
floating point operations
might be disabled or
flag less defects.

Allowed pragmas (-
allowed-pragmas)

Names of pragmas MISRA C:2004 rule 3.4
and MISRA C++ rule
16-6-1

These rules require that
all pragma directives
must be documented
within the compiler
documentation. If you
use this option, the
analysis considers the
pragmas specified as
documented pragmas.

-code-behavior-
specifications

XML file.

Entries in the XML file
map user-defined
functions to functions
from the Standard
Library.

Checkers and coding
rules that detect issues
with Standard Library
functions. See
“Checkers That Can Be
Extended” on page 18-
25.

See “Extend Bug Finder
Checkers for Standard
Library Functions to
Custom Libraries” on
page 18-24.

 Modify Default Behavior of Bug Finder Checkers

18-5

Option Option Value Checkers Modified Modification
XML file.

Entries in the XML file
map user-defined
concurrency primitives
to ones that Bug Finder
can automatically
detect.

Concurrency defects
and related coding
rules. See “Checkers
That Can Be Extended”
on page 18-31.

See “Extend
Concurrency Defect
Checkers to
Unsupported
Multithreading
Environments” on page
18-30.

XML file.

Entries in the XML file
list functions, keywords
or macros that you want
to prohibit from your
source code.

See “Checkers That Can
Be Extended” on page
18-22.

See “Flag Deprecated
or Unsafe Functions,
Keywords, or Macros
Using Bug Finder
Checkers” on page 18-
21.

XML file.

Entries in the XML file
list functions whose
pointer arguments must
point to initialized
buffers.

See “Checkers That Can
Be Extended” on page
18-34

See “Extend Checkers
for Initialization to
Check Function
Arguments Passed by
Pointers” on page 18-
33.

18 Configure Bug Finder Checkers

18-6

Option Option Value Checkers Modified Modification
XML file.

Entries in the XML file
define limits on global
aspects of your program
such as maximum depth
of nesting in control
flow statements.

MISRA C: 2012 Rule 1.1 You can increase or
decrease these
parameters of the rule
checker:

• Maximum depth of
nesting allowed in
control flow
statements

• Maximum levels of
inclusion allowed
using include files

• Maximum number of
constants allowed in
an enumeration

• Maximum number of
macros allowed in a
translation unit

• Maximum number of
members allowed in
a structure

• Maximum levels of
nesting allowed in a
structure

See “Modify Bug Finder
Checkers Through Code
Behavior Specifications”
on page 18-12.

 Modify Default Behavior of Bug Finder Checkers

18-7

Option Option Value Checkers Modified Modification
XML file.

Entries in the XML file
define how many
characters are
compared before
considering two
identifiers as distinct.

MISRA C: 2012 Rules
5.1 to 5.5

These rules require
uniqueness of certain
types of identifiers. For
instance, rule 5.1
requires that external
identifiers be distinct.

If the difference
between two identifiers
occurs beyond the first
num characters, the rule
checker considers the
identifiers as identical.
You can modify the
parameter num
separately for external
and internal identifiers.

See “Modify Bug Finder
Checkers Through Code
Behavior Specifications”
on page 18-12.

18 Configure Bug Finder Checkers

18-8

Option Option Value Checkers Modified Modification
XML file.

Entries in the XML file
defines functions as
real-time functions and
functions that manages
dynamic memory.

AUTOSAR C++14 Rule
A18-5-7

This rule requires that
dynamic memory
allocation and
deallocation does not
occur in real time.
Polyspace assumes that
no function in your code
runs at real-time, and
only certain standard
library functions
manages dynamic
memory.

Specify a function in
your code as a real-time
function by using the
behavior
REAL_TIME_FUNC.

Specify a function in
your code as a function
that allocates or
deallocates dynamic
memory by using the
behavior
MANAGES_MEMORY.

See “Modify Bug Finder
Checkers Through Code
Behavior Specifications”
on page 18-12.

 Modify Default Behavior of Bug Finder Checkers

18-9

Option Option Value Checkers Modified Modification
XML file.

Entries in the XML file
defines functions that
handle exceptions or
manage dynamic
memory.

AUTOSAR C++14 Rule
A15-0-7

This rule requires that
exception handling
functions must have a
deterministic worst-case
execution time.
Polyspace recognizes
the commonly used
exception handling
functions and dynamic
memory management
functions.

Specify a function in
your code as a function
that allocates or
deallocates dynamic
memory by using the
behavior
MANAGES_MEMORY.

Specify a function in
your code as a function
that handles exceptions
by using the behavior
EXCEPTION_HANDLING.

See “Modify Bug Finder
Checkers Through Code
Behavior Specifications”
on page 18-12.

XML file.

Entries in the XML file
defines critical data
members.

Critical data
member is not
private

This checker flags the
critical data members
that are declared
public. By default,
Polyspace assumes that
no data member is
critical.

Specify the critical data
members in your code
by using the behavior
CRITICAL_DATA.

See “Modify Bug Finder
Checkers Through Code
Behavior Specifications”
on page 18-12.

18 Configure Bug Finder Checkers

18-10

Option Option Value Checkers Modified Modification
Datalog file.

Entries in the datalog
file define functions
relevant to SQL or
LDAP injection
checkers.

SQL injection and
LDAP injection

Specify custom
functions that are
sensitive to SQL or
LDAP injection,
functions that sanitize
SQL or LDAP queries,
and so on.

See “Modify Bug Finder
Checkers Through Code
Behavior Specifications”
on page 18-12.

See Also

More About
• “Choose Specific Bug Finder Defect Checkers” on page 18-2
• “Modify Bug Finder Checkers Through Code Behavior Specifications” on page 18-12
• “Bug Finder Defect Groups” on page 18-43

 Modify Default Behavior of Bug Finder Checkers

18-11

Modify Bug Finder Checkers Through Code Behavior
Specifications

Polyspace Bug Finder checks C/C++ code for defects or coding rule violations. To find these issues,
some Bug Finder checkers require additional information outside your code.

You can specify most external information using the option -code-behavior-specifications.
The option allows you to associate specific behaviors with elements in your code. For instance, you
can map a custom library function to a standard function or specify that a function acts as a memory
management function.

The option takes a file in one of these formats as argument:

• XML
• Datalog

The XML and Datalog format support different code behaviors. This topic describes the checker
modifications supported with each file format. For the full list of options that can modify checkers,
see “Modify Default Behavior of Bug Finder Checkers” on page 18-3.

XML Format
The code behavior specifications XML file associates specific behaviors with functions (or defines
behaviors at global scope). The following sections list behaviors that are relevant to a Bug Finder
analysis. For behaviors relevant to Code Prover, see “Modify Code Prover Run-Time Checks Through
Code Behavior Specifications” (Polyspace Code Prover).

You can also see the supported behaviors in the sample template file code-behavior-
specifications-template.xml provided with a Polyspace installation. The file is in
polyspaceroot\polyspace\verifier\cxx\ where polyspaceroot is the Polyspace installation
folder.

Mapping to Standard Function for Precision Improvement

XML Syntax:

<?xml version="1.0" encoding="UTF-8"?>
<specifications xmlns="http://www.mathworks.com/PolyspaceCodeBehaviorSpecifications">
 <functions>
 <function name="custom_function" std="std_function">
 </function>
 </functions>
</specifications>

Use this entry in the XML file to reduce the number of false negatives in a Bug Finder analysis.
Sometimes, the analysis does not model certain kinds of functions precisely because of inherent
limitations in static verification. In those cases, if you find a standard function that is a close analog of
your function, use this mapping. Though your function itself is not analyzed, the analysis is more
precise at the locations where you call the function. For instance, if the analysis cannot model your
function cos32 precisely and considers full range for its return value, map it to the cos function for a
return value in [-1,1].

18 Configure Bug Finder Checkers

18-12

The analysis ignores the body of your function but emulates your function behavior in the following
ways:

• The analysis assumes the same return values for your function as the standard function.

For instance, if you map your function cos32 to the standard function cos, the verification
assumes that cos32 returns values in [-1,1].

• The analysis checks for the same issues as it checks with the standard function.

For instance, if you map your function acos32 to the standard function acos, the Invalid use
of standard library routine check determines if the argument of acos32 is in [-1,1].

The functions that you can map to include:

• Standard library functions from math.h.
• Memory management functions from string.h.

If you run Code Prover, you can map to other functions to improve the verification precision. See
“Modify Code Prover Run-Time Checks Through Code Behavior Specifications” (Polyspace Code
Prover).

See also “Extend Bug Finder Checkers for Standard Library Functions to Custom Libraries” on page
18-24.

Mapping to Standard Function for Concurrency Detection

XML Syntax:

<?xml version="1.0" encoding="UTF-8"?>
<specifications xmlns="http://www.mathworks.com/PolyspaceCodeBehaviorSpecifications">
 <functions>
 <function name="custom_function" std="std_function">
 </function>
 </functions>
</specifications>

Use this entry in the XML file for automatic detection of thread-creation functions and functions that
begin and end critical sections. Polyspace supports automatic detection for certain families of
multitasking primitives only. Extend the support using this XML entry.

If your thread-creation function, for instance, does not belong to one of the supported families, map
your function to a supported concurrency primitive.

See “Extend Concurrency Defect Checkers to Unsupported Multithreading Environments” on page
18-30.

Blocking Functions or Keywords

XML Syntax:

<?xml version="1.0" encoding="UTF-8"?>
<specifications xmlns="http://www.mathworks.com/PolyspaceCodeBehaviorSpecifications">
 <functions>
 <function name="my_func">
 <behavior name="FORBIDDEN_FUNC"/>
 </function>

 Modify Bug Finder Checkers Through Code Behavior Specifications

18-13

 </functions>
</specifications>

Use this entry in the XML file to specify that a function my_func must not be used in your source
code.

XML Syntax:

<?xml version="1.0" encoding="UTF-8"?>
<specifications xmlns="http://www.mathworks.com/PolyspaceCodeBehaviorSpecifications">
 <tokens>
 <token name="my_keyword" kind="keyword">
 <behavior name="FORBIDDEN_KEYWORD"/>
 </token>
 </tokens>
</specifications>

Use this entry in the XML file to specify that a keyword my_keyword must not be used in your source
code.

See “Flag Deprecated or Unsafe Functions, Keywords, or Macros Using Bug Finder Checkers” on
page 18-21.

Extending Initialization Checks

XML Syntax:

<?xml version="1.0" encoding="UTF-8"?>
<specifications xmlns="http://www.mathworks.com/PolyspaceCodeBehaviorSpecifications">
 <functions>
 <function name="my_func">
 <check name=name="ARGUMENT_POINTS_TO_INITIALIZED_VALUE" arg="n/>
 </function>
 </functions>
</specifications>

Use this entry in the XML file to specify if the pointer argument to a function my_func must point to
an initialized buffer. The number n specifies which argument must be checked for buffer initialization.

See “Extend Checkers for Initialization to Check Function Arguments Passed by Pointers” on page 18-
33.

Modifying Global Behavior

XML Syntax:

<?xml version="1.0" encoding="UTF-8"?>
<specifications xmlns="http://www.mathworks.com/PolyspaceCodeBehaviorSpecifications">
 <global_scope>
 <parameter name="MAX_NUMBER_NESTED_LEVEL_CONTROL_FLOW" value="n1"/>
 <parameter name="MAX_NUMBER_NESTED_LEVEL_INCLUDES" value="n2"/>
 <parameter name="MAX_NUMBER_CONSTANT_IN_ENUMERATION" value="n3"/>
 <parameter name="MAX_NUMBER_MACROS_TRANSLATION_UNIT" value="n4"/>
 <parameter name="MAX_NUMBER_MEMBERS_IN_STRUCT" value="n5"/>
 <parameter name="MAX_NUMBER_NESTED_MEMBERS_IN_STRUCT" value="n6"/>
 <parameter name="NUMBER_SIGNIFICANT_CHARACTER_EXTERNAL_IDENTIFIER" value="n7"/>
 <parameter name="NUMBER_SIGNIFICANT_CHARACTER_INTERNAL_IDENTIFIER" value="n8"/>

18 Configure Bug Finder Checkers

18-14

 </global_scope>
</specifications>

Here, n1,..,n8 specifies numerical values.

Use the entries n1,..,n6 for the following parameters to specify limits on certain aspects of your
program. The modifications affect the checking of MISRA C:2012 Rule 1.1.

• MAX_NUMBER_NESTED_LEVEL_CONTROL_FLOW: Maximum depth of nesting allowed in control flow
statements.

• MAX_NUMBER_NESTED_LEVEL_INCLUDES: Maximum levels of inclusion allowed using include
files.

• MAX_NUMBER_CONSTANT_IN_ENUMERATION: Maximum number of constants allowed in an
enumeration.

• MAX_NUMBER_MACROS_TRANSLATION_UNIT: Maximum number of macros allowed in a translation
unit.

• MAX_NUMBER_MEMBERS_IN_STRUCT: Maximum number of members allowed in a structure.
• MAX_NUMBER_NESTED_MEMBERS_IN_STRUCT: Maximum levels of nesting allowed in a structure.

Use the entries n7 and n8 to specify how many characters must be compared to determine if two
identifiers as identical. The modifications affect the checking of Rules 5.x.

• NUMBER_SIGNIFICANT_CHARACTER_EXTERNAL_IDENTIFIER: Number of characters to compare
for external identifiers. External identifiers are ones declared with global scope or storage class
extern.

• NUMBER_SIGNIFICANT_CHARACTER_INTERNAL_IDENTIFIER: Number of characters to compare
for internal identifiers.

Specifying Real-Time Functions

XML Syntax:

<?xml version="1.0" encoding="UTF-8"?>
<specifications xmlns="http://www.mathworks.com/PolyspaceCodeBehaviorSpecifications">
 <functions>
 <function name="my_func">
 <behavior name="REAL_TIME_FUNC"/>
 </function>
 </functions>
</specifications>

Use this entry in the XML file to specify a function my_func as a real-time function See AUTOSAR C+
+14 Rule A18-5-7.

Specifying Functions that Manage Memory

XML Syntax:

<?xml version="1.0" encoding="UTF-8"?>
<specifications xmlns="http://www.mathworks.com/PolyspaceCodeBehaviorSpecifications">
 <functions>
 <function name="my_func">
 <behavior name="MANAGES_MEMORY"/>
 </function>

 Modify Bug Finder Checkers Through Code Behavior Specifications

18-15

 </functions>
</specifications>

Use this entry in the XML file to specify a function my_func as a function that allocates or
deallocates dynamic memory. See AUTOSAR C++14 Rule A18-5-7.

Specifying Functions that Handle Exceptions

XML Syntax:

<?xml version="1.0" encoding="UTF-8"?>
<specifications xmlns="http://www.mathworks.com/PolyspaceCodeBehaviorSpecifications">
 <functions>
 <function name="my_func">
 <behavior name="EXCEPTION_HANDLING"/>
 </function>
 </functions>
</specifications>

Use this entry in the XML file to specify a function my_func as a function that handles one or more
exceptions. See AUTOSAR C++14 Rule A15-0-7.

Specifying Critical Data Members

XML Syntax:

<?xml version="1.0" encoding="UTF-8"?>
<specifications xmlns="http://www.mathworks.com/PolyspaceCodeBehaviorSpecifications">
 <members>
 <member name="my_critical_object" kind="variable">
 <behavior name="CRITICAL_DATA"/>
 </member>
 </members>
</specifications>

Use this entry in the XML file to specify the data member my_critical_object as critical. See
Critical data member is not private.

Datalog Format
Datalog is a declarative logic programming language that Polyspace Bug Finder uses to create
abstractions of function behavior. You can enter code behavior specifications in Datalog and add to
the set of functions already abstracted for the Polyspace analysis.

The Datalog language, as used in Polyspace, is based on declaring relations between elements in the
code. However, you do not need to know the full Datalog language to hook into the Polyspace
analysis. You can simply invoke already declared relations from the Datalog-based API, using a
function-like syntax.

Datalog Example

Consider the following example. The function insertIntoDatabase() reads a string from standard
input and uses the string in the construction of an SQL query.

#include <stdio.h>
#include <string.h>

18 Configure Bug Finder Checkers

18-16

#include <sqlite3.h>

void addToName(char *, char *);

// Function to insert names into database
void insertIntoDatabase(void)
{
 sqlite3* db;
 char query[256] = "";
 char partialName[256];
 char fullName[256];

 char* error_message;
 int nameLength;

 sqlite3_open("userCredentials.db", &db);

 fread(partialName, 1, 128, stdin);

 addToName(partialName, fullName); //Function with unknown semantics

 strcat(query, "INSERT INTO privatenames (name) VALUES ('");
 strcat(query, fullName);
 strcat(query, "');");

 // Possible SQL injection here
 if (sqlite3_exec(db, query, NULL, NULL, &error_message))
 {
 sqlite3_free(error_message);
 }
}

This code has the possibility of an SQL injection if the function addToName() copies the content of
its first argument to its second argument entirely or partly. The function is effectively passing on
contents entered through standard input into the SQL query.

However, the defect checker SQL injection cannot find this defect because the function
addToName() is not defined in this code and its semantics are not known. (In some cases, if the
function is sufficiently complex, the analysis might lose track of a data flow from one function
argument to another despite the function being defined.)

To help with the analysis, you can externally specify the semantics of the addToName() function
using Datalog syntax. In a file with extension .dl, for instance bufferFlows.dl, enter the
following:

.include "models/interfaces/taint.dl"

Taint.Basic.hasFlow("addToName", $InParameterDeref(0), $OutParameterDeref(1), "Source buffer copied to destination").

This file:

• Includes the file polyspaceroot\polyspace\pql\operating_system\models\interfaces
\taint.dl. Here, polyspaceroot is the Polyspace installation folder, for instance, C:\Program
Files\R2023a and operating_system is one of win64, glnxa64, and maci64.

This file contains declarations of the relations that you invoke in your file.

 Modify Bug Finder Checkers Through Code Behavior Specifications

18-17

• Invokes the relation Taint.Basic.hasFlow to specify that there is a data flow from the first
parameter of the function addToName() to the second parameter:

• $InParameterDeref(0) indicates the first parameter and designates the parameter as an
input parameter. If a parameter is designated as an input parameter, its value prior to the
function call is relevant for the relation.

• $OutParameterDeref(1) indicates the second parameter and designates the parameter as
output parameter. If a parameter is designated as an output parameter, its value after the
function call is relevant for the relation.

• The last argument is a message that can be associated with the function addToName. If Bug
Finder finds a defect that uses the Datalog specification, the message appears in the event list
below the defect.

Specify the Datalog file as argument for the analysis option -code-behavior-specifications, for
instance:

-code-behavior-specifications bufferFlows.dl

The SQL injection checker is now able to detect the data flow through the function addToName() and
report a possible SQL injection when the function sqlite3_exec() is executed.

Behaviors Supported by Datalog Format

The following checkers can be modified using code behavior specifications in Datalog format.

• SQL injection
• LDAP injection

The following code behaviors can be specified to modify the checkers:

• Taint.Basic.hasFlow: Specifies a function that propagates data from one function argument to
another.

For instance, suppose that the following function addToName() propagates data from the
dereference of the first parameter to the dereference of the second parameter:

void addToName (char *, char *);

You can specify this behavior using the following Datalog relation:

Taint.Basic.hasFlow("addToName", $InParameterDeref(0), $OutParameterDeref(1), "Source buffer copied to destination").

All supported checkers can be modified using this code behavior.
• Untrusted.Basic.isSource: Specifies a function parameter or return value that represents

potentially tainted data.

For instance, the following specifications:

Untrusted.Basic.isSource("fileOpen", $OutParameterDeref(1), "Opens an untrusted stream").
Untrusted.Basic.isSource("fileOpen_v2", $OutReturnDeref(), "Returns an untrusted stream").

Imply that these data are potentially tainted:

• Dereference of the second parameter of a fileOpen() function, for instance with signature
FILE * fileOpen (const char *, FILE * , const char*).

18 Configure Bug Finder Checkers

18-18

• Dereference of the return value of a fileOpen_v2() function, for instance with signature
FILE * fileOpen_v2 (int, const char*).

All supported checkers can be modified using this code behavior.
• Sql.Basic.execution: Specifies a function that executes an SQL query.

For instance,suppose that the following function sql_exec() executes an SQL query and the first
parameter is the query string:

int sql_exec (char*, sqlite3* , int (*callback)(void*,int,char**,char**) , void*, char**);

You can specify this behavior using the following Datalog relation:

Sql.Basic.execution("sql_exec", $InParameterDeref(0)).

The checker that can be modified using this behavior is SQL injection.
• Sql.Basic.sanitizing: Specifies a function that sanitizes data to be used in an SQL query.

For instance, suppose that the following function sql_sanitize() sanitizes data to be used in an
SQL query and the first parameter is the sanitized string:

int sql_sanitize (char *, int);

You can specify this behavior using the following Datalog relation:

Sql.Basic.sanitizing("sql_sanitize", $OutParameterDeref(0)).

The checker that can be modified using this behavior is SQL injection.
• Ldap.Basic.sensitive: Specifies a function that executes an LDAP query.

For instance, suppose that the following function search_ldap_db() executes an LDAP search
and the fourth parameter is the search filter string:

int search_ldap_db (LDAP *, const char *, int, const char *, char **, int);

You can specify this behavior using the following Datalog relation:

Ldap.Basic.sensitive("search_ldap_db", $InParameterDeref(3)).

The checker that can be modified using this behavior is LDAP injection.
• Ldap.Basic.sanitizing:Specifies a function that sanitizes data to be used in an LDAP query.

For instance, suppose that the following function ldap_validate_inputs() sanitizes data to be
used in an LDAP search and the first parameter is the sanitized string:

int ldap_validate_inputs (char *, int);

You can specify this behavior using the following Datalog relation:

Ldap.Basic.sanitizing("ldap_validate_inputs", $OutParameterDeref(0)).

The checker that can be modified using this behavior is LDAP injection.

See Also
-code-behavior-specifications

 Modify Bug Finder Checkers Through Code Behavior Specifications

18-19

Related Examples
• “Modify Default Behavior of Bug Finder Checkers” on page 18-3

18 Configure Bug Finder Checkers

18-20

Flag Deprecated or Unsafe Functions, Keywords, or Macros
Using Bug Finder Checkers

This topic shows how to create a custom list of forbidden functions, keywords or macros and check
for use of these items in your code using Polyspace Bug Finder.

Identify Need for Extending Checker
Before creating or extending a checker, identify if an existing checker meets your requirements. For
instance, these checkers flag the use of specific functions:

• Use of dangerous standard function: The checker flags functions that introduce the risk
of buffer overflows and have safer alternatives.

• Use of obsolete standard function: The checker flags functions that are deprecated by
the C/C++ standard.

• Unsafe standard encryption function, Unsafe standard function: The checkers flag
functions that are unsafe to use in security-sensitive contexts.

• Inefficient string length computation, std::endl may cause an unnecessary
flush: The checkers flag functions that can impact performance and have more efficient
alternatives.

However, you might want to block functions that are not covered by an existing checker. For instance,
you might want to forbid the use of signal handling functions such as std::signal:

#include <csignal>
#include <iostream>

namespace
{
 volatile std::sig_atomic_t gSignalStatus;
}

void signal_handler(int signal)
{
 gSignalStatus = signal;
}

int main()
{
 // Install a signal handler
 std::signal(SIGINT, signal_handler);

 std::cout << "SignalValue: " << gSignalStatus << '\n';
 std::cout << "Sending signal " << SIGINT << '\n';
 std::raise(SIGINT);
 std::cout << "SignalValue: " << gSignalStatus << '\n';
}

Likewise, you might want to block keywords that are not forbidden by an existing checker.

 Flag Deprecated or Unsafe Functions, Keywords, or Macros Using Bug Finder Checkers

18-21

Extend Checker
If the functions, keywords or macros that you want to block are not covered by existing checkers, use
one or more of these checkers:

• Use of a forbidden function
• Use of a forbidden keyword
• Use of a forbidden macro

To create a blocklist for the checker:

1 List functions, keywords and macros in an XML file in a specific syntax.

Copy the template file code-behavior-specifications-template.xml from the folder
polyspaceroot\polyspace\verifier\cxx to a writable location and modify the file.

• Enter each forbidden function in the file using the following syntax after existing similar
entries:

<function name="funcname">
 <behavior name="FORBIDDEN_FUNC"/>
</function>

where funcname is the name of the function you want to block. Remove previously existing
entries in the file to avoid warnings.

• Enter each keyword in the file using the following syntax after existing similar entries:

<token name="keywordname" kind="keyword">
 <behavior name="FORBIDDEN_KEYWORD"/>
</token>

where keywordname is the name of the keyword you want to block.
• Enter each macro in the file using the following syntax after existing similar entries:

<token name="macroname" kind="macro">
 <behavior name="FORBIDDEN_MACRO"/>
</token>

where macroname is the name of the macro you want to block.

Note that you can use the * wildcard for functions and keywords (but not for macros). For
instance, to forbid all functions whose names contain DEBUG, you can enter:

<function name="*DEBUG*">
 <behavior name="FORBIDDEN_FUNC"/>
</function>

2 Specify this XML file as argument for the option -code-behavior-specifications.

Checkers That Can Be Extended
The following checkers can be extended in this way:

• Use of a forbidden function
• Use of a forbidden keyword

18 Configure Bug Finder Checkers

18-22

• Use of a forbidden macro

See Also
-code-behavior-specifications | Use of a forbidden function | Use of a forbidden
keyword | Use of a forbidden macro

More About
• “Modify Default Behavior of Bug Finder Checkers” on page 18-3

 Flag Deprecated or Unsafe Functions, Keywords, or Macros Using Bug Finder Checkers

18-23

Extend Bug Finder Checkers for Standard Library Functions to
Custom Libraries

This topic shows how to create checkers for your custom library functions by mapping them to
equivalent functions from the Standard Library.

Identify Need for Extending Checker
If you identify a Bug Finder checker that applies to a Standard Library function and can be extended
to your custom library function, use this technique.

For instance, you might define a math function that has the same domain as a Standard Library math
function. If Bug Finder checks for domain errors when using the Standard Library function, you can
perform the same checks for the equivalent custom function.

Suppose that you define a function acos32 that expects values in the range [-1,1]. You might want to
detect if the function argument falls outside this range at run time, for instance, in this code snippet:

#include<math.h>
#include<float.h>

double acos32(double);
const int periodicity = 1.0;

int isItPeriodic() {
 return(abs(func(0.5) - func(0.5 + periodicity)) < DBL_MIN);
}

double func(double val) {
 return acos32(val);
}

One of the arguments to acos32 is outside its allowed domain. If you do not provide the
implementation of acos32 or if the analysis of the acos32 implementation is not precise, Bug Finder
might not detect the issue. However, the function has the same domain as the Standard Library
function acos. You can extend the checker Invalid use of standard library floating
point routine that detects domain errors in uses of acos to detect the same kinds of errors with
acos32.

If your custom function does not have a constrained domain but returns values in a constrained
range, you can still map the function to an equivalent Standard Library function (if one exists) for
more precise results on other checkers. For instance, you can map a function cos32 that returns
values in the range [-1,1] to the Standard Library function cos.

Extend Checker
You can extend checkers on functions from the Standard Library by mapping those functions to your
custom library functions. For instance, in the preceding example, you can map the function acos32
to the Standard Library function acos.

To perform the mapping:

1 List each mapping in an XML file in a specific syntax.

18 Configure Bug Finder Checkers

18-24

Copy the template file code-behavior-specifications-template.xml from the folder
polyspaceroot\polyspace\verifier\cxx to a writable location and modify the file. Enter
the mapping in the file using the following syntax after existing similar entries:

<function name="acos32" std="acos"> </function>

Remove previously existing entries in the file to avoid warnings.
2 Specify this XML file as argument for the option -code-behavior-specifications.

Checkers That Can Be Extended
The following checkers can be extended in this way:

• Invalid use of standard library floating point routine
• Invalid use of standard library integer routine
• AUTOSAR C++14 Rule A0-4-4
• CERT C: Rule FLP32-C
• CERT C++: FLP32-C
• MISRA C:2004 Coding Rule 20.3 on page 17-9

Limitations
You can map your custom function to a standard library function with similar semantics, subject to
the following constraints:

• Your custom function must have the same number of arguments as the standard library function
or more. Make sure that every argument of the standard library function is mapped to an
argument of the custom function. For examples of argument remapping, see also -code-
behavior-specifications.

• The mapped function arguments must have compatible data types. Likewise, the custom function
must have a return type that is compatible with the standard library function. For instance:

• An integer type (char, int, etc.) is not compatible with a floating point type (float, double,
etc.)

• A fundamental type is not compatible with a structure or enumeration.
• A pointer type is not compatible with a non-pointer type.

See Also
-code-behavior-specifications

More About
• “Modify Default Behavior of Bug Finder Checkers” on page 18-3

 Extend Bug Finder Checkers for Standard Library Functions to Custom Libraries

18-25

Extend Bug Finder Checkers to Find Defects from Specific
System Input Values

This topic shows how to find possible defects from specific values of system inputs. Unlike Code
Prover, Bug Finder does not exhaustively check for run-time errors for all combinations of system
inputs. However, you can extend some Bug Finder checkers and find if there are specific system input
values that can lead to run-time errors.

Identify Need for Extending Checker
First identify if an existing checker is sufficient for your requirements.

For instance, the Bug Finder checker Integer division by zero detects if a division operation
can have a zero denominator. Suppose, a library function has the possibility of a division by zero
following several numerical operations. For instance, consider the function speed here:

#include <assert.h>

int speed(int k) {
 int i,j,v;
 i=2;
 j=k+5;
 while (i <10) {
 i++;
 j+=3;
 }

 v = 1 / (i-j);
 return v+k;
}

Suppose you see a sporadic run-time error when your program execution enters this function and the
default Bug Finder analysis does not detect the issue. To minimize false positives, the default analysis
might suppress issues from specific values of an unknown input (what if this value did not occur in
practice at run time?). See also “Inputs in Polyspace Bug Finder”. To find the root cause of the
sporadic error, you can run a stricter Bug Finder analysis for just this function.

Note that even after extending the checkers, Bug Finder does not provide the sound and exhaustive
analysis of Code Prover. For instance, if Bug Finder does not detect errors after extending the
checkers, this absence of detected errors does not have the same guarantees as green checks in Code
Prover.

Extend Checker
To extend the checker and detect the above issue, use these options:

• Run stricter checks considering all values of system inputs (-checks-using-
system-input-values): Enable this option. Checkers that rely on numerical values can now
consider all input values for functions with at least one callee. You can change which functions are
considered with the next option.

• Consider inputs to these functions (-system-inputs-from): Use the value custom
and enter the name of the function whose inputs must be considered, in this case, speed. At the
command line, use the option argument custom=speed.

18 Configure Bug Finder Checkers

18-26

When you run a Bug Finder analysis, you see a possible integer division by zero on the division
operation. The result shows an example of an input value to the function speed that eventually leads
to the current defect (zero value of the denominator).

The tooltips on the defect show how the input value propagates through the code to eventually lead
to one set of values that cause the defect.

Checkers That Can Be Extended
The following checkers are affected by numerical values of inputs and can be extended using the
preceding options:

• Bug Finder defects:

 Extend Bug Finder Checkers to Find Defects from Specific System Input Values

18-27

• Array access out of bounds
• Assertion
• Bitwise operation on negative value
• Float conversion overflow
• Float overflow
• Float division by zero
• Integer conversion overflow
• Integer division by zero
• Integer overflow
• Invalid use of standard library floating point routine
• Invalid use of standard library integer routine
• Non-initialized pointer
• Non-initialized variable
• Null pointer
• Pointer to non initialized value converted to const pointer
• Shift of a negative value
• Shift operation overflow
• Sign change integer conversion overflow
• Unsigned integer conversion overflow
• Unsigned integer overflow
• Use of plain char type for numeric value

• AUTOSAR C++14 coding rule:

• AUTOSAR C++14 Rule A0-4-4
• AUTOSAR C++14 Rule A3-8-1
• AUTOSAR C++14 Rule A4-7-1
• AUTOSAR C++14 Rule M5-0-16
• AUTOSAR C++14 Rule A5-2-5
• AUTOSAR C++14 Rule A5-3-2
• AUTOSAR C++14 Rule A5-6-1

• CERT C rules and recommendations:

• CERT C: Rule ARR30-C
• CERT C: Rule EXP33-C
• CERT C: Rule EXP34-C
• CERT C: Rule FLP34-C
• CERT C: Rule FLP32-C
• CERT C: Rule INT30-C
• CERT C: Rule INT31-C
• CERT C: Rule INT32-C

18 Configure Bug Finder Checkers

18-28

• CERT C: Rule INT33-C
• CERT C: Rule INT34-C
• CERT C: Rec. EXP08-C
• CERT C: Rec. INT00-C
• CERT C: Rec. INT02-C
• CERT C: Rec. INT08-C
• CERT C: Rec. INT13-C
• CERT C: Rec. INT18-C
• CERT C: Rec. FLP03-C
• CERT C: Rec. FLP06-C

• CERT C++ rules:

• CERT C++: ARR30-C
• CERT C++: CTR50-CPP
• CERT C++: EXP34-C
• CERT C++: EXP53-CPP
• CERT C++: EXP54-CPP
• CERT C++: FLP32-C
• CERT C++: FLP34-C
• CERT C++: INT30-C
• CERT C++: INT31-C
• CERT C++: INT32-C
• CERT C++: INT33-C
• CERT C++: INT34-C
• CERT C++: STR53-CPP

• MISRA C:2012 Rule 18.1
• MISRA C++:2008 Rule 5-0-16
• MISRA C:2004 Coding Rule 20.3 on page 17-9
• ISO/IEC TS 17961 rules:

• ISO/IEC TS 17961 [diverr]
• ISO/IEC TS 17961 [intoflow]
• ISO/IEC TS 17961 [invptr]
• ISO/IEC TS 17961 [nullref]
• ISO/IEC TS 17961 [uninitref]

See Also

More About
• “Modify Default Behavior of Bug Finder Checkers” on page 18-3

 Extend Bug Finder Checkers to Find Defects from Specific System Input Values

18-29

Extend Concurrency Defect Checkers to Unsupported
Multithreading Environments

This topic shows how to adapt concurrency defect checkers to unsupported multithreading
environments, for instance, when a new thread creation is not detected automatically.

Identify Need for Extending Checker
By default, Bug Finder can detect concurrency primitives in certain families only (in Code Prover, the
same automatic detection is available on an option). See “Auto-Detection of Thread Creation and
Critical Section in Polyspace” on page 15-7. If you use primitives that do not belong to one of the
supported families but have similar syntaxes, you can map your thread creation and other
concurrency-related functions to the supported functions.

For instance, the following example uses:

• The function createTask to create a new thread.
• The function takeLock to begin a critical section.
• The function releaseLock to end the critical section.

typedef void* (*FUNT) (void*);

extern int takeLock(int* t);
extern int releaseLock(int* t);
// First argument is the function, second the id
extern int createTask(FUNT,int*,int*,void*);

int t_id1,t_id2;
int lock;

int var1;
int var2;

void* task1(void* a) {
 takeLock(&lock);
 var1++;
 var2++;
 releaseLock(&lock);
 return 0;
}

void* task2(void* a) {
 takeLock(&lock);
 var1++;
 releaseLock(&lock);
 var2++;
 return 0;
}

void main() {
 createTask(task1,&t_id1,0,0);
 createTask(task2,&t_id2,0,0);
}

18 Configure Bug Finder Checkers

18-30

Bug Finder does not detect the invocation of createTask as the creation of a new thread where
control flow goes to the start function of the thread (first argument of createTask). The incorrect
placement of the function releaseLock in task2 and the possibility of a data race on the
unprotected shared variable var2 remains undetected.

However, the signature of createTask, takeLock and releaseLock are similar to the
corresponding POSIX functions, pthread_create, pthread_mutex_lock and
pthread_mutex_unlock. The order of arguments of these functions might be different from their
POSIX equivalents.

Extend Checker
Since a POSIX thread creation can be detected automatically, map your thread creation and other
concurrency-related functions to their POSIX equivalents. For instance, in the preceding example,
perform the following mapping:

• createTask → pthread_create
• takeLock → pthread_mutex_lock
• releaseLock → pthread_mutex_unlock

To perform the mapping:

1 List each mapping in an XML file in a specific syntax.

Copy the template file code-behavior-specifications-template.xml from the folder
polyspaceroot\polyspace\verifier\cxx to a writable location and modify the file. Enter
each mapping in the file using the following syntax after existing similar entries:

<function name="createTask" std="pthread_create" >
 <mapping std_arg="1" arg="2"></mapping>
 <mapping std_arg="3" arg="1"></mapping>
 <mapping std_arg="2" arg="3"></mapping>
 <mapping std_arg="4" arg="4"></mapping>
</function>
<function name="takeLock" std="pthread_mutex_lock" >
</function>
<function name="releaseLock" std="pthread_mutex_unlock" >
</function>

Note that when mapping createTask to pthread_create, argument remapping is required,
because the arguments do not correspond exactly. For instance, the thread start routine is the
third argument of pthread_create but the first argument of createTask.

Remove previously existing entries in the file to avoid warnings.
2 Specify this XML file as argument for the option -code-behavior-specifications.

If you cannot perform a mapping to one of the supported families of concurrency primitives, you have
to set up the multitasking analysis manually. See “Configuring Polyspace Multitasking Analysis
Manually” on page 15-17.

Checkers That Can Be Extended
The concurrency defect checkers that can be extended in this way are:

 Extend Concurrency Defect Checkers to Unsupported Multithreading Environments

18-31

• Bug Finder defects:

• Data race
• Double lock and Double unlock
• Missing lock and Missing unlock
• Deadlock

• CERT C rules and recommendation:

• CERT C: Rule CON35-C
• CERT C: Rule CON43-C
• CERT C: Rule POS51-C
• CERT C: Rec. CON01-C

• CERT C++ rules:

• CERT C++: CON43-C
• CERT C++: CON53-CPP

• MISRA C:2012 Dir 4.13

Limitations
You can map your custom thread creation and lock-unlock functions to similar standard library
functions, subject to the following constraints:

• Your custom function must have the same number of arguments as the standard library function
or more. Make sure that every argument of the standard library function is mapped to an
argument of the custom function. For examples of argument remapping, see also -code-
behavior-specifications.

• The mapped function arguments must have compatible data types. Likewise, the custom function
must have a return type that is compatible with the standard library function. For instance:

• An integer type (char, int, etc.) is not compatible with a floating point type (float, double,
etc.)

• A fundamental type is not compatible with a structure or enumeration.
• A pointer type is not compatible with a non-pointer type.

See Also
-code-behavior-specifications

More About
• “Modify Default Behavior of Bug Finder Checkers” on page 18-3

18 Configure Bug Finder Checkers

18-32

Extend Checkers for Initialization to Check Function Arguments
Passed by Pointers

This topic shows how to extend checkers for initialization to check function arguments passed by
pointers. By default, Bug Finder does not check these arguments for initialization at the point of
function call because you might perform the initialization in the function body. However, for specific
functions, you can extend the checkers to check arguments passed by pointers for initialization at the
point of function call.

Identify Need for Existing Checker
Suppose that you consider some function calls as part of the system boundary and you want to make
sure that you pass initialized buffers across the boundary. For instance, the Run-Time environment or
Rte_ functions in AUTOSAR allow a software component to communicate with other software
components. You might want to ensure that pointer arguments to these functions point to initialized
buffers.

For instance, consider this code snippet:

extern void Rte_Write_int(unsigned int, int*);

void writeValueToAddress() {
 const unsigned int module_id = 0xfe;
 int x;
 Rte_Write_int(module_id, &x);
}

The argument x is passed by pointer to the Rte_Write_int function. Bug Finder does not check x
for initialization at the point of function call. In the body of Rte_Write_int, if you attempt to read x,
Bug Finder flags the non-initialized variable. However, you might not be able to provide the module
containing the function body for analysis and might want to detect that x is non-initialized at the
point of function call itself.

Extend Checker
You can specify that pointer arguments to some functions must point to initialized buffers. For
instance, to specify that Rte_Write_int is one such function:

1 List the function in an XML file in a specific syntax.

Copy the template file code-behavior-specifications-template.xml from the folder
polyspaceroot\polyspace\verifier\cxx to a writable location and modify the file. Enter
the function in the file using the following syntax after existing similar entries:

<function name="Rte_Write_int">
 <check name="ARGUMENT_POINTS_TO_INITIALIZED_VALUE" arg="2"/>
</function>

This syntax indicates that Bug Finder must check the second argument of the Rte_Write_int
function to determine if the argument points to an initialized buffer. Remove previously existing
entries in the file to avoid warnings.

You can also use the wildcard * to cover a group of functions. To specify all functions beginning
with Rte_Write_, enter:

 Extend Checkers for Initialization to Check Function Arguments Passed by Pointers

18-33

<function name="Rte_Write_*">
 <check name="ARGUMENT_POINTS_TO_INITIALIZED_VALUE" arg="2"/>
</function>

2 Specify this XML file as argument for the option -code-behavior-specifications.

If you rerun the analysis, you see a Non-initialized variable defect on &x when the function
Rte_Write_int is called.

Checkers That Can Be Extended
These checkers are extended by using this option:

• Non-initialized variable
• AUTOSAR C++14 Rule A3-8-1
• CERT C: Rule EXP33-C
• CERT C++ rules:

• CERT C++: EXP53-CPP
• CERT C++: EXP54-CPP

• ISO/IEC TS 17961 [uninitref]

See Also
-code-behavior-specifications

More About
• “Modify Default Behavior of Bug Finder Checkers” on page 18-3

18 Configure Bug Finder Checkers

18-34

Extend Data Race Checkers to Atomic Operations
A data race might occur when multiple threads perform concurrent operations on a shared variable.
When the operations are executed in one machine instruction, they are atomic. For instance, reading
a shared variable of type char might take a single machine instruction. Such atomic operations are
can be performed concurrently without triggering a data race. By default, Polyspace Bug Finder
assumes that certain operations are atomic and excludes them from data race checks. See “Define
Atomic Operations in Multitasking Code” on page 15-25.

The Polyspace assumptions about the atomic nature of operations might not apply to your
environment. If you are unsure whether an operation is atomic in your environment, extend the data
race checkers to include these operations.

Identify Need for Extending Checker
Operations that take more than one machine cycle to execute are nonatomic operations. For instance,
consider this operation:

MYREG = (u32dma0_chbit << 8UL) | u32dma0_chbit;

This operation takes more than one cycle to be performed and is therefore non-atomic. Such
operations are checked for data race conditions when you activate data race checkers. If you are
checking operations that take multiple instructions, use the default data race checkers, such as:

• Data race
• CERT C: Rule CON43-C
• CERT C++: CON43-C

Operations that take a single machine instruction to execute are assumed to be atomic. See “Define
Atomic Operations in Multitasking Code” on page 15-25.

Because different machines have different word size, the Polyspace assumptions about the atomic
nature of operations might not apply to your environment. For instance, consider the operation:

long long var = 0;

In target hardware where the size of a long long object is less than or equal to the word size, this
operation is atomic. In target hardware where the size of a long long object is greater than the
word size, this operation is not atomic. For instance, the preceding operation is atomic when -
target is x86_64, but not atomic when -target is i386. If you are not sure whether the code
executes in a x86_64 machine or in an i386 machine, extend the data race checker to include such
operations.

Extend Checker
To include the assumed atomic operations when checking for data race violations, specify the option
Detect Data Race in Atomic Operations (-detect-atomic-data-race). Consider this
code:

#include<stdio.h>

long var;

 Extend Data Race Checkers to Atomic Operations

18-35

void begin_critical_section(void);
void end_critical_section(void);

void task1(void) {
 var = 1;
}

void task2(void) {
 int local_var;
 local_var = var;
 printf("%d", local_var);
}

void task3(void) {
 begin_critical_section();
 /* Operations in task3 */
 end_critical_section();
}

In this code, the write operation var=1; in task task1 executes concurrently with the read operation
local_var=var; in task task2. By default, Polyspace assumes that the target processor is i386,
where these operations occur within a single machine instruction. These operations are excluded
from a data race check.

Data race might still occur in these operations when the target processor is different from i386. To
detect possible data races in this code, specify the option Detect Data Race in Atomic
Operations (-detect-atomic-data-race). At the command line, use this command:

• Windows:

polyspace-bug-finder -checkers data_race -lang cpp ^
-entry-points task1,task2,task3 ^
-critical-section-begin begin_critical_section:CS1 ^
-critical-section-end end_critical_section:CS1 ^
-detect-atomic-data-race

• Linux:

polyspace-bug-finder -checkers data_race -lang cpp \
-entry-points task1,task2,task3 \
-critical-section-begin begin_critical_section:CS1 \
-critical-section-end end_critical_section:CS1 \
-detect-atomic-data-race

After specifying the option -detect-atomic-data-race, Polyspace flags the variable var.

Checkers That Can Be Extended
The concurrency defect checkers that you can extend in this way are:

• CERT C: Rule CON43-C
• CERT C++: CON43-C
• Data race

18 Configure Bug Finder Checkers

18-36

See Also
-detect-atomic-data-race

More About
• “Modify Default Behavior of Bug Finder Checkers” on page 18-3

 Extend Data Race Checkers to Atomic Operations

18-37

Prepare Checkers Configuration for Polyspace Bug Finder
Analysis

Before you incorporate Polyspace as a tool in the software development process of your organization,
first decide how you plan on using Polyspace to improve your code. Choose which source components
to analyze, which issues to check for, and so on. You can then prepare analysis configuration files that
reflect your choices.

Broadly speaking, a Bug Finder analysis configuration consists of two parts:

• Build configuration including sources and target
• Checkers configuration

This topic describes a workflow for creating your checkers configuration in a typical deployment
scenario. You can adapt this workflow to the specific requirements of your project or organization.

Identify Checkers to Enable
Suppose that you want to establish certain coding standards across your organization. You might
follow one of several approaches:

• Adhere to an external coding standard.

If Bug Finder supports the coding standard, you can select the standard and a predefined or
custom set of rules from the standard.

Polyspace supports these external standards directly. For these standards, simply enable the
standard in your configuration and start analysis.

• MISRA C:2004
• MISRA C:2012
• MISRA C++
• JSF AV C++
• AUTOSAR C++14 (Bug Finder only)
• CERT C (Bug Finder only)
• CERT C++ (Bug Finder only)
• ISO/IEC TS 17961 (Bug Finder only)
• Guidelines (Bug Finder only)

See “Check for and Review Coding Standard Violations” on page 16-2.

18 Configure Bug Finder Checkers

18-38

• Develop a set of in-house coding rules based on external standards and prior issues found.

See if you can automate checking of those rules through Bug Finder defect checkers and/or
external coding standard checkers.

One way to locate a potential checker is to search by keywords in the documentation. Suppose you
want to detect issues that can arise from use of variadic functions.

1 Search for keywords such as variadic or va_arg and refine search results by product to
Bug Finder and then by category to Review Analysis Results > Polyspace Bug Finder
Results.

2 Identify all checkers related to variadic functions. Note down the checkers that you want to
enable. See if there is an overlap between checkers and eliminate duplicates.

You can record each defect checker that you enabled or disabled for your process requirements.
You can start from the spreadsheet of checkers in polyspaceroot\polyspace\resources\. In
the Your Notes column, note down your rationale for enabling or disabling a checker.

• Check only for defects (bugs) that are most likely to cause errors at run time.

You might not be following standard coding practices in your organization and you might find
external coding standards too sweeping for your preferences.

Start from the Bug Finder defect checkers and identify a subset of checkers for which you want to
have zero unjustified defects. One way to identify this subset can be the following:

• First select defect checkers with high impact. These checkers can find issues that are likely to
have serious consequences.

See also “Classification of Defects by Impact” on page 18-49.

 Prepare Checkers Configuration for Polyspace Bug Finder Analysis

18-39

• Run a first pass of Bug Finder analysis with high impact checkers and identify checkers that
produce too much noise that you do not want to address immediately. You can disable these
checkers for your initial deployment.

See also “Choose Specific Bug Finder Defect Checkers” on page 18-2.

You can follow a similar strategy with checkers for external coding standards. For instance, for
MISRA C:2012, you can start from the mandatory or required guidelines and then choose to
expand later.

At the end of this process, you have identified some checkers to enable in a Polyspace analysis. These
checkers can be all defect (bug) checkers, or all checkers from external coding standards, or a mix of
the two. The next section describes how to create checkers configuration files that you can deploy to
your developers.

Create Checkers Configuration Files
A Polyspace Bug Finder analysis configuration is a list of analysis options specified using command-
line flags. You can store the entire configuration in one options file, for instance, a text file named
allOptions.txt, and specify the file using -options-file like this:

polyspace-bug-finder -options-file allOptions.txt

Or like this:

polyspace-bug-finder-server -options-file allOptions.txt

For your convenience, you can split the configuration into three parts:

• Build configuration (sources, targets, and so on).

Suppose that you save all options related to your build in a file buildOptions.txt. You can
create this file manually or automatically from your build command (makefile).

For more information on how to create this file, see “Specify Target Environment and Compiler
Behavior” on page 13-2.

• Defect checkers configuration.

Suppose that you specify defect checkers in a file defectCheckers.txt.
• External coding standard configuration.

18 Configure Bug Finder Checkers

18-40

Suppose that you specify a coding standard and associated checkers in a file
externalRuleCheckers.txt.

You can string the files together in a run command like this:

polyspace-bug-finder
 -options-file buildOptions.txt
 -options-file defectCheckers.txt
 -options-file externalRuleCheckers.txt

This command combines the contents of all options files into one file. The splitting of one options file
into several files has some advantages. By splitting into separate options files, you can, for instance,
reuse the defect checkers configuration across projects while creating a build configuration
individually for each project.

You have to then create the text files that specify the checkers that you choose to enable:

• The file defectCheckers.txt contains -checkers followed by a comma-separated list of the
defect checkers that you choose to enable. For instance:

-checkers
 INT_ZERO_DIV,
 FLOAT_ZERO_DIV,
...

See also:

• Find defects (-checkers)
• “Short Names of Bug Finder Defect Groups and Defect Checkers” on page 30-11

• The file externalRuleCheckers.txt contains the coding standards that you want to enable and
then refers to a separate XML file for specific rules from the standards.

For instance, a text file that enables specific rules from the MISRA C:2012 and AUTOSAR C++14
standard contains these options:

-misra3 from-file
-autosar-cpp14 from-file
-checkers-selection-file externalRuleCheckers.xml

The XML file externalRuleCheckers.xml that enables or disables checkers for rules from
specific standards has this structure:

 Prepare Checkers Configuration for Polyspace Bug Finder Analysis

18-41

<polyspace_checkers_selection>
 <standard name="MISRA C:2004" state="off"/>
 <standard name="MISRA AC AGC" state="off"/>
 <standard name="MISRA C:2012" state="off"/>
 <standard name="MISRA C++:2008" state="off"/>
 <standard name="JSF AV C++" state="off"/>
 <standard name="SEI CERT C" state="off"/>
 <standard name="SEI CERT C++" state="off"/>
 <standard name="ISO/IEC TS 17961" state="off"/>
 <standard name="AUTOSAR C++14">
 <section name="0 Language independent issues">
 <check id="M0-1-1" state="on"/>
 <check id="M0-1-2" state="on"/>
 <check id="M0-1-3" state="off"/>
 <check id="M0-1-4" state="on">
 <comment>Not implemented</comment>
 </check>
 <check id="A0-1-1" state="on">
 <comment>Not implemented</comment>
 </check>
 <check id="A0-1-2" state="on"/>
 <check id="M0-1-8" state="on">
 <comment>Not implemented</comment>
 </check>
 .
 .
 </section>
 </standard>
</polyspace_checkers_selection>

For more information on how to create the XML file, see “Check for and Review Coding Standard
Violations” on page 16-2.

You can create these files and use the final Polyspace run command in scripts. For instance:

• In a Jenkins build, you can specify the run command in a build script, along with other tools that
you are running. After code submission, the Polyspace analysis can run on newly submitted code
through the build scripts.

• In developer IDEs, you can specify the run command through a menu item that runs external
tools. Developers can run the Polyspace analysis during coding by using the external tools.

Creating these options files by hand can be prone to errors. If you have a license of the desktop
product, Polyspace Bug Finder, you can generate these files from the Polyspace user interface. See
also “Configure Polyspace Analysis Options in User Interface and Generate Scripts” on page 4-15.

See Also

More About
• “Choose Specific Bug Finder Defect Checkers” on page 18-2
• “Check for and Review Coding Standard Violations” on page 16-2

18 Configure Bug Finder Checkers

18-42

Bug Finder Defect Groups

In this section...
“C++ Exceptions” on page 18-43
“Concurrency” on page 18-43
“Cryptography” on page 18-44
“Data flow” on page 18-44
“Dynamic Memory” on page 18-45
“Good Practice” on page 18-45
“Numerical” on page 18-45
“Object Oriented” on page 18-45
“Performance” on page 18-46
“Programming” on page 18-46
“Resource Management” on page 18-47
“Static Memory” on page 18-47
“Security” on page 18-47
“Tainted data” on page 18-47

For convenience, the defect checkers in Bug Finder are classified into various groups.

• In certain projects, you can choose to focus only on specific groups of defects. Specify the group
name for the option Find defects (-checkers).

• When reviewing results, you can review all results of a certain group together. Filter out other
results during review. See “Filter and Group Results in Polyspace Desktop User Interface” on page
23-2 or “Filter and Sort Results in Polyspace Access Web Interface” on page 27-8.

This topic gives an overview of the various groups.

C++ Exceptions
These defects are related to C++ exception handling. The defects include:

• Unhandled exception emitting from a noexcept function
• Unexpected exception arising during constructing the argument object of a throw statement
• catch statements catching exceptions by value instead of by reference
• catch statements hiding subsequent catch statements.

For more details about specific defects, see “C++ Exception Defects”.

Command-Line Parameter: cpp_exceptions

Concurrency
These defects are related to multitasking code.

 Bug Finder Defect Groups

18-43

Data Race Defects

The data race defects occur when multiple tasks operate on a shared variable or call a nonreentrant
standard library function without protection.

For the specific defects, see “Concurrency Defects”.

Command-Line Parameter: concurrency

Locking Defects

The locking defects occur when the critical sections are not set up appropriately. For example:

• The critical sections are involved in a deadlock.
• A lock function does not have the corresponding unlock function.
• A lock function is called twice without an intermediate call to an unlock function.

Critical sections protect shared variables from concurrent access. Polyspace expects critical sections
to follow a certain format. The critical section must lie between a call to a lock function and a call to
an unlock function.

For the specific defects, see “Concurrency Defects”.

Command-Line Parameter: concurrency

Cryptography
These defects are related to incorrect use of cryptography routines from the OpenSSL library. For
instance:

• Use of cryptographically weak algorithms
• Absence of essential elements such as cipher key or initialization vector
• Wrong order of cryptographic operations

Note that these checkers support up to version 1.1.1 of the OpenSSL library.

For the specific defects, see “Cryptography Defects”.

Command-Line Parameter: cryptography

Data flow
These defects are errors relating to how information moves throughout your code. The defects
include:

• Dead or unreachable code
• Unused code
• Non-initialized information

For the specific defects, see “Data Flow Defects”.

Command-Line Parameter: data_flow

18 Configure Bug Finder Checkers

18-44

Dynamic Memory
These defects are errors relating to memory usage when the memory is dynamically allocated. The
defects include:

• Freeing dynamically allocated memory
• Unprotected memory allocations

For specific defects, see “Dynamic Memory Defects”.

Command-Line Parameter: dynamic_memory

Good Practice
These defects allow you to observe good coding practices. The defects by themselves might not cause
a crash, but they sometimes highlight more serious logic errors in your code. The defects also make
your code vulnerable to attacks and hard to maintain.

The defects include:

• Hard-coded constants such as buffer size and loop boundary
• Unused function parameters

For specific defects, see “Good Practice Defects”.

Command-Line Parameter: good_practice

Numerical
These defects are errors relating to variables in your code; their values, data types, and usage. The
defects include:

• Mathematical operations
• Conversion overflow
• Operational overflow

For specific defects, see “Numerical Defects”.

Command-Line Parameter: numerical

Object Oriented
These defects are related to the object-oriented aspect of C++ programming. The defects highlight
class design issues or issues in the inheritance hierarchy.

The defects include:

• Data member not initialized or incorrectly initialized in constructor
• Incorrect overriding of base class methods
• Breaking of data encapsulation

For specific defects, see “Object Oriented Defects”.

 Bug Finder Defect Groups

18-45

Command-Line Parameter: object_oriented

Performance
These defect checkers detect specific code patterns that directly cause or contribute to performance
problems. Fixing the defects either directly removes performance problems, or removes contributing
factors that might cause performance problems later.

These checkers can identify defects that a compiler’s optimizations cannot fix. Compiler optimizations
try to improve the performance of existing code, but must stay within language rules, and cannot
makes guesses about developer intent. On the contrary, these checkers can detect problems where:

• A more efficient code pattern can replace the current usage without changing functionalities, but
the pattern is not required by the language rules.

For instance, the checker flags empty destructors in classes that do not have move constructors or
move assignment operators. An empty destructor is allowed by the C++ language rules but
prevents automatic generation of move operators. Removing the destructor allows compiler-
generated destructors (and move operators) and makes the code more efficient without changing
functionalities.

• Two or more similar implementations exist, and depending on requirements, the developer can
choose a more efficient implementation.

For instance, the checker flags the use of std::endl in I/O operations. Both std::endl and \n
introduce a new line, but if flushing is not intended, the latter is more efficient.

After these defects are fixed, the source code is more efficient or the developer intent is more
explicit, and the compiler can more aggressively optimize the code.

The defects include:

• Issues that inadvertently cause copy instead of move operations
• Inefficient or unnecessary temporary variable creation
• Use of a function that has a possibly more efficient alternative

For specific defects, see “Performance Defects”.

Command-Line Parameter: performance

Programming
These defects are errors relating to programming syntax. These defects include:

• Assignment versus equality operators
• Mismatches between variable qualifiers or declarations
• Badly formatted strings

For specific defects, see “Programming Defects”.

Command-Line Parameter: programming

18 Configure Bug Finder Checkers

18-46

Resource Management
These defects are related to file handling. The defects include:

• Unclosed file stream
• Operations on a file stream after it is closed

For specific defects, see “Resource Management Defects”.

Command-Line Parameter: resource_management

Static Memory
These defects are errors relating to memory usage when the memory is statically allocated. The
defects include:

• Accessing arrays outside their bounds
• Null pointers
• Casting of pointers

For specific defects, see “Static Memory Defects”.

Command-Line Parameter: static_memory

Security
These defects highlight places in your code which are vulnerable to hacking or other security attacks.
Many of these defects do not cause runtime errors, but instead point out risky areas in your code. The
defects include:

• Managing sensitive data
• Using dangerous or obsolete functions
• Generating random numbers
• Externally controlled paths and commands

For more details about specific defects, see “Security Defects”.

Command-Line Parameter: security

Tainted data
These defects highlight elements in your code which are from unsecured sources. Attackers can use
input data or paths to attack your program and cause failures. These defects highlight elements in
your code that are vulnerable. Defects include:

• Use of tainted variables or pointers
• Externally controlled paths

For more details about specific defects, see “Tainted Data Defects”. You can modify the behavior of
the tainted data defects by using the optional command -consider-analysis-perimeter-as-
trust-boundary. See -consider-analysis-perimeter-as-trust-boundary.

 Bug Finder Defect Groups

18-47

Command-Line Parameter: tainted_data

See Also
Find defects (-checkers)

More About
• “Short Names of Bug Finder Defect Groups and Defect Checkers” on page 30-11

18 Configure Bug Finder Checkers

18-48

Classification of Defects by Impact
To prioritize your review of Polyspace Bug Finder defects, you can use the Impact attribute assigned
to the defect. The attribute allows you to filter results that require more immediate attention. For
more information, see:

• “Filter and Group Results in Polyspace Desktop User Interface” on page 23-2
• “Filter and Sort Results in Polyspace Access Web Interface” on page 27-8

The Impact attribute is assigned to a defect based on the following considerations:

• Criticality, or whether the defect is likely to cause a code failure.

If a defect is likely to cause a code to fail, it is treated as a high impact defect. If the defect
currently does not cause code failure but can cause problems with code maintenance in the
future, it is a low impact defect.

• Certainty, or the rate of false positives.

For instance, the defect Integer division by zero is a high-impact defect because it is almost certain
to cause a code crash. On the other hand, the defect Dead code has low impact because by itself,
presence of dead code does not cause code failure. However, the dead code can hide other high-
impact defects.

You cannot change the impact assigned to a defect.

High Impact Defects
The following list shows the high-impact defects.

C++ Exception

• Noexcept function exits with exception
• Throw argument raises unexpected exception
• Uncaught exception

Concurrency

• Data race
• Data race on adjacent bit fields
• Data race through standard library function call
• Deadlock
• Double lock
• Double unlock
• Missing unlock

Data Flow

• Non-initialized pointer
• Non-initialized variable

 Classification of Defects by Impact

18-49

Dynamic Memory

• Deallocation of previously deallocated pointer
• Invalid deletion of pointer
• Invalid free of pointer
• Use of previously freed pointer

Numerical

• Absorption of float operand
• Float conversion overflow
• Float division by zero
• Integer conversion overflow
• Integer division by zero
• Invalid use of standard library floating point routine
• Invalid use of standard library integer routine

Object Oriented

• Base class assignment operator not called
• Copy constructor not called in initialization list
• Object slicing

Performance

• Invalid iterator usage

Programming

• Assertion
• Character value absorbed into EOF
• Declaration mismatch
• Errno not reset
• Incorrect value forwarding
• Invalid iterator usage
• Invalid use of == operator
• Invalid use of standard library routine
• Invalid va_list argument
• Misuse of errno
• Misuse of narrow or wide character string
• Misuse of return value from nonreentrant standard function
• Move operation on const object
• Non-compliance with AUTOSAR specification
• Possible misuse of sizeof
• Possibly unintended evaluation of expression because of operator precedence

rules

18 Configure Bug Finder Checkers

18-50

• std::string_view initialized with dangling pointer
• Typedef mismatch
• Variable length array with nonpositive size
• Writing to const qualified object
• Wrong type used in sizeof

Resource Management

• Closing a previously closed resource
• Resource leak
• Use of previously closed resource
• Writing to read-only resource

Security

• Bad order of dropping privileges
• Critical data member is not private
• LDAP injection
• Privilege drop not verified
• Returned value of a sensitive function not checked
• SQL injection
• Unsafe call to a system function
• Use of non-secure temporary file

Static Memory

• Array access out of bounds
• Buffer overflow from incorrect string format specifier
• Destination buffer overflow in string manipulation
• Destination buffer underflow in string manipulation
• Invalid use of standard library memory routine
• Invalid use of standard library string routine
• Null pointer
• Pointer access out of bounds
• Pointer or reference to stack variable leaving scope
• Subtraction or comparison between pointers to different arrays
• Use of automatic variable as putenv-family function argument
• Use of path manipulation function without maximum sized buffer checking
• Wrong allocated object size for cast

Medium Impact Defects
The following list shows the medium-impact defects.

 Classification of Defects by Impact

18-51

C++ Exception

• Exception caught by value
• Exception handler hidden by previous handler

Concurrency

• Asynchronously cancellable thread
• Atomic load and store sequence not atomic
• Atomic variable accessed twice in an expression
• Automatic or thread local variable escaping from a thread
• Destruction of locked mutex
• Join or detach of a joined or detached thread
• Missing lock
• Missing or double initialization of thread attribute
• Multiple mutexes used with same condition variable
• Thread-specific memory leak
• Use of undefined thread ID

Cryptography

• Constant block cipher initialization vector
• Constant cipher key
• Context initialized incorrectly for cryptographic operation
• Context initialized incorrectly for digest operation
• Incompatible padding for RSA algorithm operation
• Inconsistent cipher operations
• Incorrect key for cryptographic algorithm
• Missing blinding for RSA algorithm
• Missing block cipher initialization vector
• Missing certification authority list
• Missing cipher algorithm
• Missing cipher data to process
• Missing cipher final step
• Missing cipher key
• Missing data for encryption, decryption or signing operation
• Missing final step after hashing update operation
• Missing hash algorithm
• Missing padding for RSA algorithm
• Missing parameters for key generation
• Missing peer key
• Missing private key

18 Configure Bug Finder Checkers

18-52

• Missing private key for X.509 certificate
• Missing public key
• Missing salt for hashing operation
• Missing X.509 certificate
• No data added into context
• Nonsecure hash algorithm
• Nonsecure parameters for key generation
• Nonsecure RSA public exponent
• Nonsecure SSL/TLS protocol
• Predictable block cipher initialization vector
• Predictable cipher key
• Server certificate common name not checked
• TLS/SSL connection method not set
• TLS/SSL connection method set incorrectly
• Weak cipher algorithm
• Weak cipher mode
• Weak padding for RSA algorithm
• X.509 peer certificate not checked

Data Flow

• Pointer to non-initialized value converted to const pointer
• Unreachable code
• Useless if

Dynamic Memory

• Memory leak

Numerical

• Bitwise operation on negative value
• Integer constant overflow
• Integer overflow
• Sign change integer conversion overflow
• Use of plain char type for numerical value

Object Oriented

• Base class destructor not virtual
• Bytewise operations on nontrivial class object
• Conversion or deletion of incomplete class pointer
• Copy operation modifying source operand
• Incompatible types prevent overriding

 Classification of Defects by Impact

18-53

• Member not initialized in constructor
• Missing virtual inheritance
• Operator new not overloaded for possibly overaligned class
• Partial override of overloaded virtual functions
• Return of non const handle to encapsulated data member
• Self assignment not tested in operator

Performance

• Const std::move input may cause a more expensive object copy
• Expensive allocation in loop
• Unnecessary use of std::string::c_str() or equivalent string methods
• Expensive constant std::string construction
• Expensive copy in a range-based for loop iteration
• Expensive local variable copy
• Expensive pass by value
• Expensive use of a standard algorithm when a more efficient method exists
• Expensive use of container's count method
• Expensive use of container's insertion method
• Expensive return by value
• Inefficient use of sprintf
• Missing call to container's reserve method
• Inefficient string length computation
• Move operation uses copy
• Missing constexpr specifier
• std::endl may cause an unnecessary flush
• Unnecessary padding
• std::move called on an unmovable type

Programming

• Abnormal termination of exit handler
• Bad file access mode or status
• Call through non-prototyped function pointer
• Copy of overlapping memory
• Environment pointer invalidated by previous operation
• Exception caught by value
• Exception handler hidden by previous handler
• Floating point comparison with equality operators
• Function called from signal handler not asynchronous-safe
• Function called from signal handler not asynchronous-safe (strict)
• Improper array initialization

18 Configure Bug Finder Checkers

18-54

• Improper erase-remove idiom
• Incorrect data type passed to va_arg
• Incorrect pointer scaling
• Incorrect type data passed to va_start
• Incorrect use of offsetof in C++
• Incorrect use of va_start
• Inline constraint not respected
• Invalid assumptions about memory organization
• Invalid file position
• Invalid use of = operator
• Memory comparison of padding data
• Memory comparison of strings
• Missing byte reordering when transferring data
• Misuse of errno in a signal handler
• Misuse of sign-extended character value
• Shared data access within signal handler
• Side effect in arguments to unsafe macro
• Signal call from within signal handler
• Standard function call with incorrect arguments
• Too many va_arg calls for current argument list
• Unnamed namespace in header file
• Unsafe conversion between pointer and integer
• Use of indeterminate string
• Use of memset with size argument zero

Resource Management

• Opening previously opened resource

Security

• Deterministic random output from constant seed
• Errno not checked
• Execution of a binary from a relative path can be controlled by an external

actor
• File access between time of check and use (TOCTOU)
• File descriptor exposure to child process
• File manipulation after chroot() without chdir("/")
• Hard-coded sensitive data
• Inappropriate I/O operation on device files
• Incorrect order of network connection operations
• Load of library from a relative path can be controlled by an external actor

 Classification of Defects by Impact

18-55

• Mismatch between data length and size
• Misuse of readlink()
• Predictable random output from predictable seed
• Sensitive data printed out
• Sensitive heap memory not cleared before release
• Uncertain memory cleaning
• Uncleared sensitive data in stack
• Unsafe standard encryption function
• Unsafe standard function
• Vulnerable permission assignments
• Vulnerable pseudo-random number generator

Static Memory

• Unreliable cast of function pointer
• Unreliable cast of pointer

Tainted Data

• Array access with tainted index
• Command executed from externally controlled path
• Execution of externally controlled command
• Host change using externally controlled elements
• Library loaded from externally controlled path
• Loop bounded with tainted value
• Memory allocation with tainted size
• Tainted sign change conversion
• Tainted size of variable length array
• Use of externally controlled environment variable

Low Impact Defects
The following list shows the low-impact defects.

Concurrency

• Blocking operation while holding lock
• Function that can spuriously fail not wrapped in loop
• Function that can spuriously wake up not wrapped in loop
• Multiple threads waiting on same condition variable
• Signal call in multithreaded program
• Use of signal to kill thread

18 Configure Bug Finder Checkers

18-56

Data Flow

• Code deactivated by constant false condition
• Dead code
• Missing return statement
• Partially accessed array
• Static uncalled function
• Useless preprocessor conditional directive
• Variable shadowing
• Write without a further read

Dynamic Memory

• Alignment changed after memory reallocation
• Mismatched alloc/dealloc functions on Windows
• Unprotected dynamic memory allocation

Good Practice

• Ambiguous declaration syntax
• Bitwise and arithmetic operation on the same data
• C++ reference to const-qualified type with subsequent modification
• C++ reference type qualified with const or volatile
• Declaration of catch for generic exception
• Declaration of throw for generic exception
• Delete of void pointer
• Duplicated code
• File does not compile
• Hard-coded buffer size
• Hard-coded loop boundary
• Hard-coded object size used to manipulate memory
• Incorrect syntax of flexible array member size
• Incorrectly indented statement
• Invalid scientific notation format
• Line with more than one statement
• Macro terminated with a semicolon
• Macro with multiple statements
• Method not const
• Missing break of switch case
• Missing overload of allocation or deallocation function
• Missing reset of a freed pointer
• Partially duplicated code

 Classification of Defects by Impact

18-57

• Possibly inappropriate data type for switch expression
• Public static field is not const
• Redundant expression in sizeof operand
• Reference to un-named temporary
• Semicolon on same line as if, for or while statement
• Unmodified variable not const-qualified
• Unused parameter
• Use of a forbidden keyword
• Use of a forbidden macro
• Use of a forbidden function
• Use of setjmp/longjmp
• Useless Include

Numerical

• Float overflow
• Integer precision exceeded
• Possible invalid operation on boolean operand
• Precision loss in integer to float conversion
• Shift of a negative value
• Shift operation overflow
• Unsigned integer constant overflow
• Unsigned integer conversion overflow
• Unsigned integer overflow

Object Oriented

• *this not returned in copy assignment operator
• Lambda used as typeid operand
• Missing explicit keyword

Performance

• A move operation may throw
• Const parameter values may cause unnecessary data copies
• Const return values may cause unnecessary data copies
• Const rvalue reference parameter may cause unnecessary data copies
• Empty destructors may cause unnecessary data copies
• Expensive dynamic cast
• Expensive logical operation
• Expensive post-increment operation
• Expensive return caused by unnecessary std::move
• Expensive return of a const object

18 Configure Bug Finder Checkers

18-58

• Expensive use of container's size method
• Expensive use of map's bracket operator to insert or assign a value
• Expensive use of string function
• Expensive use of substr() to shorten a std::string
• Expensive use of non-member std::string operator+() instead of a simple

append
• Expensive use of std::string methods instead of more efficient overload
• Expensive use of std::string with empty string literal
• Inefficient string length computation
• Inefficient use of for loop
• std::endl may cause an unnecessary flush
• Unnecessary construction before reassignment
• Unnecessary implementation of a special member function
• Use of new or make_unique instead of more efficient make_shared

Programming

• Accessing object with temporary lifetime
• Alternating input and output from a stream without flush or positioning

call
• C string from string::c_str() compared to pointer
• Call to memset with unintended value
• Format string specifiers and arguments mismatch
• Memory comparison of float-point values
• Missing null in string array
• Misuse of a FILE object
• Misuse of structure with flexible array member
• Modification of internal buffer returned from nonreentrant standard

function
• Overlapping assignment
• Possible copy-paste error
• Predefined macro used as an object
• Preprocessor directive in macro argument
• Qualifier removed in conversion
• Return from computational exception signal handler
• Side effect of expression ignored
• Stream argument with possibly unintended side effects
• Universal character name from token concatenation
• Unsafe conversion from string to numerical value

 Classification of Defects by Impact

18-59

Security

• Function pointer assigned with absolute address
• Information leak via structure padding
• Missing case for switch condition
• Umask used with chmod-style arguments
• Use of dangerous standard function
• Use of obsolete standard function
• Vulnerable path manipulation

Static Memory

• Arithmetic operation with NULL pointer

Tainted Data

• Pointer dereference with tainted offset
• Tainted division operand
• Tainted modulo operand
• Tainted NULL or non-null-terminated string
• Tainted string format
• Use of tainted pointer

See Also

More About
• “Filter and Group Results in Polyspace Desktop User Interface” on page 23-2

18 Configure Bug Finder Checkers

18-60

Sources of Tainting in a Polyspace Analysis
Generally, any code element that can be modified from outside of the code is considered tainted data.
An attacker might pass values to tainted variables to cause program failure, inject malicious code, or
leak resources. The results of operations that use tainted data are also considered tainted.. For
instance, if you calculate a path to a file by using tainted variable, the file also becomes tainted. To
mitigate risks associated with tainted data, validate the content of the data before you use it.

Enhance the security of your code by using the Polyspace tainted data defect checkers to identify
sources of tainted data and then validating data from those sources.

Sources of Tainted Data
Polyspace considers data from these sources as tainted data:

• Volatile objects: Objects declared by using the keyword volatile can be modified by the
hardware during program execution. Using volatile objects without checking their content might
lead to segmentation errors, memory leak or security threat. Polyspace flags operations that use
volatile objects without validating them.

• Functions that obtains a user input: Library functions such as getenv, gets, read, scanf, or
fopen return user inputs such as an environment variable, a string, a data stream, formatted data
or a file. The main() might also take input arguments directly from the user. User dependent
inputs are unpredictable. Before using these input, validate them by checking their format, length,
or content.

• Functions that interacts with hardware: Library functions such as RegQueryValueEx interacts
with hardware like registers and peripherals. These functions return hardware dependent data
that might be unpredictable. Before using data obtained from hardware, validate them by
checking their format, length, or content.

• Functions that returns the current time: Library functions such as ctime returns the current time
of the system as a formatted string. The format of the string depends on the environment. Before
using such strings, validate them by checking their format.

• Functions that return a random number: Before using random numbers, validate them by
checking their format and range.

To consider any data that does not originate in the current scope of Polyspace analysis as tainted, use
the command line option -consider-analysis-perimeter-as-trust-boundary. See “Modify
Default Behavior of Bug Finder Checkers” on page 18-3

Impact of Tainted Data Defects
An attacker might exploit tainted data defects by deliberately feeding unexpected input to the
program to expose the stack or execute commands that access or delete sensitive data. Consider this
code which uses input from the user to modify the system.

#include <stdio.h>
#include <stdlib.h>
#define MAX 128
void Echo(char* string, int n) {
 printf("Argument %d is; ",n);
 printf(string); //Tainted operation
}

 Sources of Tainting in a Polyspace Analysis

18-61

void SystemCaller(char* string){
 printf("Calling System...");
 char cmd[MAX] = "/usr/bin/cat ";
 strcat(cmd, string);
 system(cmd);//Tainted operation
}

int main(int argc, char** argv) {
 int i = 0;
 for(i = 0;i<argc;++i){
 Echo(argv[i],i);
 SystemCaller(argv[i]);
 }
 return (0);
}

The input from the user is tainted. Polyspace flags two tainted data defects in this code.

• In the function Echo, the line printf(string) print a user input string without validating the
string. This defect enables an attacker to expose the stack by manipulating the input string. For
instance, if the user input is "%d", function prints the integer in the stack after n is printed.

• In the function SystemCaller, a user input string is used to call an operating system command.
Malicious users can execute commands to access or delete sensitive data, and even crash the
system by exploiting this defect.

To prevent such attacks, validate the tainted data by checking their format, length, or content. For
instance, in this code, the tainted inputs are validated before they are used.

#include <stdio.h>
#include <stdlib.h>
#define MAX 128
extern char** LIST_OF_COMMANDS;
int isAllowd(char*);
void Echo(char* string, int n) {
 printf("Argument %d is; ",n);
 printf("%s",string); //Validated
}
void SystemCaller(char* string){
 printf("Calling System...");
 char cmd[MAX] = "/usr/bin/cat ";
 if(isallowed(string)==1){
 strcat(cmd, string);
 system(cmd);//Validated
 }
}

int main(int argc, char** argv) {
 int i = 0;
 for(i = 0;i<argc|| i<10;++i){
 Echo(argv[i],i);
 SystemCaller(argv[i]);
 }
 return (0);
}

18 Configure Bug Finder Checkers

18-62

By specifying the format as %s in printf, the tainted input string is validated. Now, the program
prints the content of the string and the stack is no longer exposed. In SystemCaller, the program
executes an operating system command only if the input matches an allowed command.

For details about the tainted data defects in Polyspace, see “Tainted Data Defects”.

Polyspace Tainted Data Checkers

Check Tainted Data by using these Bug Finder defects and coding rules:

• Bug Finder Defects: “Tainted Data Defects”
• AUTOSAR C++14 coding rules:

• AUTOSAR C++14 Rule A27-0-1
• AUTOSAR C++14 Rule A5-2-5
• AUTOSAR C++14 Rule A5-6-1

• CERT C coding rules:

• CERT C: Rule ARR30-C
• CERT C: Rule ARR32-C
• CERT C: Rec. ENV01-C
• CERT C: Rule FIO30-C
• CERT C: Rec. INT04-C
• CERT C: Rec. INT10-C
• CERT C: Rule INT31-C
• CERT C: Rule INT32-C
• CERT C: Rule INT33-C
• CERT C: Rec. MEM04-C
• CERT C: Rec. MEM05-C
• CERT C: Rule MEM35-C
• CERT C: Rec. MSC21-C
• CERT C: Rec. STR02-C
• CERT C: Rule STR32-C
• CERT C: Rec. WIN00-C

• CERT C++ Coding Rules:

• CERT C++: ARR30-C
• CERT C++: CTR50-CPP
• CERT C++: FIO30-C
• CERT C++: INT31-C
• CERT C++: INT32-C
• CERT C++: INT33-C
• CERT C++: MEM35-C
• CERT C++: STR32-C

 Sources of Tainting in a Polyspace Analysis

18-63

• CERT C++: STR53-CPP
• ISO/IEC TS 17961 rules:

• ISO/IEC TS 17961 [taintformatio]
• ISO/IEC TS 17961 [taintsink]
• ISO/IEC TS 17961 [taintstrcpy]
• ISO/IEC TS 17961 [usrfmt]

See Also
Find defects (-checkers) | -consider-analysis-perimeter-as-trust-boundary

More About
• “Tainted data” on page 18-47
• “Modify Default Behavior of Bug Finder Checkers” on page 18-3

18 Configure Bug Finder Checkers

18-64

Polyspace Bug Finder Defects Checkers Enabled by Default
When you start a Bug Finder analysis, these checkers are enabled by default. To view a list of
checkers that are enabled by default when you analyze generated code, see “Polyspace Bug Finder
Defects Checkers Enabled by Default for Generated Code” on page 18-70.

Defect Command-line Name
Absorption of float operand FLOAT_ABSORPTION
Accessing object with temporary
lifetime

TEMP_OBJECT_ACCESS

Alignment changed after memory
reallocation

ALIGNMENT_CHANGE

Alternating input and output from a
stream without flush or positioning
call

IO_INTERLEAVING

Array access out of bounds OUT_BOUND_ARRAY
Assertion ASSERT
Atomic load and store sequence not
atomic

ATOMIC_VAR_SEQUENCE_NOT_ATOMIC

Atomic variable accessed twice in an
expression

ATOMIC_VAR_ACCESS_TWICE

Base class assignment operator not
called

MISSING_BASE_ASSIGN_OP_CALL

Base class destructor not virtual DTOR_NOT_VIRTUAL
Buffer overflow from incorrect string
format specifier

STR_FORMAT_BUFFER_OVERFLOW

Call through non-prototyped function
pointer

UNPROTOTYPED_FUNC_CALL

Character value absorbed into EOF CHAR_EOF_CONFUSED
Closing a previously closed resource DOUBLE_RESOURCE_CLOSE
Conversion or deletion of incomplete
class pointer

INCOMPLETE_CLASS_PTR

Copy constructor not called in
initialization list

MISSING_COPY_CTOR_CALL

Copy operation modifying source
operand

COPY_MODIFYING_SOURCE

Data race DATA_RACE
Data race on adjacent bit fields DATA_RACE_BIT_FIELDS
Data race through standard library
function call

DATA_RACE_STD_LIB

Dead code DEAD_CODE
Deadlock DEADLOCK

 Polyspace Bug Finder Defects Checkers Enabled by Default

18-65

Defect Command-line Name
Deallocation of previously deallocated
pointer

DOUBLE_DEALLOCATION

Declaration mismatch DECL_MISMATCH
Destination buffer overflow in string
manipulation

STRLIB_BUFFER_OVERFLOW

Destination buffer underflow in string
manipulation

STRLIB_BUFFER_UNDERFLOW

Double lock DOUBLE_LOCK
Double unlock DOUBLE_UNLOCK
Environment pointer invalidated by
previous operation

INVALID_ENV_POINTER

Errno not reset MISSING_ERRNO_RESET
Exception caught by value EXCP_CAUGHT_BY_VALUE
Exception handler hidden by previous
handler

EXCP_HANDLER_HIDDEN

Float conversion overflow FLOAT_CONV_OVFL
Float division by zero FLOAT_ZERO_DIV
Format string specifiers and arguments
mismatch

STRING_FORMAT

Improper array initialization IMPROPER_ARRAY_INIT
Incompatible types prevent overriding VIRTUAL_FUNC_HIDING
Incorrect data type passed to va_arg VA_ARG_INCORRECT_TYPE
Incorrect pointer scaling BAD_PTR_SCALING
Incorrect type data passed to va_start VA_START_INCORRECT_TYPE
Incorrect use of offsetof in C++ OFFSETOF_MISUSE
Incorrect use of va_start VA_START_MISUSE
Incorrect value forwarding INCORRECT_VALUE_FORWARDING
Infinite loop INFINITE_LOOP
Inline constraint not respected INLINE_CONSTRAINT_NOT_RESPECTED
Integer conversion overflow INT_CONV_OVFL
Integer division by zero INT_ZERO_DIV
Invalid assumptions about memory
organization

INVALID_MEMORY_ASSUMPTION

Invalid deletion of pointer BAD_DELETE
Invalid free of pointer BAD_FREE
Invalid use of = operator BAD_EQUAL_USE
Invalid use of == operator BAD_EQUAL_EQUAL_USE
Invalid use of standard library
floating point routine

FLOAT_STD_LIB

18 Configure Bug Finder Checkers

18-66

Defect Command-line Name
Invalid use of standard library
integer routine

INT_STD_LIB

Invalid use of standard library memory
routine

MEM_STD_LIB

Invalid use of standard library
routine

OTHER_STD_LIB

Invalid use of standard library string
routine

STR_STD_LIB

Invalid va_list argument INVALID_VA_LIST_ARG
Lambda used as typeid operand LAMBDA_TYPE_MISUSE
Memory comparison of padding data MEMCMP_PADDING_DATA
Memory comparison of strings MEMCMP_STRINGS
Missing lock BAD_UNLOCK
Missing null in string array MISSING_NULL_CHAR
Missing return statement MISSING_RETURN
Missing unlock BAD_LOCK
Misuse of a FILE object FILE_OBJECT_MISUSE
Misuse of errno ERRNO_MISUSE
Misuse of errno in a signal handler SIG_HANDLER_ERRNO_MISUSE
Misuse of sign-extended character
value

CHARACTER_MISUSE

Misuse of structure with flexible
array member

FLEXIBLE_ARRAY_MEMBER_STRUCT_MISUSE

Move operation on const object MOVE_CONST_OBJECT
Noexcept function exits with exception NOEXCEPT_FUNCTION_THROWS
Non-initialized pointer NON_INIT_PTR
Non-initialized variable NON_INIT_VAR
Null pointer NULL_PTR
Object slicing OBJECT_SLICING
Opening previously opened resource DOUBLE_RESOURCE_OPEN
Operator new not overloaded for
possibly overaligned class

MISSING_OVERLOAD_NEW_FOR_ALIGNED_OBJ

Partial override of overloaded virtual
functions

PARTIAL_OVERRIDE

Partially accessed array PARTIALLY_ACCESSED_ARRAY
Pointer access out of bounds OUT_BOUND_PTR
Pointer or reference to stack variable
leaving scope

LOCAL_ADDR_ESCAPE

Possible misuse of sizeof SIZEOF_MISUSE

 Polyspace Bug Finder Defects Checkers Enabled by Default

18-67

Defect Command-line Name
Possibly unintended evaluation of
expression because of operator
precedence rules

OPERATOR_PRECEDENCE

Predefined macro used as an object MACRO_USED_AS_OBJECT
Preprocessor directive in macro
argument

PRE_DIRECTIVE_MACRO_ARG

Resource leak RESOURCE_LEAK
Return from computational exception
signal handler

SIG_HANDLER_COMP_EXCP_RETURN

Self assignment not tested in operator MISSING_SELF_ASSIGN_TEST
Shared data access within signal
handler

SIG_HANDLER_SHARED_OBJECT

Side effect of expression ignored SIDE_EFFECT_IGNORED
Sign change integer conversion
overflow

SIGN_CHANGE

Signal call from within signal handler SIG_HANDLER_CALLING_SIGNAL
Standard function call with incorrect
arguments

STD_FUNC_ARG_MISMATCH

Stream argument with possibly
unintended side effects

STREAM_WITH_SIDE_EFFECT

Subtraction or comparison between
pointers to different arrays

PTR_TO_DIFF_ARRAY

Throw argument raises unexpected
exception

THROW_ARGUMENT_EXPRESSION_THROWS

Too many va_arg calls for current
argument list

TOO_MANY_VA_ARG_CALLS

Typedef mismatch TYPEDEF_MISMATCH
Universal character name from token
concatenation

PRE_UCNAME_JOIN_TOKENS

Unnamed namespace in header file UNNAMED_NAMESPACE_IN_HEADER
Unreachable code UNREACHABLE
Unreliable cast of function pointer FUNC_CAST
Unreliable cast of pointer PTR_CAST
Unsigned integer conversion overflow UINT_CONV_OVFL
Use of automatic variable as putenv-
family function argument

PUTENV_AUTO_VAR

Use of previously closed resource CLOSED_RESOURCE_USE
Use of previously freed pointer FREED_PTR
Useless if USELESS_IF

18 Configure Bug Finder Checkers

18-68

Defect Command-line Name
Variable length array with nonpositive
size

NON_POSITIVE_VLA_SIZE

Variable shadowing VAR_SHADOWING
Write without a further read USELESS_WRITE
Writing to const qualified object CONSTANT_OBJECT_WRITE
Writing to read-only resource READ_ONLY_RESOURCE_WRITE
Wrong type used in sizeof PTR_SIZEOF_MISMATCH

To enable other checkers and coding rule, configure checkers selections. See “Prepare Checkers
Configuration for Polyspace Bug Finder Analysis” on page 18-38 or “Setting Checkers in Polyspace as
You Code”.

See Also

More About
• “Checkers Deactivated in Polyspace as You Code Analysis” on page 11-78
• “Polyspace Bug Finder Defects Checkers Enabled by Default for Generated Code” on page 18-

70

 Polyspace Bug Finder Defects Checkers Enabled by Default

18-69

Polyspace Bug Finder Defects Checkers Enabled by Default for
Generated Code

When you start a Bug Finder analysis on code generated from Simulink or MATLAB code, these
checkers are enabled by default. To see a list of checkers that are enabled when you run an analysis
on handwritten code, see “Polyspace Bug Finder Defects Checkers Enabled by Default” on page 18-
65.

Defect Command-line Name
Absorption of float operand FLOAT_ABSORPTION
Array access out of bounds OUT_BOUND_ARRAY
Assertion ASSERT
Data race DATA_RACE
Data race on adjacent bit fields DATA_RACE_BIT_FIELDS
Data race through standard library
function call

DATA_RACE_STD_LIB

Dead code DEAD_CODE
Deadlock DEADLOCK
Deallocation of previously deallocated
pointer

DOUBLE_DEALLOCATION

Declaration mismatch DECL_MISMATCH
Dereference of a null pointer NULL_PTR
Double lock DOUBLE_LOCK
Double unlock DOUBLE_UNLOCK
Float conversion overflow FLOAT_CONV_OVFL
Float division by zero FLOAT_ZERO_DIV
Format string specifiers and arguments
mismatch

STRING_FORMAT

Infinite loop INFINITE_LOOP
Integer conversion overflow INT_CONV_OVFL
Integer division by zero INT_ZERO_DIV
Invalid free of pointer BAD_FREE
Invalid use of standard library
floating point routine

FLOAT_STD_LIB

Invalid use of standard library
integer routine

INT_STD_LIB

Invalid use of standard library memory
routine

MEM_STD_LIB

Invalid use of standard library
routine

OTHER_STD_LIB

18 Configure Bug Finder Checkers

18-70

Defect Command-line Name
Invalid use of standard library string
routine

STR_STD_LIB

Missing lock BAD_UNLOCK
Missing return statement MISSING_RETURN
Missing unlock BAD_LOCK
Non-initialized pointer NON_INIT_PTR
Non-initialized variable NON_INIT_VAR
Pointer access out of bounds OUT_BOUND_PTR
Sign change integer conversion
overflow

SIGN_CHANGE

Typedef mismatch TYPEDEF_MISMATCH
Unreachable code UNREACHABLE
Unreliable cast of function pointer FUNC_CAST
Unreliable cast of pointer PTR_CAST
Unsigned integer conversion overflow UINT_CONV_OVFL
Use of previously freed pointer FREED_PTR
Useless if USELESS_IF

To enable other checkers and coding rule, configure checkers selections. See “Prepare Checkers
Configuration for Polyspace Bug Finder Analysis” on page 18-38.

See Also

More About
• “Polyspace Bug Finder Defects Checkers Enabled by Default” on page 18-65
• “Checkers Deactivated in Polyspace as You Code Analysis” on page 11-78

 Polyspace Bug Finder Defects Checkers Enabled by Default for Generated Code

18-71

Bug Finder Results Found in Fast Analysis Mode
In fast analysis mode, Bug Finder checks for a subset of defects and coding rules only. The tables
below list the results that can be found in a fast analysis. See also Use fast analysis mode for
Bug Finder (-fast-analysis).

These defects and coding standard violations are either found earlier in the analysis or leverage
archived information from a previous analysis. The analysis results are comparatively easier to review
and fix because most results can be understood by focusing on two or three lines of code (the line
with the defect and one or two previous lines).

Because of the simplified nature of the analysis, you might see fewer defects in the fast analysis mode
compared to a regular Bug Finder analysis.

Polyspace Bug Finder Defects
Static Memory

Name Description
Buffer overflow from incorrect string format specifier
(str_format_buffer_overflow)

String format specifier causes buffer argument of
standard library functions to overflow

Unreliable cast of function pointer
(func_cast)

Function pointer cast to another function pointer with
different argument or return type

Unreliable cast of pointer
(ptr_cast)

Pointer implicitly cast to different data type

18 Configure Bug Finder Checkers

18-72

Programming

Name Description
Copy of overlapping memory
(overlapping_copy)

Source and destination arguments of a copy function
have overlapping memory

Exception caught by value
(excp_caught_by_value)

catch statement accepts an object by value

Exception handler hidden by previous handler
(excp_handler_hidden)

catch statement is not reached because of an earlier
catch statement for the same exception

Format string specifiers and arguments mismatch
(string_format)

String specifiers do not match corresponding
arguments

Improper array initialization
(improper_array_init)

Incorrect array initialization when using initializers

Invalid use of == operator
(bad_equal_equal_use)

Equality operation in assignment statement

Invalid use of = operator
(bad_equal_use)

Assignment in conditional statement

Invalid use of floating point operation
(bad_float_op)

Imprecise comparison of floating point variables

Missing null in string array
(missing_null_char)

String does not terminate with null character

Overlapping assignment
(overlapping_assign)

Memory overlap between left and right sides of an
assignment

Possibly unintended evaluation of expression because
of operator precedence rules
(operator_precedence)

Operator precedence rules cause unexpected
evaluation order in arithmetic expression

Unsafe conversion between pointer and integer
(bad_int_ptr_cast)

Misaligned or invalid results from conversions
between pointer and integer types

Wrong type used in sizeof
(ptr_sizeof_mismatch)

sizeof argument does not match pointed type

Data Flow

Name Description
Code deactivated by constant false condition
(deactivated_code)

Code segment deactivated by #if 0 directive or
if(0) condition

Missing return statement
(missing_return)

Function does not return value though return type is
not void

Static uncalled function
(uncalled_func)

Function with static scope not called in file

Variable shadowing
(var_shadowing)

Variable hides another variable of same name with
nested scope

 Bug Finder Results Found in Fast Analysis Mode

18-73

Object Oriented

Name Description
*this not returned in copy assignment operator
(return_not_ref_to_this)

operator= method does not return a pointer to the
current object

Base class assignment operator not called
(missing_base_assign_op_call)

Copy assignment operator does not call copy
assignment operators of base subobjects

Base class destructor not virtual
(dtor_not_virtual)

Class cannot behave polymorphically for deletion of
derived class objects

Copy constructor not called in initialization list
(missing_copy_ctor_call)

Copy constructor does not call copy constructors of
some members or base classes

Incompatible types prevent overriding
(virtual_func_hiding)

Derived class method hides a virtual base class method
instead of overriding it

Member not initialized in constructor
(non_init_member)

Constructor does not initialize some members of a
class

Missing explicit keyword
(missing_explicit_keyword)

Constructor missing the explicit specifier

Missing virtual inheritance
(missing_virtual_inheritance)

A base class is inherited virtually and nonvirtually in
the same hierarchy

Object slicing
(object_slicing)

Derived class object passed by value to function with
base class parameter

Partial override of overloaded virtual functions
(partial_override)

Class overrides fraction of inherited virtual functions
with a given name

Return of non const handle to encapsulated data
member
(breaking_data_encapsulation)

Method returns pointer or reference to internal
member of object

Self assignment not tested in operator
(missing_self_assign_test)

Copy assignment operator does not test for self-
assignment

Security

Name Description
Function pointer assigned with absolute address
(func_ptr_absolute_addr)

Constant expression is used as function address is
vulnerable to code injection

18 Configure Bug Finder Checkers

18-74

Good Practice

Name Description
Bitwise and arithmetic operation on the same data
(bitwise_arith_mix)

Statement with mixed bitwise and arithmetic
operations

Delete of void pointer
(delete_of_void_ptr)

delete operates on a void* pointer pointing to an
object

Hard-coded buffer size
(hard_coded_buffer_size)

Size of memory buffer is a numerical value instead of
symbolic constant

Hard-coded loop boundary
(hard_coded_loop_boundary)

Loop boundary is a numerical value instead of
symbolic constant

Large pass-by-value argument
(pass_by_value)

Large argument passed by value between functions

Line with more than one statement
(more_than_one_statement)

Multiple statements on a line

Missing break of switch case
(missing_switch_break)

No comments at the end of switch case without a
break statement

Missing reset of a freed pointer
(missing_freed_ptr_reset)

Pointer free not followed by a reset statement to clear
leftover data

Unused parameter
(unused_parameter)

Function prototype has parameters not read or written
in function body

MISRA C:2004 and MISRA AC AGC Rules
The software checks the following rules early in the analysis.

Language Extensions

Rule Description
2.1 Assembly language shall be encapsulated and isolated.
2.2 Source code shall only use /* */ style comments.
2.3 The character sequence /* shall not be used within a comment.

Documentation

Rule Description
3.4 All uses of the #pragma directive shall be documented and explained.

Character Sets

Rule Description
4.1 Only those escape sequences which are defined in the ISO C standard shall be used.
4.2 Trigraphs shall not be used.

 Bug Finder Results Found in Fast Analysis Mode

18-75

Identifiers

Rule Description
5.2 Identifiers in an inner scope shall not use the same name as an identifier in an outer scope, and

therefore hide that identifier.

Types

Rule Description
6.1 The plain char type shall be used only for the storage and use of character values.
6.2 Signed and unsigned char type shall be used only for the storage and use of numeric values.
6.3 typedefs that indicate size and signedness should be used in place of the basic types.
6.4 Bit fields shall only be defined to be of type unsigned int or signed int.
6.5 Bit fields of type signed int shall be at least 2 bits long.

Constants

Rule Description
7.1 Octal constants (other than zero) and octal escape sequences shall not be used.

Declarations and Definitions

Rule Description
8.1 Functions shall have prototype declarations and the prototype shall be visible at both the function

definition and call.
8.2 Whenever an object or function is declared or defined, its type shall be explicitly stated.
8.3 For each function parameter the type given in the declaration and definition shall be identical, and

the return types shall also be identical.
8.5 There shall be no definitions of objects or functions in a header file.
8.6 Functions shall always be declared at file scope.
8.7 Objects shall be defined at block scope if they are only accessed from within a single function.
8.8 An external object or function shall be declared in one file and only one file.
8.9 An identifier with external linkage shall have exactly one external definition.
8.11 The static storage class specifier shall be used in definitions and declarations of objects and

functions that have internal linkage
8.12 When an array is declared with external linkage, its size shall be stated explicitly or defined

implicitly by initialization.

Initialization

Rule Description
9.2 Braces shall be used to indicate and match the structure in the nonzero initialization of arrays and

structures.
9.3 In an enumerator list, the = construct shall not be used to explicitly initialize members other than

the first, unless all items are explicitly initialized.

18 Configure Bug Finder Checkers

18-76

Arithmetic Type Conversion

Rule Description
10.1 The value of an expression of integer type shall not be implicitly converted to a different

underlying type if:

• It is not a conversion to a wider integer type of the same signedness, or
• The expression is complex, or
• The expression is not constant and is a function argument, or
• The expression is not constant and is a return expression

10.2 The value of an expression of floating type shall not be implicitly converted to a different type if

• It is not a conversion to a wider floating type, or
• The expression is complex, or
• The expression is a function argument, or
• The expression is a return expression

10.3 The value of a complex expression of integer type may only be cast to a type that is narrower and
of the same signedness as the underlying type of the expression.

10.4 The value of a complex expression of float type may only be cast to narrower floating type.
10.5 If the bitwise operator ~ and << are applied to an operand of underlying type unsigned char or

unsigned short, the result shall be immediately cast to the underlying type of the operand
10.6 The "U" suffix shall be applied to all constants of unsigned types.

Pointer Type Conversion

Rule Description
11.1 Conversion shall not be performed between a pointer to a function and any type other than an

integral type.
11.2 Conversion shall not be performed between a pointer to an object and any type other than an

integral type, another pointer to a object type or a pointer to void.
11.3 A cast should not be performed between a pointer type and an integral type.
11.4 A cast should not be performed between a pointer to object type and a different pointer to object

type.
11.5 A cast shall not be performed that removes any const or volatile qualification from the type

addressed by a pointer

 Bug Finder Results Found in Fast Analysis Mode

18-77

Expressions

Rule Description
12.1 Limited dependence should be placed on C's operator precedence rules in expressions.
12.3 The sizeof operator should not be used on expressions that contain side effects.
12.5 The operands of a logical && or || shall be primary-expressions.
12.6 Operands of logical operators (&&, || and !) should be effectively Boolean. Expression that are

effectively Boolean should not be used as operands to operators other than (&&, || or !).
12.7 Bitwise operators shall not be applied to operands whose underlying type is signed.
12.9 The unary minus operator shall not be applied to an expression whose underlying type is unsigned.
12.10 The comma operator shall not be used.
12.11 Evaluation of constant unsigned expression should not lead to wraparound.
12.12 The underlying bit representations of floating-point values shall not be used.
12.13 The increment (++) and decrement (--) operators should not be mixed with other operators in an

expression

Control Statement Expressions

Rule Description
13.1 Assignment operators shall not be used in expressions that yield Boolean values.
13.2 Tests of a value against zero should be made explicit, unless the operand is effectively Boolean.
13.3 Floating-point expressions shall not be tested for equality or inequality.
13.4 The controlling expression of a for statement shall not contain any objects of floating type.
13.5 The three expressions of a for statement shall be concerned only with loop control.
13.6 Numeric variables being used within a for loop for iteration counting should not be modified in

the body of the loop.

Control Flow

Rule Description
14.3 All non-null statements shall either

• have at least one side effect however executed, or
• cause control flow to change.

14.4 The goto statement shall not be used.
14.5 The continue statement shall not be used.
14.6 For any iteration statement, there shall be at most one break statement used for loop termination.
14.7 A function shall have a single point of exit at the end of the function.
14.8 The statement forming the body of a switch, while, do while or for statement shall be a

compound statement.
14.9 An if (expression) construct shall be followed by a compound statement. The else keyword shall

be followed by either a compound statement, or another if statement.
14.10 All if else if constructs should contain a final else clause.

18 Configure Bug Finder Checkers

18-78

Switch Statements

Rule Description
15.0 Unreachable code is detected between switch statement and first case.
15.1 A switch label shall only be used when the most closely-enclosing compound statement is the

body of a switch statement
15.2 An unconditional break statement shall terminate every non-empty switch clause.
15.3 The final clause of a switch statement shall be the default clause.
15.4 A switch expression should not represent a value that is effectively Boolean.
15.5 Every switch statement shall have at least one case clause.

Functions

Rule Description
16.1 Functions shall not be defined with variable numbers of arguments.
16.3 Identifiers shall be given for all of the parameters in a function prototype declaration.
16.5 Functions with no parameters shall be declared with parameter type void.
16.6 The number of arguments passed to a function shall match the number of parameters.
16.8 All exit paths from a function with non-void return type shall have an explicit return statement

with an expression.
16.9 A function identifier shall only be used with either a preceding &, or with a parenthesized

parameter list, which may be empty.

Pointers and Arrays

Rule Description
17.4 Array indexing shall be the only allowed form of pointer arithmetic.
17.5 A type should not contain more than 2 levels of pointer indirection.

Structures and Unions

Rule Description
18.1 All structure or union types shall be complete at the end of a translation unit.
18.4 Unions shall not be used.

 Bug Finder Results Found in Fast Analysis Mode

18-79

Preprocessing Directives

Rule Description
19.1 #include statements in a file shall only be preceded by other preprocessors directives or

comments.
19.2 Nonstandard characters should not occur in header file names in #include directives.
19.3 The #include directive shall be followed by either a <filename> or "filename" sequence.
19.4 C macros shall only expand to a braced initializer, a constant, a parenthesized expression, a type

qualifier, a storage class specifier, or a do-while-zero construct.
19.5 Macros shall not be #define-d and #undef-d within a block.
19.6 #undef shall not be used.
19.7 A function should be used in preference to a function like-macro.
19.8 A function-like macro shall not be invoked without all of its arguments.
19.9 Arguments to a function-like macro shall not contain tokens that look like preprocessing directives.
19.10 In the definition of a function-like macro, each instance of a parameter shall be enclosed in

parentheses unless it is used as the operand of # or ##.
19.11 All macro identifiers in preprocessor directives shall be defined before use, except in #ifdef and

#ifndef preprocessor directives and the defined() operator.
19.12 There shall be at most one occurrence of the # or ## preprocessor operators in a single macro

definition.
19.13 The # and ## preprocessor operators should not be used.
19.14 The defined preprocessor operator shall only be used in one of the two standard forms.
19.15 Precautions shall be taken in order to prevent the contents of a header file being included twice.
19.16 Preprocessing directives shall be syntactically meaningful even when excluded by the

preprocessor.
19.17 All #else, #elif and #endif preprocessor directives shall reside in the same file as the #if or

#ifdef directive to which they are related.

18 Configure Bug Finder Checkers

18-80

Standard Libraries

Rule Description
20.1 Reserved identifiers, macros and functions in the standard library, shall not be defined, redefined

or undefined.
20.2 The names of standard library macros, objects and functions shall not be reused.
20.4 Dynamic heap memory allocation shall not be used.
20.5 The error indicator errno shall not be used.
20.6 The macro offsetof, in library <stddef.h>, shall not be used.
20.7 The setjmp macro and the longjmp function shall not be used.
20.8 The signal handling facilities of <signal.h> shall not be used.
20.9 The input/output library <stdio.h> shall not be used in production code.
20.10 The library functions atof, atoi and atoll from library <stdlib.h> shall not be used.
20.11 The library functions abort, exit, getenv and system from library <stdlib.h> shall not be

used.
20.12 The time handling functions of library <time.h> shall not be used.

MISRA C:2012 Rules
Standard C Environment

Rule Description
1.1 The program shall contain no violations of the standard C syntax and constraints, and shall not

exceed the implementation's translation limits.
1.2 Language extensions should not be used.

Unused Code

Rule Description
2.6 A function should not contain unused label declarations.
2.7 There should be no unused parameters in functions.

Comments

Rule Description
3.1 The character sequences /* and // shall not be used within a comment.
3.2 Line-splicing shall not be used in // comments.

Character Sets and Lexical Conventions

Rule Description
4.1 Octal and hexadecimal escape sequences shall be terminated.
4.2 Trigraphs should not be used.

 Bug Finder Results Found in Fast Analysis Mode

18-81

Identifiers

Rule Description
5.2 Identifiers declared in the same scope and name space shall be distinct.
5.3 An identifier declared in an inner scope shall not hide an identifier declared in an outer scope.
5.4 Macro identifiers shall be distinct.
5.5 Identifiers shall be distinct from macro names.

Types

Rule Description
6.1 Bit-fields shall only be declared with an appropriate type.
6.2 Single-bit named bit fields shall not be of a signed type.

Literals and Constants

Rule Description
7.1 Octal constants shall not be used.
7.2 A "u" or "U" suffix shall be applied to all integer constants that are represented in an unsigned

type.
7.3 The lowercase character "l" shall not be used in a literal suffix.
7.4 A string literal shall not be assigned to an object unless the object's type is "pointer to const-

qualified char".

Declarations and Definitions

Rule Description
8.1 Types shall be explicitly specified.
8.2 Function types shall be in prototype form with named parameters.
8.4 A compatible declaration shall be visible when an object or function with external linkage is

defined.
8.5 An external object or function shall be declared once in one and only one file.
8.6 An identifier with external linkage shall have exactly one external definition.
8.8 The static storage class specifier shall be used in all declarations of objects and functions that

have internal linkage.
8.10 An inline function shall be declared with the static storage class.
8.11 When an array with external linkage is declared, its size should be explicitly specified.
8.12 Within an enumerator list, the value of an implicitly-specified enumeration constant shall be

unique.
8.14 The restrict type qualifier shall not be used.

18 Configure Bug Finder Checkers

18-82

Initialization

Rule Description
9.2 The initializer for an aggregate or union shall be enclosed in braces.
9.3 Arrays shall not be partially initialized.
9.4 An element of an object shall not be initialized more than once.
9.5 Where designated initializers are used to initialize an array object the size of the array shall be

specified explicitly.

The Essential Type Model

Rule Description
10.1 Operands shall not be of an inappropriate essential type.
10.2 Expressions of essentially character type shall not be used inappropriately in addition and

subtraction operations.
10.3 The value of an expression shall not be assigned to an object with a narrower essential type or of a

different essential type category.
10.4 Both operands of an operator in which the usual arithmetic conversions are performed shall have

the same essential type category.
10.5 The value of an expression should not be cast to an inappropriate essential type.
10.6 The value of a composite expression shall not be assigned to an object with wider essential type.
10.7 If a composite expression is used as one operand of an operator in which the usual arithmetic

conversions are performed then the other operand shall not have wider essential type.
10.8 The value of a composite expression shall not be cast to a different essential type category or a

wider essential type.

Pointer Type Conversion

Rule Description
11.1 Conversions shall not be performed between a pointer to a function and any other type.
11.2 Conversions shall not be performed between a pointer to an incomplete type and any other type.
11.3 A cast shall not be performed between a pointer to object type and a pointer to a different object

type.
11.4 A conversion should not be performed between a pointer to object and an integer type.
11.5 A conversion should not be performed from pointer to void into pointer to object.
11.6 A cast shall not be performed between pointer to void and an arithmetic type.
11.7 A cast shall not be performed between pointer to object and a non-integer arithmetic type.
11.8 A cast shall not remove any const or volatile qualification from the type pointed to by a pointer.
11.9 The macro NULL shall be the only permitted form of integer null pointer constant.

 Bug Finder Results Found in Fast Analysis Mode

18-83

Expressions

Rule Description
12.1 The precedence of operators within expressions should be made explicit.
12.3 The comma operator should not be used.
12.4 Evaluation of constant expressions should not lead to unsigned integer wrap-around.

Side Effects

Rule Description
13.3 A full expression containing an increment (++) or decrement (--) operator should have no other

potential side effects other than that caused by the increment or decrement operator.
13.4 The result of an assignment operator should not be used.
13.6 The operand of the sizeof operator shall not contain any expression which has potential side

effects.

Control Statement Expressions

Rule Description
14.4 The controlling expression of an if statement and the controlling expression of an iteration-

statement shall have essentially Boolean type.

Control Flow

Rule Description
15.1 The goto statement should not be used.
15.2 The goto statement shall jump to a label declared later in the same function.
15.3 Any label referenced by a goto statement shall be declared in the same block, or in any block

enclosing the goto statement.
15.4 There should be no more than one break or goto statement used to terminate any iteration

statement.
15.5 A function should have a single point of exit at the end
15.6 The body of an iteration-statement or a selection-statement shall be a compound statement.
15.7 All if … else if constructs shall be terminated with an else statement.

18 Configure Bug Finder Checkers

18-84

Switch Statements

Rule Description
16.1 All switch statements shall be well-formed.
16.2 A switch label shall only be used when the most closely-enclosing compound statement is the

body of a switch statement.
16.3 An unconditional break statement shall terminate every switch-clause.
16.4 Every switch statement shall have a default label.
16.5 A default label shall appear as either the first or the last switch label of a switch statement.
16.6 Every switch statement shall have at least two switch-clauses.
16.7 A switch-expression shall not have essentially Boolean type.

Functions

Rule Description
17.1 The features of <starg.h> shall not be used.
17.3 A function shall not be declared implicitly.
17.4 All exit paths from a function with non-void return type shall have an explicit return statement

with an expression.
17.6 The declaration of an array parameter shall not contain the static keyword between the [].
17.7 The value returned by a function having non-void return type shall be used.

Pointers and Arrays

Rule Description
18.4 The +, -, += and -= operators should not be applied to an expression of pointer type.
18.5 Declarations should contain no more than two levels of pointer nesting.
18.7 Flexible array members shall not be declared.
18.8 Variable-length array types shall not be used.

Overlapping Storage

Rule Description
19.2 The union keyword should not be used.

 Bug Finder Results Found in Fast Analysis Mode

18-85

Preprocessing Directives

Rule Description
20.1 #include directives should only be preceded by preprocessor directives or comments.
20.2 The ', ", or \ characters and the /* or // character sequences shall not occur in a header file

name.
20.3 The #include directive shall be followed by either a <filename> or \"filename\" sequence.
20.4 A macro shall not be defined with the same name as a keyword.
20.5 #undef should not be used.
20.6 Tokens that look like a preprocessing directive shall not occur within a macro argument.
20.7 Expressions resulting from the expansion of macro parameters shall be enclosed in parentheses.
20.8 The controlling expression of a #if or #elif preprocessing directive shall evaluate to 0 or 1.
20.9 All identifiers used in the controlling expression of #if or #elif preprocessing directives shall be

#define'd before evaluation.
20.10 The # and ## preprocessor operators should not be used.
20.11 A macro parameter immediately following a # operator shall not immediately be followed by a ##

operator.
20.12 A macro parameter used as an operand to the # or ## operators, which is itself subject to further

macro replacement, shall only be used as an operand to these operators.
20.13 A line whose first token is # shall be a valid preprocessing directive.
20.14 All #else, #elif and #endif preprocessor directives shall reside in the same file as the #if,

#ifdef or #ifndef directive to which they are related.

Standard Libraries

Rule Description
21.1 #define and #undef shall not be used on a reserved identifier or reserved macro name.
21.2 A reserved identifier or macro name shall not be declared.
21.3 The memory allocation and deallocation functions of <stdlib.h> shall not be used.
21.4 The standard header file <setjmp.h> shall not be used.
21.5 The standard header file <signal.h> shall not be used.
21.6 The Standard Library input/output functions shall not be used.
21.7 The atof, atoi, atol, and atoll functions of <stdlib.h> shall not be used.
21.8 The library functions abort, exit, getenv and system of <stdlib.h> shall not be used.
21.9 The library functions bsearch and qsort of <stdlib.h> shall not be used.
21.10 The Standard Library time and date functions shall not be used.
21.11 The standard header file <tgmath.h> shall not be used.
21.12 The exception handling features of <fenv.h> should not be used.

18 Configure Bug Finder Checkers

18-86

MISRA C++ 2008 Rules
Language Independent Issues

Rule Description
0-1-7 The value returned by a function having a non-void return type that is not an overloaded operator

shall always be used.
0-1-11 There shall be no unused parameters (named or unnamed) in non- virtual functions.
0-1-12 There shall be no unused parameters (named or unnamed) in the set of parameters for a virtual

function and all the functions that override it.
0-2-1 An object shall not be assigned to an overlapping object.

General

Rule Description
1-0-1 All code shall conform to ISO/IEC 14882:2003 "The C++ Standard Incorporating Technical

Corrigendum 1".

Lexical Conventions

Rule Description
2-3-1 Trigraphs shall not be used.
2-5-1 Digraphs should not be used.
2-7-1 The character sequence /* shall not be used within a C-style comment.
2-10-1 Different identifiers shall be typographically unambiguous.
2-10-2 Identifiers declared in an inner scope shall not hide an identifier declared in an outer scope.
2-10-3 A typedef name (including qualification, if any) shall be a unique identifier.
2-10-4 A class, union or enum name (including qualification, if any) shall be a unique identifier.
2-10-6 If an identifier refers to a type, it shall not also refer to an object or a function in the same scope.
2-13-1 Only those escape sequences that are defined in ISO/IEC 14882:2003 shall be used.
2-13-2 Octal constants (other than zero) and octal escape sequences (other than "\0") shall not be used.
2-13-3 A "U" suffix shall be applied to all octal or hexadecimal integer literals of unsigned type.
2-13-4 Literal suffixes shall be upper case.
2-13-5 Narrow and wide string literals shall not be concatenated.

 Bug Finder Results Found in Fast Analysis Mode

18-87

Basic Concepts

Rule Description
3-1-1 It shall be possible to include any header file in multiple translation units without violating the One

Definition Rule.
3-1-2 Functions shall not be declared at block scope.
3-1-3 When an array is declared, its size shall either be stated explicitly or defined implicitly by

initialization.
3-3-1 Objects or functions with external linkage shall be declared in a header file.
3-3-2 If a function has internal linkage then all re-declarations shall include the static storage class

specifier.
3-4-1 An identifier declared to be an object or type shall be defined in a block that minimizes its

visibility.
3-9-1 The types used for an object, a function return type, or a function parameter shall be token-for-

token identical in all declarations and re-declarations.
3-9-2 Typedefs that indicate size and signedness should be used in place of the basic numerical types.
3-9-3 The underlying bit representations of floating-point values shall not be used.

Standard Conversions

Rule Description
4-5-1 Expressions with type bool shall not be used as operands to built-in operators other than the

assignment operator =, the logical operators &&, ||, !, the equality operators == and !=, the unary
& operator, and the conditional operator.

4-5-2 Expressions with type enum shall not be used as operands to built- in operators other than the
subscript operator [], the assignment operator =, the equality operators == and !=, the unary &
operator, and the relational operators <, <=, >, >=.

4-5-3 Expressions with type (plain) char and wchar_t shall not be used as operands to built-in operators
other than the assignment operator =, the equality operators == and !=, and the unary &
operator.

18 Configure Bug Finder Checkers

18-88

Expressions

Rule Description
5-0-1 The value of an expression shall be the same under any order of evaluation that the standard

permits.
5-0-2 Limited dependence should be placed on C++ operator precedence rules in expressions.
5-0-3 A cvalue expression shall not be implicitly converted to a different underlying type.
5-0-4 An implicit integral conversion shall not change the signedness of the underlying type.
5-0-5 There shall be no implicit floating-integral conversions.
5-0-6 An implicit integral or floating-point conversion shall not reduce the size of the underlying type.
5-0-7 There shall be no explicit floating-integral conversions of a cvalue expression.
5-0-8 An explicit integral or floating-point conversion shall not increase the size of the underlying type of

a cvalue expression.
5-0-9 An explicit integral conversion shall not change the signedness of the underlying type of a cvalue

expression.
5-0-10 If the bitwise operators ~ and << are applied to an operand with an underlying type of unsigned

char or unsigned short, the result shall be immediately cast to the underlying type of the operand.
5-0-11 The plain char type shall only be used for the storage and use of character values.
5-0-12 signed char and unsigned char type shall only be used for the storage and use of numeric values.
5-0-13 The condition of an if-statement and the condition of an iteration-statement shall have type bool.
5-0-14 The first operand of a conditional-operator shall have type bool.
5-0-15 Array indexing shall be the only form of pointer arithmetic.
5-0-18 >, >=, <, <= shall not be applied to objects of pointer type, except where they point to the same

array.
5-0-19 The declaration of objects shall contain no more than two levels of pointer indirection.
5-0-20 Non-constant operands to a binary bitwise operator shall have the same underlying type.
5-0-21 Bitwise operators shall only be applied to operands of unsigned underlying type.
5-2-1 Each operand of a logical && or || shall be a postfix - expression.
5-2-2 A pointer to a virtual base class shall only be cast to a pointer to a derived class by means of

dynamic_cast.
5-2-3 Casts from a base class to a derived class should not be performed on polymorphic types.
5-2-4 C-style casts (other than void casts) and functional notation casts (other than explicit constructor

calls) shall not be used.
5-2-5 A cast shall not remove any const or volatile qualification from the type of a pointer or reference.
5-2-6 A cast shall not convert a pointer to a function to any other pointer type, including a pointer to

function type.
5-2-7 An object with pointer type shall not be converted to an unrelated pointer type, either directly or

indirectly.
5-2-8 An object with integer type or pointer to void type shall not be converted to an object with pointer

type.
5-2-9 A cast should not convert a pointer type to an integral type.

 Bug Finder Results Found in Fast Analysis Mode

18-89

Rule Description
5-2-10 The increment (++) and decrement (--) operators should not be mixed with other operators in

an expression.
5-2-11 The comma operator, && operator and the || operator shall not be overloaded.
5-2-12 An identifier with array type passed as a function argument shall not decay to a pointer.
5-3-1 Each operand of the ! operator, the logical && or the logical || operators shall have type bool.
5-3-2 The unary minus operator shall not be applied to an expression whose underlying type is unsigned.
5-3-3 The unary & operator shall not be overloaded.
5-3-4 Evaluation of the operand to the sizeof operator shall not contain side effects.
5-8-1 The right hand operand of a shift operator shall lie between zero and one less than the width in

bits of the underlying type of the left hand operand.
5-14-1 The right hand operand of a logical && or || operator shall not contain side effects.
5-18-1 The comma operator shall not be used.
5-19-1 Evaluation of constant unsigned integer expressions should not lead to wrap-around.

18 Configure Bug Finder Checkers

18-90

Statements

Rule Description
6-2-1 Assignment operators shall not be used in sub-expressions.
6-2-2 Floating-point expressions shall not be directly or indirectly tested for equality or inequality.
6-2-3 Before preprocessing, a null statement shall only occur on a line by itself; it may be followed by a

comment, provided that the first character following the null statement is a white - space
character.

6-3-1 The statement forming the body of a switch, while, do ... while or for statement shall be a
compound statement.

6-4-1 An if (condition) construct shall be followed by a compound statement. The else keyword shall be
followed by either a compound statement, or another if statement.

6-4-2 All if ... else if constructs shall be terminated with an else clause.
6-4-3 A switch statement shall be a well-formed switch statement.
6-4-4 A switch-label shall only be used when the most closely-enclosing compound statement is the body

of a switch statement.
6-4-5 An unconditional throw or break statement shall terminate every non - empty switch-clause.
6-4-6 The final clause of a switch statement shall be the default-clause.
6-4-7 The condition of a switch statement shall not have bool type.
6-4-8 Every switch statement shall have at least one case-clause.
6-5-1 A for loop shall contain a single loop-counter which shall not have floating type.
6-5-2 If loop-counter is not modified by -- or ++, then, within condition, the loop-counter shall only be

used as an operand to <=, <, > or >=.
6-5-3 The loop-counter shall not be modified within condition or statement.
6-5-4 The loop-counter shall be modified by one of: --, ++, -=n, or +=n ; where n remains constant for

the duration of the loop.
6-5-5 A loop-control-variable other than the loop-counter shall not be modified within condition or

expression.
6-5-6 A loop-control-variable other than the loop-counter which is modified in statement shall have type

bool.
6-6-1 Any label referenced by a goto statement shall be declared in the same block, or in a block

enclosing the goto statement.
6-6-2 The goto statement shall jump to a label declared later in the same function body.
6-6-3 The continue statement shall only be used within a well-formed for loop.
6-6-4 For any iteration statement there shall be no more than one break or goto statement used for loop

termination.
6-6-5 A function shall have a single point of exit at the end of the function.

 Bug Finder Results Found in Fast Analysis Mode

18-91

Declarations

Rule Description
7-3-1 The global namespace shall only contain main, namespace declarations and extern "C"

declarations.
7-3-2 The identifier main shall not be used for a function other than the global function main.
7-3-3 There shall be no unnamed namespaces in header files.
7-3-4 using-directives shall not be used.
7-3-5 Multiple declarations for an identifier in the same namespace shall not straddle a using-

declaration for that identifier.
7-3-6 using-directives and using-declarations (excluding class scope or function scope using-

declarations) shall not be used in header files.
7-4-2 Assembler instructions shall only be introduced using the asm declaration.
7-4-3 Assembly language shall be encapsulated and isolated.

Declarators

Rule Description
8-0-1 An init-declarator-list or a member-declarator-list shall consist of a single init-declarator or

member-declarator respectively.
8-3-1 Parameters in an overriding virtual function shall either use the same default arguments as the

function they override, or else shall not specify any default arguments.
8-4-1 Functions shall not be defined using the ellipsis notation.
8-4-2 The identifiers used for the parameters in a re-declaration of a function shall be identical to those

in the declaration.
8-4-3 All exit paths from a function with non- void return type shall have an explicit return statement

with an expression.
8-4-4 A function identifier shall either be used to call the function or it shall be preceded by &.
8-5-2 Braces shall be used to indicate and match the structure in the non- zero initialization of arrays

and structures.
8-5-3 In an enumerator list, the = construct shall not be used to explicitly initialize members other than

the first, unless all items are explicitly initialized.

Classes

Rule Description
9-3-1 const member functions shall not return non-const pointers or references to class-data.
9-3-2 Member functions shall not return non-const handles to class-data.
9-5-1 Unions shall not be used.
9-6-2 Bit-fields shall be either bool type or an explicitly unsigned or signed integral type.
9-6-3 Bit-fields shall not have enum type.
9-6-4 Named bit-fields with signed integer type shall have a length of more than one bit.

18 Configure Bug Finder Checkers

18-92

Derived Classes

Rule Description
10-1-1 Classes should not be derived from virtual bases.
10-1-2 A base class shall only be declared virtual if it is used in a diamond hierarchy.
10-1-3 An accessible base class shall not be both virtual and non-virtual in the same hierarchy.
10-2-1 All accessible entity names within a multiple inheritance hierarchy should be unique.
10-3-1 There shall be no more than one definition of each virtual function on each path through the

inheritance hierarchy.
10-3-2 Each overriding virtual function shall be declared with the virtual keyword.
10-3-3 A virtual function shall only be overridden by a pure virtual function if it is itself declared as pure

virtual.

Member Access Control

Rule Description
11-0-1 Member data in non- POD class types shall be private.

Special Member Functions

Rule Description
12-1-1 An object's dynamic type shall not be used from the body of its constructor or destructor.
12-1-2 All constructors of a class should explicitly call a constructor for all of its immediate base classes

and all virtual base classes.
12-1-3 All constructors that are callable with a single argument of fundamental type shall be declared

explicit.
12-8-1 A copy constructor shall only initialize its base classes and the non- static members of the class of

which it is a member.
12-8-2 The copy assignment operator shall be declared protected or private in an abstract class.

 Bug Finder Results Found in Fast Analysis Mode

18-93

Templates

Rule Description
14-5-2 A copy constructor shall be declared when there is a template constructor with a single parameter

that is a generic parameter.
14-5-3 A copy assignment operator shall be declared when there is a template assignment operator with a

parameter that is a generic parameter.
14-6-1 In a class template with a dependent base, any name that may be found in that dependent base

shall be referred to using a qualified-id or this->.
14-6-2 The function chosen by overload resolution shall resolve to a function declared previously in the

translation unit.
14-7-3 All partial and explicit specializations for a template shall be declared in the same file as the

declaration of their primary template.
14-8-1 Overloaded function templates shall not be explicitly specialized.
14-8-2 The viable function set for a function call should either contain no function specializations, or only

contain function specializations.

Exception Handling

Rule Description
15-0-2 An exception object should not have pointer type.
15-0-3 Control shall not be transferred into a try or catch block using a goto or a switch statement.
15-1-2 NULL shall not be thrown explicitly.
15-1-3 An empty throw (throw;) shall only be used in the compound- statement of a catch handler.
15-3-2 There should be at least one exception handler to catch all otherwise unhandled exceptions
15-3-3 Handlers of a function-try-block implementation of a class constructor or destructor shall not

reference non-static members from this class or its bases.
15-3-5 A class type exception shall always be caught by reference.
15-3-6 Where multiple handlers are provided in a single try-catch statement or function-try-block for a

derived class and some or all of its bases, the handlers shall be ordered most-derived to base class.
15-3-7 Where multiple handlers are provided in a single try-catch statement or function-try-block, any

ellipsis (catch-all) handler shall occur last.
15-5-1 A class destructor shall not exit with an exception.
15-5-2 Where a function's declaration includes an exception-specification, the function shall only be

capable of throwing exceptions of the indicated type(s).

18 Configure Bug Finder Checkers

18-94

Preprocessing Directives

Rule Description
16-0-1 #include directives in a file shall only be preceded by other preprocessor directives or comments.
16-0-2 Macros shall only be #define 'd or #undef 'd in the global namespace.
16-0-3 #undef shall not be used.
16-0-4 Function-like macros shall not be defined.
16-0-5 Arguments to a function-like macro shall not contain tokens that look like preprocessing directives.
16-0-6 In the definition of a function-like macro, each instance of a parameter shall be enclosed in

parentheses, unless it is used as the operand of # or ##.
16-0-7 Undefined macro identifiers shall not be used in #if or #elif preprocessor directives, except as

operands to the defined operator.
16-0-8 If the # token appears as the first token on a line, then it shall be immediately followed by a

preprocessing token.
16-1-1 The defined preprocessor operator shall only be used in one of the two standard forms.
16-1-2 All #else, #elif and #endif preprocessor directives shall reside in the same file as the #if or #ifdef

directive to which they are related.
16-2-1 The pre-processor shall only be used for file inclusion and include guards.
16-2-2 C++ macros shall only be used for: include guards, type qualifiers, or storage class specifiers.
16-2-3 Include guards shall be provided.
16-2-4 The ', ", /* or // characters shall not occur in a header file name.
16-2-5 The \ character should not occur in a header file name.
16-2-6 The #include directive shall be followed by either a <filename> or "filename" sequence.
16-3-1 There shall be at most one occurrence of the # or ## operators in a single macro definition.
16-3-2 The # and ## operators should not be used.
16-6-1 All uses of the #pragma directive shall be documented.
17-0-1 Reserved identifiers, macros and functions in the standard library shall not be defined, redefined

or undefined.
17-0-2 The names of standard library macros and objects shall not be reused.
17-0-5 The setjmp macro and the longjmp function shall not be used.

 Bug Finder Results Found in Fast Analysis Mode

18-95

Language Support Library

Rule Description
18-0-1 The C library shall not be used.
18-0-2 The library functions atof, atoi and atol from library <cstdlib> shall not be used.
18-0-3 The library functions abort, exit, getenv and system from library <cstdlib> shall not be used.
18-0-4 The time handling functions of library <ctime> shall not be used.
18-0-5 The unbounded functions of library <cstring> shall not be used.
18-2-1 The macro offsetof shall not be used.
18-4-1 Dynamic heap memory allocation shall not be used.
18-7-1 The signal handling facilities of <csignal> shall not be used.

Diagnostic Library

Rule Description
19-3-1 The error indicator errno shall not be used.

Input/Output Library

Rule Description
27-0-1 The stream input/output library <cstdio> shall not be used.

18 Configure Bug Finder Checkers

18-96

Extend CWE Coding Standard Coverage Using Polyspace Defect
Checkers

Common Weakness Enumeration (CWE) is a dictionary of common software weakness types that can
occur in software architecture, design, code, or implementation. These weaknesses can lead to
security vulnerabilities.

Polyspace can check for a subset of CWE rule violations in your code when you enable the option
Check CWE (-cwe). In addition to this subset, you can check for additional 95 CWE rule violations
by enabling Polyspace defect checkers that you map to these additional CWE rules.

f

Find CWE IDs from Polyspace Results
Use this workflow to check for CWE violations explicitly and extend the CWE coverage using mapped
results.

• Analysis:

Enable a subset of CWE rules using option Check CWE (-cwe) with parameter all,
cwe-658-659, or custom. See “Common Weakness Enumeration (CWE)”.

Use option Find defects (-checkers) with parameter custom to enable the defect checkers
that correspond to the additional CWE rules that you want to check.

• Results:

The CWE violations that correspond to the rules that you enabled with option -cwe appear as
coding rue violations in the Results List.

In the Defects family of results you see only the defects that correspond to mapped CWE rules.

Tip If you checked your code for CWE violations using a Polyspace product version R2022b or earlier,
the CWE ID column in the Results List is no longer available when your review results generated
with a Polyspace product version R2023a. You can track which CWE rule corresponds to which
checker in your results by, for instance, adding the CWE ID of the rule as a comment for the
corresponding defect.

Mapping Between CWE Identifiers and Polyspace Results
This table lists the CWE IDs (version 4.9) that you can map to Polyspace defect checkers. You can
explicitly check for 101 CWE rule violations and an additional 95 CWE rule violations using Polyspace
Bug Finder defect checkers.

 Extend CWE Coding Standard Coverage Using Polyspace Defect Checkers

18-97

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
15 External control of

system or configuration
setting

Host change using externally controlled
elements

Use of externally controlled environment
variable

20 Improper input
validation

Unsafe conversion from string to numerical
value

22 Improper Limitation of
a Pathname to a
Restricted Directory
('Path Traversal')

Vulnerable path manipulation

23 Relative path traversal Vulnerable path manipulation
36 Absolute path traversal Vulnerable path manipulation
67 Improper Handling of

Windows Device Names
Inappropriate I/O operation on device files

77 Improper neutralization
of special elements used
in a command

Execution of externally controlled command

78 Improper neutralization
of special elements used
in an OS command

Execution of externally controlled command

Unsafe call to a system function
88 Argument injection or

modification
Execution of externally controlled command

Unsafe call to a system function
114 Process control Command executed from externally controlled

path

Execution of a binary from a relative path
can be controlled by an external actor

Execution of externally controlled command

Library loaded from externally controlled
path

Load of library from a relative path can be
controlled by an external actor

18 Configure Bug Finder Checkers

18-98

https://cwe.mitre.org/data/definitions/15.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/22.html
https://cwe.mitre.org/data/definitions/23.html
https://cwe.mitre.org/data/definitions/36.html
https://cwe.mitre.org/data/definitions/67.html
https://cwe.mitre.org/data/definitions/77.html
https://cwe.mitre.org/data/definitions/78.html
https://cwe.mitre.org/data/definitions/88.html
https://cwe.mitre.org/data/definitions/114.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
189 Numeric Errors Absorption of float operand

Float conversion overflow

Float division by zero

Float overflow

Integer constant overflow

Integer conversion overflow

Integer division by zero

Integer overflow

Precision loss in integer to float conversion

Right operand of shift operation outside
allowed bounds

Shift of a negative value

Tainted division operand

Unsigned integer constant overflow

Unsigned integer conversion overflow

Unsigned integer overflow
190 Integer overflow or

wraparound
Integer constant overflow

Integer conversion overflow

Integer overflow

Integer precision exceeded

Possible invalid operation on boolean operand

Right operand of shift operation outside
allowed bounds

Tainted division operand

Unsigned integer constant overflow

Unsigned integer conversion overflow

Unsigned integer overflow
198 Missing byte reordering when transferring

data

 Extend CWE Coding Standard Coverage Using Polyspace Defect Checkers

18-99

https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/198.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
226 Sensitive information

uncleared before
release

Uncleared sensitive data in stack

227 Improper fulfillment of
API contract

Invalid use of standard library floating
point routine

Invalid use of standard library integer
routine

Invalid use of standard library memory
routine

Invalid use of standard library routine

Invalid use of standard library string
routine

Writing to const qualified object
240 Improper handling of

inconsistent structural
elements

Mismatch between data length and size

250 Execution with
unnecessary privileges

Bad order of dropping privileges

Privilege drop not verified
251 Often misused: string

management
Destination buffer overflow in string
manipulation

273 Improper check for
dropped privileges

Privilege drop not verified

287 Improper
Authentication

X.509 peer certificate not checked

297 Improper Validation of
Certificate with Host
Mismatch

Server certificate common name not checked

304 Missing Critical Step in
Authentication

TLS/SSL connection method not set

18 Configure Bug Finder Checkers

18-100

https://cwe.mitre.org/data/definitions/226.html
https://cwe.mitre.org/data/definitions/227.html
https://cwe.mitre.org/data/definitions/240.html
https://cwe.mitre.org/data/definitions/250.html
https://cwe.mitre.org/data/definitions/251.html
https://cwe.mitre.org/data/definitions/273.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/297.html
https://cwe.mitre.org/data/definitions/304.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
310 Cryptographic issues Constant block cipher initialization vector

Constant cipher key

Context initialized incorrectly for
cryptographic operation

Context initialized incorrectly for digest
operation

Incompatible padding for RSA algorithm
operation

Incorrect key for cryptographic algorithm

Missing blinding for RSA algorithm

Missing block cipher initialization vector

Missing certification authority list

Missing cipher algorithm

Missing cipher key

Missing data for encryption, decryption or
signing operation

Missing padding for RSA algorithm

Missing parameters for key generation

Missing peer key

Missing private key

Missing public key

Missing X.509 certificate

Nonsecure hash algorithm

Nonsecure parameters for key generation

Nonsecure RSA public exponent

Nonsecure SSL/TLS protocol

Predictable block cipher initialization
vector

Predictable cipher key

Weak cipher algorithm

 Extend CWE Coding Standard Coverage Using Polyspace Defect Checkers

18-101

https://cwe.mitre.org/data/definitions/310.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
Weak cipher mode

Weak padding for RSA algorithm
311 Missing encryption of

sensitive data
Missing cipher data to process

Missing cipher final step
316 Cleartext Storage of

Sensitive Information in
Memory

Sensitive heap memory not cleared before
release

Uncleared sensitive data in stack
320 Key management errors Constant cipher key

Missing cipher key

Missing peer key

Missing private key

Missing public key
321 Use of hard-coded

cryptographic key
Constant cipher key

322 Key Exchange without
Entity Authentication

TLS/SSL connection method not set

325 Missing required
cryptographic step

Context initialized incorrectly for
cryptographic operation

Incorrect key for cryptographic algorithm

Missing cipher data to process

Missing cipher final step

Missing data for encryption, decryption or
signing operation

Missing parameters for key generation

No data added into context

18 Configure Bug Finder Checkers

18-102

https://cwe.mitre.org/data/definitions/311.html
https://cwe.mitre.org/data/definitions/316.html
https://cwe.mitre.org/data/definitions/320.html
https://cwe.mitre.org/data/definitions/321.html
https://cwe.mitre.org/data/definitions/322.html
https://cwe.mitre.org/data/definitions/325.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
326 Inadequate encryption

strength
Constant block cipher initialization vector

Constant cipher key

Missing blinding for RSA algorithm

Missing block cipher initialization vector

Missing padding for RSA algorithm

Nonsecure parameters for key generation

Nonsecure RSA public exponent

Predictable cipher key

Weak cipher algorithm

Weak cipher mode

Weak padding for RSA algorithm
327 Use of a broken or risky

cryptographic algorithm
Missing padding for RSA algorithm

Nonsecure hash algorithm

Nonsecure parameters for key generation

Nonsecure RSA public exponent

Nonsecure SSL/TLS protocol

Unsafe standard encryption function

Weak cipher algorithm

Weak cipher mode

Weak padding for RSA algorithm
328 Reversible one-way

hash
Nonsecure hash algorithm

329 Not using a random IV
with CBC mode

Constant block cipher initialization vector

Missing block cipher initialization vector

Predictable block cipher initialization
vector

 Extend CWE Coding Standard Coverage Using Polyspace Defect Checkers

18-103

https://cwe.mitre.org/data/definitions/326.html
https://cwe.mitre.org/data/definitions/327.html
https://cwe.mitre.org/data/definitions/328.html
https://cwe.mitre.org/data/definitions/329.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
330 Use of insufficiently

random values
Deterministic random output from constant
seed

Predictable block cipher initialization
vector

Predictable cipher key

Predictable random output from predictable
seed

Vulnerable pseudo-random number generator
336 Same seed in PRNG Deterministic random output from constant

seed
337 Predictable seed in

PRNG
Predictable random output from predictable
seed

354 Improper Validation of
Integrity Check Value

Context initialized incorrectly for digest
operation

367 Time-of-check time-of-
use (TOCTOU) race
condition

File access between time of check and use
(TOCTOU)

372 Incomplete internal
state distinction

Context initialized incorrectly for
cryptographic operation

Context initialized incorrectly for digest
operation

Incompatible padding for RSA algorithm
operation

Inconsistent cipher operations

Missing cipher data to process

Missing cipher final step

Missing data for encryption, decryption or
signing operation

Missing parameters for key generation
377 Insecure temporary file Use of non-secure temporary file

18 Configure Bug Finder Checkers

18-104

https://cwe.mitre.org/data/definitions/330.html
https://cwe.mitre.org/data/definitions/336.html
https://cwe.mitre.org/data/definitions/337.html
https://cwe.mitre.org/data/definitions/354.html
https://cwe.mitre.org/data/definitions/367.html
https://cwe.mitre.org/data/definitions/372.html
https://cwe.mitre.org/data/definitions/377.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
387 Signal errors Function called from signal handler not

asynchronous-safe

Function called from signal handler not
asynchronous-safe (strict ISO C)

Return from computational exception signal
handler

Signal call from within signal handler
391 Unchecked error

condition
Errno not checked

398 Indicator of poor code
quality

Write without a further read

404 Improper resource
shutdown or release

Invalid deletion of pointer

Invalid free of pointer

Memory leak

Mismatched alloc/dealloc functions on Windows

Thread-specific memory leak
426 Untrusted search path Command executed from externally controlled

path

Library loaded from externally controlled
path

427 Uncontrolled search
path element

Execution of a binary from a relative path
can be controlled by an external actor

Load of library from a relative path can be
controlled by an external actor

456 Missing initialization of
a variable

Errno not reset

Member not initialized in constructor

Non-initialized pointer

Non-initialized variable
465 Pointer Issues Unsafe conversion between pointer and integer
471 Modification of

assumed-immutable
data

Writing to const qualified object

475 Undefined behavior for
input to API

Copy of overlapping memory

532 Information exposure
through log files

Sensitive data printed out

 Extend CWE Coding Standard Coverage Using Polyspace Defect Checkers

18-105

https://cwe.mitre.org/data/definitions/387.html
https://cwe.mitre.org/data/definitions/391.html
https://cwe.mitre.org/data/definitions/398.html
https://cwe.mitre.org/data/definitions/404.html
https://cwe.mitre.org/data/definitions/426.html
https://cwe.mitre.org/data/definitions/427.html
https://cwe.mitre.org/data/definitions/456.html
https://cwe.mitre.org/data/definitions/465.html
https://cwe.mitre.org/data/definitions/471.html
https://cwe.mitre.org/data/definitions/475.html
https://cwe.mitre.org/data/definitions/532.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
534 Information exposure

through debug log files
Sensitive data printed out

535 Information exposure
through shell error
message

Sensitive data printed out

573 Improper following of
specification by caller

Context initialized incorrectly for
cryptographic operation

Context initialized incorrectly for digest
operation

Incompatible padding for RSA algorithm
operation

Incorrect key for cryptographic algorithm

Missing blinding for RSA algorithm

Missing cipher algorithm

Missing cipher key

Missing data for encryption, decryption or
signing operation

Missing final step after hashing update
operation

Missing hash algorithm

Missing parameters for key generation

Missing peer key

Missing private key

Missing private key for X.509 certificate

Missing public key

Modification of internal buffer returned from
non-reentrant standard function

TLS/SSL connection method not set

TLS/SSL connection method set incorrectly
590 Free of memory not on

the heap
Invalid free of pointer

606 Unchecked input for
loop condition

Loop bounded with tainted value

18 Configure Bug Finder Checkers

18-106

https://cwe.mitre.org/data/definitions/534.html
https://cwe.mitre.org/data/definitions/535.html
https://cwe.mitre.org/data/definitions/573.html
https://cwe.mitre.org/data/definitions/590.html
https://cwe.mitre.org/data/definitions/606.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
628 Function call with

incorrectly specified
arguments

Bad file access mode or status

Copy of overlapping memory

Invalid va_list argument

Modification of internal buffer returned from
non-reentrant standard function

Standard function call with incorrect
arguments

663 Use of a non-reentrant
function in a concurrent
context

Function called from signal handler not
asynchronous-safe

Function called from signal handler not
asynchronous-safe (strict ISO C)

Unsafe standard encryption function

Unsafe standard function
664 Improper control of a

resource through its
lifetime

Context initialized incorrectly for
cryptographic operation

Context initialized incorrectly for digest
operation

Incompatible padding for RSA algorithm
operation

Inconsistent cipher operations

Incorrect key for cryptographic algorithm

Missing cipher data to process

Missing cipher final step

Missing cipher key

Missing peer key

Missing private key

Missing public key
665 Improper initialization Call to memset family with unintended value

Improper array initialization

Overlapping assignment

Use of memset with size argument zero

 Extend CWE Coding Standard Coverage Using Polyspace Defect Checkers

18-107

https://cwe.mitre.org/data/definitions/628.html
https://cwe.mitre.org/data/definitions/663.html
https://cwe.mitre.org/data/definitions/664.html
https://cwe.mitre.org/data/definitions/665.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
666 Operation on resource

in wrong phase of
lifetime

Incorrect order of network connection
operations

667 Improper locking Blocking operation while holding lock

Destruction of locked mutex

Missing unlock
672 Operation on a resource

after expiration or
release

Closing previously closed resource

Use of previously closed resource
675 Duplicate operations on

resource
Opening previously opened resource

681 Incorrect conversion
between numeric types

Float conversion overflow

Precision loss in integer to float conversion
682 Incorrect calculation Absorption of float operand

Bitwise operation on negative value

Float overflow

Invalid use of standard library floating
point routine

Invalid use of standard library integer
routine

Tainted modulo operand

Use of plain char type for numeric value
683 Function Call With

Incorrect Order of
Arguments

Call to memset family with unintended value

Format string specifiers and arguments
mismatch

18 Configure Bug Finder Checkers

18-108

https://cwe.mitre.org/data/definitions/666.html
https://cwe.mitre.org/data/definitions/667.html
https://cwe.mitre.org/data/definitions/672.html
https://cwe.mitre.org/data/definitions/675.html
https://cwe.mitre.org/data/definitions/681.html
https://cwe.mitre.org/data/definitions/682.html
https://cwe.mitre.org/data/definitions/683.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
686 Function call with

incorrect argument type
Bad file access mode or status

Declaration mismatch

Format string specifiers and arguments
mismatch

Incorrect data type passed to va_arg

Standard function call with incorrect
arguments

Use of automatic variable as putenv-family
function argument

Writing to const qualified object
687 Function call with

incorrectly specified
argument value

Copy of overlapping memory

Standard function call with incorrect
arguments

Variable length array with non-positive size
691 Insufficient control flow

management
Use of setjmp/longjmp

693 Protection mechanism
failure

Nonsecure SSL/TLS protocol

696 Incorrect behavior
order

Bad order of dropping privileges

703 Improper check or
handling of exceptional
conditions

Errno not reset

Misuse of errno
705 Incorrect control flow

scoping
Abnormal termination of exit handler

710 Coding standard
violation

Bitwise and arithmetic operations on the same
data

732 Incorrect permission
assignment for critical
resource

Vulnerable permission assignments

754 Improper check for
unusual or exceptional
conditions

Returned value of a sensitive function not
checked

755 Improper handling of
exceptional conditions

Exception handler hidden by previous handler

 Extend CWE Coding Standard Coverage Using Polyspace Defect Checkers

18-109

https://cwe.mitre.org/data/definitions/686.html
https://cwe.mitre.org/data/definitions/687.html
https://cwe.mitre.org/data/definitions/691.html
https://cwe.mitre.org/data/definitions/693.html
https://cwe.mitre.org/data/definitions/696.html
https://cwe.mitre.org/data/definitions/703.html
https://cwe.mitre.org/data/definitions/705.html
https://cwe.mitre.org/data/definitions/710.html
https://cwe.mitre.org/data/definitions/732.html
https://cwe.mitre.org/data/definitions/754.html
https://cwe.mitre.org/data/definitions/755.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
758 Reliance on undefined,

unspecified, or
implementation-defined
behavior

Bitwise operation on negative value

Unsafe conversion between pointer and integer

Use of plain char type for numeric value
759 Use of a One-Way Hash

without a Salt
Missing salt for hashing operation

764 Multiple locks of a
critical resource

Double lock

765 Multiple unlocks of a
critical resource

Double unlock

770 Allocation of resources
without limits or
throttling

Tainted size of variable length array

772 Missing release of
resource after effective
lifetime

Resource leak

780 Use of rsa algorithm
without oaep

Missing padding for RSA algorithm

Weak padding for RSA algorithm
786 Access of memory

location before start of
buffer

Destination buffer underflow in string
manipulation

822 Untrusted pointer
dereference

Tainted NULL or non-null-terminated string

Use of tainted pointer
823 Use of out-of-range

pointer offset
Pointer access out of bounds

Pointer dereference with tainted offset
826 Premature release of

resource during
expected lifetime

Closing previously closed resource

Destruction of locked mutex

Use of previously closed resource
828 Signal handler with

functionality that is not
asynchronous-safe

Function called from signal handler not
asynchronous-safe

Function called from signal handler not
asynchronous-safe (strict ISO C)

832 Unlock of a resource
that is not locked

Missing lock

833 Deadlock Deadlock
872 CERT C++ Secure

Coding Section 04 -
Integers (INT)

Invalid use of standard library integer
routine

18 Configure Bug Finder Checkers

18-110

https://cwe.mitre.org/data/definitions/758.html
https://cwe.mitre.org/data/definitions/759.html
https://cwe.mitre.org/data/definitions/764.html
https://cwe.mitre.org/data/definitions/765.html
https://cwe.mitre.org/data/definitions/770.html
https://cwe.mitre.org/data/definitions/772.html
https://cwe.mitre.org/data/definitions/780.html
https://cwe.mitre.org/data/definitions/786.html
https://cwe.mitre.org/data/definitions/822.html
https://cwe.mitre.org/data/definitions/823.html
https://cwe.mitre.org/data/definitions/826.html
https://cwe.mitre.org/data/definitions/828.html
https://cwe.mitre.org/data/definitions/832.html
https://cwe.mitre.org/data/definitions/833.html
https://cwe.mitre.org/data/definitions/872.html

CWE ID CWE ID Description Polyspace Bug Finder Defect Checker
873 CERT C++ Secure

Coding Section 05 -
Floating point
arithmetic (FLP)

Absorption of float operand

Float overflow

Floating point comparison with equality
operators

Invalid use of standard library floating
point routine

908 Use of uninitialized
resource

Member not initialized in constructor

Non-initialized pointer

Non-initialized variable

 Extend CWE Coding Standard Coverage Using Polyspace Defect Checkers

18-111

https://cwe.mitre.org/data/definitions/873.html
https://cwe.mitre.org/data/definitions/908.html

Configure File Sets for Bug Finder
Analysis

19

Classify Project Files Into File Sets for Precise Control of Bug
Finder Analysis

When analyzing C/C++ code with Polyspace Bug Finder, you can define file sets in your project that
need specific treatment during analysis. For instance, you might want to skip the definitions of
function bodies in third-party libraries or force analysis of all functions in files that you own. You can
enumerate file sets with specific behaviors in a classification XML file and fine-tune the Bug Finder
analysis using this classification file.

This example shows how to create a classification file and breaks down the structure of such a file. In
your projects, you can apply similar reasoning to partition files into file sets and create appropriate
classification files.

Classification File Structure Based on Analysis Requirements
Typically, the file sets in your classification file reflect an actual folder structure (or file name
patterns).

This example follows the structure shown in the sample classification file in polyspaceroot
\polyspace\verifier\cxx\classification-template.xml (here, polyspaceroot is the
Polyspace installation folder, for instance, C:\Program Files\Polyspace\R2023a). The
classification file assumes a folder structure with these top-level folders and these source and header
files. The nature of these files imposes requirements on how they must be analyzed.

Folder Description Files Analysis
Requirements

myproject Folder containing the
primary sources and
headers to analyze.

Some header files are
machine-generated. The
names of these files end
with the string -
generated.

• myproject/src/
foo.cpp

• myproject/src/
foo.hpp

• myproject/src/
main.cpp

• myproject/inc/
bar-
generated.hpp

• myproject/inc/
bar.hpp

All files excluding
machine-generated ones
must be fully analyzed.
The analysis results
must be available for
review.

acmelib Folder containing
headers from a third-
party library.

acmelib/inc/
acme.hpp

All files must be
included in analysis, but
results must be
suppressed from review.
(Even if issues are
found in third-party
libraries, they cannot be
typically fixed.)

19 Configure File Sets for Bug Finder Analysis

19-2

Folder Description Files Analysis
Requirements

usr Folder containing
system headers.

usr/include/sys/
os.h

All files must be
excluded from analysis.
This means that only
function declarations
must be used in the
analysis but function
bodies discarded.

These requirements lead to the following file sets in the classification XML file. Each file set is
defined through a fileset element inside the classification file:

<?xml version="1.0" encoding="UTF-8"?>
<specification>
 <classification product="bug-finder">
 <fileset name="Application implementation and header files">
 <!--File set definitions-->
 </fileset>
 <fileset name="Generated code">
 <!--File set definitions-->
 </fileset>
 <fileset name="Third-party libraries">
 <!--File set definitions-->
 </fileset>
 <fileset name="Everything else">
 <!--File set definitions-->
 </fileset>
 </classification>
</specification>

Note that there can be multiple classification elements inside the file as long as their product
attributes are different. The product attribute takes two values:

• bug-finder: The file sets in this classification element applies to a full Polyspace Bug
Finder analysis.

• bug-finder-access: The file sets in this classification element applies to a single-file
analysis with Polyspace as You Code.

Classification File Usage
You specify a classification XML file using the Polyspace analysis option -classification. If you
are running an analysis in the Polyspace user interface (desktop products only), you have to enter this
option in the Other field.

For instance, suppose that your classification file is named my-classification-template.xml
and is located in the folder that contains the top-level source folders listed previously. You can specify
the classification file in a Polyspace options file on page 12-5 written as follows:

-sources myproject/src/foo.cpp
-sources myproject/src/main.cpp
-I myproject/inc
-I acmelib/inc
-I usr/include/sys
-classification my-classification-template.xml

 Classify Project Files Into File Sets for Precise Control of Bug Finder Analysis

19-3

This options file is assumed to be in the same folder as my-classification-template.xml. The
options file specifies:

• Which source files must be analyzed (using option -sources).
• Which folders must be used for header file lookup (using option -I).
• Which classification XML file must be used to partition source and header files into file sets (using

option -classification).

If the options file is named psoptions.txt, you can provide this options file to a Polyspace Bug
Finder analysis as:

polyspace-bug-finder -options-file psoptions.txt

(An options file – a text file with one analysis option per line – is used in this example for convenience.
You can also specify the analysis options directly at the command line with the polyspace-bug-
finder command.)

Parts of Classification File
The classification file contains several file sets, defined through fileset elements. Each file set
defines:

• A set of files to include in a files-in-set element.

For more information on how to specify files, see “Select Files for Polyspace Analysis Using
Pattern Matching” on page 4-11.

• A set of files to exclude in a files-not-in-set element.

For more information on how to specify files, see “Select Files for Polyspace Analysis Using
Pattern Matching” on page 4-11.

• A set of behaviors to associate in a behaviors element. The currently supported behaviors are
defined through these elements:

• analyze-functions and do-not-analyze-functions: Using this element, you specify
patterns for functions that must and must not be analyzed. You specify the patterns in a
function-pattern element. The patterns currently supported are:

Function Pattern Meaning
* All functions
::top_level_namespace:: All functions in top level namespace

top_level_namespace
$(all-relevant-functions) All non-static functions and all static

functions called somewhere in the code,
excluding some pathological cases.

• show-results: Using this element, you specify whether you want to see results in the files
that are included in the file set. If if you do not want to see results, you set the value attribute
of this element to false.

Note that the show-results element applies to a result only if all files involved in the result
are part of the file set. If a result involves two files, one in the file set and another not in the file
set, and you specify a value of false for this file set, you might still see the result.

19 Configure File Sets for Bug Finder Analysis

19-4

File Set 1: Application Sources and Headers

The first file set in your classification file typically defines the primary set of sources and headers to
analyze. In this example, the fileset element contains the following file set definitions:

<fileset name="Application implementation and header files">
 <files-in-set>
 <file-pattern>$(source-files)</file-pattern>
 <file-pattern>$(source-headers)</file-pattern>
 <file-pattern>myproject/inc/**/*.hpp</file-pattern>
 </files-in-set>
 <files-not-in-set>
 <file-pattern>myproject/**/*-generated.hpp</file-pattern>
 </files-not-in-set>
 <behaviors>
 <analyze-functions>
 <function-pattern>*</function-pattern>
 </analyze-functions>
 <do-not-analyze-functions>
 <function-pattern>::self_test::</function-pattern>
 </do-not-analyze-functions>
 <show-results value="true"/>
 </behaviors>
</fileset>

Files Included

This file set includes the following files in separate file-pattern elements:

• All source files specified using the option -sources. The inclusion is done using the pattern $
(source-files).

• Header files in the same folders as source files or in subfolders thereof. The inclusion is done
using the pattern $(source-headers).

• Header files in the folder myproject/inc or in subfolders thereof. The inclusion is done using
the pattern myproject/inc/**/*.hpp. The ** indicates recursive file lookup in subfolders.

Files Excluded

This file set excludes all .hpp files in the folder myproject or in subfolders thereof, with names
ending in the string -generated. The exclusion is done using the pattern myproject/**/*-
generated.hpp. The ** indicates recursive file lookup in subfolders.
Behaviors

This file set has the following behaviors:

• All functions in the included files except ones in the C++ namespace self_test are analyzed.

A function is analyzed if it matches a pattern in the analyze-functions element and does not
match any pattern in the do-not-analyze-functions element. The pattern * indicates all
functions, even ones that Bug Finder would normally skip, for instance, uncalled static functions.

• All results in the included files are shown.

File Set 2: Generated Files

The second file set in this example covers generated files. The fileset element contains the
following file set definitions:

 Classify Project Files Into File Sets for Precise Control of Bug Finder Analysis

19-5

<fileset name="Generated code">
 <files-in-set>
 <file-pattern>myproject/**/*-generated.hpp</file-pattern>
 </files-in-set>
 <behaviors>
 <analyze-functions>
 <function-pattern>$(all-relevant-functions)</function-pattern>
 </analyze-functions>
 <show-results value="false"/>
 </behaviors>
</fileset>

Files Included

This file set includes all .hpp files in the folder myproject or in subfolders thereof, with names
ending in the string -generated. The inclusion is done using the pattern myproject/**/*-
generated.hpp. The ** indicates recursive file lookup in subfolders.
Behaviors

This file set has the following behaviors:

• All functions in the included files are analyzed, except ones that Bug Finder does not analyze by
default (static uncalled functions and some pathological functions, for instance, ones containing
several thousands of instructions).

The pattern $(all-relevant-functions) indicates this default subset of functions.
• Results in the included files are not shown.

The behaviors follow from the fact that functions in generated code can contribute to issues in
handwritten code and must be included in the analysis. However, if the issues occur in the generated
code itself, they are typically difficult to fix.

File Set 3: Third-Party Libraries

The third file set in this example covers third-party libraries. The fileset element contains the
following file set definitions:

<fileset name="Third-party libraries">
 <files-in-set>
 <file-pattern>acmelib/**</file-pattern>
 </files-in-set>
 <behaviors>
 <analyze-functions>
 <function-pattern>$(all-relevant-functions)</function-pattern>
 </analyze-functions>
 <show-results value="false"/>
 </behaviors>
</fileset>

Files Included

This file set includes all files in the folder acmelib or in subfolders thereof. The inclusion is done
using the pattern acmelib/**/. The ** indicates recursive file lookup in subfolders.
Behaviors

This file set has the following behaviors:

19 Configure File Sets for Bug Finder Analysis

19-6

• All functions in the included files are analyzed, except ones that Bug Finder does not analyze by
default (static uncalled functions and some pathological functions, for instance, ones containing
several thousands of instructions).

• Results in the included files are not shown.

The behaviors follow from the fact that functions in third-party libraries can contribute to issues in
the application code and must be included in the analysis. However, if the issues occur in the third-
party libraries themselves, they are typically difficult to fix. This file set has the same behaviors as the
generated code file set. However, a separate file set has been created to explicitly separate file
patterns in generated code from ones in third-party libraries. This separation can make later
maintenance easier.

File Set 4: Everything Else (Typically System Headers)

The fourth file set in this example is a catch-all subset that covers files not covered by included
patterns in previous file sets. The fileset element contains the following file set definitions:

<fileset name="Everything else">
 <files-in-set>
 <file-pattern>*</file-pattern>
 </files-in-set>
 <behaviors>
 <do-not-analyze-functions>
 <function-pattern>*</function-pattern>
 </do-not-analyze-functions>
 <show-results value="false"/>
 </behaviors>
</fileset>

Files Included

This file set includes all files not included by any of the previous file sets. (Note that the analysis tries
to match file sets in order, so if a file matched a pattern in a previous file set, it will not fall through to
this file set.)

This file set typically includes system headers. In this example, the system headers are in the folder
usr/include/sys and are matched by the catch-all file pattern *.

Behaviors

This file set has the following behaviors:

• The bodies of functions in the included files are not analyzed.
• Results in the included files are not shown.

The behaviors follow from the fact that system libraries typically contain many inline functions that
could slow down the analysis. The behaviors make the analysis only consider function declarations
but skip the function bodies.

See Also
-classification

 Classify Project Files Into File Sets for Precise Control of Bug Finder Analysis

19-7

Related Examples
• “Select Files for Polyspace Analysis Using Pattern Matching” on page 4-11

19 Configure File Sets for Bug Finder Analysis

19-8

Configure Comment Import from
Previous Results

• “Import Review Information from Previous Polyspace Analysis” on page 20-2
• “Import Existing MISRA C: 2004 Justifications to MISRA C: 2012 Results” on page 20-5

20

Import Review Information from Previous Polyspace Analysis
This topic describes how to import review information from previous results that are not already
uploaded to Polyspace Access. For information on importing from results uploaded to Polyspace
Access, see “Import Review Information from Existing Polyspace Access Projects” on page 26-5.

After you have reviewed analysis results, you can reuse information from the review for subsequent
analyses. If you specify a result status or severity or add notes in your results file, they carry over to
the results of the next analysis on the same project. If you add the same information as comments to
your code (annotate), they carry over to any subsequent analysis of the code, whether in the same
project or not. You can also hide results using code annotations. For more information on
commenting, see “Address Results in Polyspace User Interface Through Bug Fixes or Justifications”
on page 22-2.

This topic shows how to import review information from one result file to another. Importing the
review information saves you from reviewing already justified results. For instance, after you import

the information, on the Results List pane (user interface of desktop products), clicking the icon
skips justified results. Using this icon, you can browse through unreviewed results. You can also filter
the justified checks from display.

Automatic Import from Last Analysis
By default, in the Polyspace user interface (desktop products only), review information is imported
automatically from the most recent analysis on the project module. You can disable this default
behavior.

1 Select Tools > Preferences, which opens the Polyspace Preferences dialog box.
2 Select the Project and Results Folder tab.
3 Under Import Comments, clear Automatically import comments from last verification.
4 Click OK.

If you run analysis at the command line (and do not upload results to the Polyspace Access web
interface), you have to explicitly import from another set of results. See “Command Line” on page 20-
3.

Import from Another Analysis Result
You can import review information directly from another Polyspace result to the current result.

If a result is found in both a Bug Finder and Code Prover analysis, you can add review information to
the Bug Finder result and import to the Code Prover result. For instance, most coding rule checkers
are common to Bug Finder and Code Prover. You can add review information to coding rule violations
in Bug Finder and import to the same violations in Code Prover.

User Interface (Desktop Products Only)

To import review information from another set of results:

1 Open the current analysis results.
2 Select Tools > Import Comments.

20 Configure Comment Import from Previous Results

20-2

3 Navigate to the folder containing your previous results.
4 Select the other results file (with extension .psbf or .pscp) and then click Open.

The review information from the previous results are imported into the current results.

Command Line

Use the option -import-comments during analysis to import comments from a previous verification.

To import review information from multiple results, use the polyspace-comments-import
command.

Import Algorithm
You can directly import review information from another set of results into the current results.
However, it is possible that part of your review information is not imported to a subsequent analysis
because:

• You have changed your source code so that the line with a previous result is not exactly identical
to the line in the current run.

The comment import tool accounts for additional code that simply shifts an existing line. For
instance, the tool recognizes that line 10 in Run 1 and line 12 in Run 2 have the same statement. If
a division by zero occurs on line 10 in Run 1 and you have not fixed the issue in Run 2, the result
along with associated review information are imported to line 12 in Run 2.

• Run 1:

10 baseLine = min/numRecipients;
11
12

• Run 2:

10 /* Calculate a baseline per recipient
11 based on minimum available resources */
12 baseLine = min/numRecipients;

However, if you change the line content itself, for instance, change numRecipient to
numReceiver, the result and review information are not imported.

• You have changed your source code so that the Code Prover result color has changed.
• You entered new review information for the same result.

If the content of a line does not change and shows the same result as the previous analysis, the
review information is imported. In unlikely scenarios, you might get the same result on the same line
despite changing previous lines that lead to the result. Your review information from a previous
analysis is then imported to the new result. If you justified the previous result with a status such as
Not a defect, it is likely that you want to continue this justification with the new result. For
instance, if you accepted an overflow previously because you accounted for a wrap-around behavior
after the overflow, you are likely to accept the overflow whatever the cause. In a few cases, you might
want to review the result again and might not be aware that the result merits another review. To
avoid this situation:

• When justifying nonlocal results that are related to previous events, use careful judgement.

 Import Review Information from Previous Polyspace Analysis

20-3

• For critical components, conduct periodic assessments of justified results to see if the
justifications still apply. Such assessments are useful specially for the Code Prover run-time
checks.

View Imported Review Information That Does Not Apply
In the Polyspace user interface (desktop products only), the Import Checks and Comments Report
highlights differences between two analysis results. When you import review information from a
previous analysis, you can see this report. If you have closed the report after an import, to review the
report again:

1 Select Window > Show/Hide View > Import Comments Report.

The Import Checks and Comments Report opens, highlighting differences in the two results.

2 Review the differences between the two results.

Your review information can differ between two results because of the following reasons:

• In Code Prover, if the check color changes, Polyspace imports the Comment field but not the
Status field. In addition, Polyspace imports the Severity and Justified fields depending on the
color change.

Color Change Severity Justified
Orange or red to green Not imported Imported
Gray to green Not imported Imported, if the Severity was

set to High, Medium or Low.
Red to orange or vice versa Imported Imported
Green to red/orange/gray Not imported Not imported

• If a result no longer appears in the code, Polyspace highlights only the change in the Import
Checks and Comments Report. It does not import review information from the previous result.

• If you have already entered different review information for the same check, Polyspace highlights
only the change in the Import Checks and Comments Report. It does not import review
information from the previous result.

See Also
-import-comments | polyspace-comments-import

Related Examples
• “Import Review Information from Existing Polyspace Access Projects” on page 26-5

20 Configure Comment Import from Previous Results

20-4

Import Existing MISRA C: 2004 Justifications to MISRA C: 2012
Results

When you check your code for MISRA C: 2012 violations, Polyspace imports justifications of MISRA
C: 2004 violations from previous analyses (if they exist). You can upgrade from checking of MISRA C:
2004 rules to MISRA C: 2012 rules while retaining your justifications. For general rules on comment
import, see “Import Review Information from Previous Polyspace Analysis” on page 20-2.

The software maps MISRA C: 2004 Status, Severity, and Comment values that you added through
the user interface or code annotations to the corresponding MISRA C: 2012 results, if the results
exist. For more information about mapping, consult addendum one of the MISRA C: 2012 publication.

If you are transitioning from MISRA C: 2004 to MISRA C: 2012, you do not have to review results that
you have already justified.

 Import Existing MISRA C: 2004 Justifications to MISRA C: 2012 Results

20-5

Mapping Multiple MISRA C: 2004 Annotations to the Same MISRA C:
2012 Result
When you justify MISRA C: 2004 violations by using code block syntax or multiple line annotation
syntax, and multiple violations map to the same MISRA C: 2012 rule, Polyspace does not import each
result justification. Instead, the software imports only one set of Status, Severity, and Comment
values and applies these values to all the instances of that particular MISRA C: 2012 rule violation.

For example, suppose that you analyze your code and find violations of MISRA C: 2004 rules 16.3 and
16.5. You can justify these results by using the annotation syntax where you enter a different status
and explanatory comment for each rule.

//polyspace-begin misra2004:16.3 [Status 1] "Explanatory comment 1"
//polyspace-begin misra2004:16.5 [Status 2] "Explanatory comment 2"

code block start;
/* This block of code contains violations of
MISRA C:2004 rules 16.3 and 16.5 */
code block end;

//polyspace-end misra2004:16.3
//polyspace-end misra2004:16.5

The previous violations map to MISRA C: 2012 rule 8.2. When you check your annotated code against
MISRA C: 2012 rules, Polyspace imports only the first line of annotations (for rule 16.3) and applies it
to all rule 8.2 results. The second line of annotations for rule 16.5 is ignored. In the Results List
pane, all violations of rule 8.2 have the Status column set to Status 1 and the Comment column
set to "Explanatory comment 1".

Note The Output Summary pane displays a warning message for every result where the imported
annotation conflicts with the original annotation. After you import your MISRA C: 2004 annotations,
check that a justified status has not been assigned to results you intend to investigate or fix.

See Also
Check MISRA C:2004 (-misra2) | Check MISRA C:2012 (-misra3)

More About
• “Annotate Code and Hide Known or Acceptable Results” on page 30-2

20 Configure Comment Import from Previous Results

20-6

Review Results in Polyspace User
Interface

7

Interpret Polyspace Bug Finder Results

• “Interpret Bug Finder Results in Polyspace Desktop User Interface” on page 21-2
• “Investigate the Cause of Empty Results List” on page 21-7
• “Dashboard in Polyspace Desktop User Interface” on page 21-9
• “Concurrency Modeling in Polyspace Desktop User Interface” on page 21-13
• “Results List in Polyspace Desktop User Interface” on page 21-15
• “Source Code in Polyspace Desktop User Interface” on page 21-17
• “Result Details in Polyspace Desktop User Interface” on page 21-22
• “Call Hierarchy in Polyspace Desktop User Interface” on page 21-24
• “Understanding Changes in Polyspace Results After Product Upgrade” on page 21-26

21

Interpret Bug Finder Results in Polyspace Desktop User
Interface

This topic shows how to review Bug Finder results in the user interface of the Polyspace desktop
products.

• For a similar workflow in the Polyspace Access web interface, see “Interpret Bug Finder Results in
Polyspace Access Web Interface” on page 25-2.

• To see how to review results of Polyspace as You Code in IDEs, see “Review Polyspace as You Code
Results in IDEs”.

When you open the results of a Polyspace Bug Finder analysis, you see a list on the Results List
pane. The results consist of defects, coding rule violations or code metrics.

You can first narrow down the focus of your review:

• Use filters on the results list columns to narrow down the list. For instance, you can focus on the
high-impact defects.

• Organize results by file or result family. Use the icon above the list.

Once you narrow down the list, you can begin reviewing individual results. This topic describes how
to review a result.

To begin your review, select a result in the list.

21 Interpret Polyspace Bug Finder Results

21-2

Interpret Result Details Message

Interpret Message

The first step is to understand what is wrong. Read the message on the Result Details pane and the
related line of code on the Source pane.

Seek Additional Resources for Help

Sometimes, you need additional help for certain results. Click the icon to open a help page for
the selected result. See code examples illustrating the result. Check external standards such as CWE
or CERT-C that provide additional rationale for fixing the issue.

At this point, you might be ready to decide whether to fix the issue or not. Once you identify a fix, it
might help to review all results of that type together.

Find Root Cause of Result
Sometimes, the root cause might be far from the actual location where the result is displayed. For
instance, a variable that you read might be non-initialized because the initialization is not reachable.
The defect is shown when you read the variable, but the root cause is perhaps a previous if or
while condition that is always false.

Navigate to Related Events

Typically, the Result Details pane shows one sequence of events that leads to the result. The Source
pane also highlights these events.

 Interpret Bug Finder Results in Polyspace Desktop User Interface

21-3

In the above event traceback, this sequence is shown:

1 A variable value is declared.
2 The execution path bypasses an if statement. This information might be relevant if the variable

is initialized inside the if block.
3 Location of the current defect: Non-initialized variable

Typically, the traceback shows major points in the control flow: entering or bypassing conditional
statements or loops, entering a function, and so on. For specific defects, the traceback shows other
kinds of events relevant to the defect. For instance, for a Declaration mismatch defect, the
traceback shows the two locations with conflicting declarations.

Create Your Own Navigation Path

If the event traceback is not available, use other navigation tools to trace your own path through the
code.

21 Interpret Polyspace Bug Finder Results

21-4

Before you begin navigating through pathways in your code, ask the question: What am I looking for?
Based on your answer, choose the appropriate navigation tool. For instance:

• To investigate a Non-initialized variable defect, you might want to make sure that the variable is
not initialized at all. To look for previous instances of the variable, on the Source pane, right-click
the variable and select Search For All References. Alternatively, double-click the variable. These
options show only instances of a specific variable and not other variables with the same name in
other scopes.

• To investigate a violation of MISRA C:2012 Rule 17.7:

The value returned by a function having non-void return type shall be used.

you might want to navigate from a function call to the function definition. Right-click the function
and select Go To Definition.

After you navigate away from the current result, use the icon on the Result Details pane to
come back.

If you click a source code token containing a result, the previous result selection on the Results List
and the details on the Result Details pane do not change. You can keep the result in the results list
and the result details pinned while navigating in the source code. Sometimes, you might want to see
the result associated with a token. To update the result selection and the details, Ctrl-click the token
or right-click and select Select Results At This Location.

 Interpret Bug Finder Results in Polyspace Desktop User Interface

21-5

Navigate in Separate Window

If reviewing a result requires deeper navigation in your source code, you can create a duplicate
source code window that focuses on the result while you navigate in the original source code window.

Right-click on the Source pane and select Create Duplicate Code Window. Right-click on the tab
showing the duplicate file name (ending with -spawn 1) and select New Vertical Group.

Perform the navigation steps in the duplicate file window while the defect still appears on the original
file window. After the investigation is over, close the duplicate window.

See Also

More About
• “Address Results in Polyspace User Interface Through Bug Fixes or Justifications” on page 22-

2
• “Filter and Group Results in Polyspace Desktop User Interface” on page 23-2

21 Interpret Polyspace Bug Finder Results

21-6

Investigate the Cause of Empty Results List
This topic shows how to interpret an empty results list in the user interface of the Polyspace desktop
products. To see how to interpret a similar empty list in the Polyspace Access web interface, see
“Investigate the Cause of Empty Results List” on page 25-7.

When you run an analysis with Polyspace Bug Finder, the Results List pane can be empty or it can
display this message:

Polyspace Bug Finder did not find any defects or coding rule violations in your code.

The message can indicate that your code has no defect or coding rule violation. However, before you
reach this conclusion, check the following.

Possible Cause Action to Take
Did all your source files
compile?

In the Output Summary pane, look for warning messages that start with:

Failed compilation.

If a file does not compile, Bug Finder can return some results, but only
files with no compilation errors are fully analyzed.

Did you include all your
source files in your
project?

In the Project Browser pane, make sure that all the files that you want to
analyze are included in the Project Source Files folder.

Did you configure your
project correctly?

In the Configuration pane:

• Under Coding Standards & Code Metrics, verify that you have
selected the appropriate options if you want to check Coding Rules
and compute Code Metrics.

• Under Bug Finder Analysis, confirm that you have selected all the
defects that you want to check during the analysis.

• Under Run Settings, see if Use fast analysis mode for Bug Finder
is selected. In this mode, Bug Finder checks for only a subset of
defects and coding rules.

Are you applying any
filters to the results?

In the Results List pane header, make sure that there are no Hidden
results in the Showing drop-down list. To clear all applied filters, click
Clear active filters.

 Investigate the Cause of Empty Results List

21-7

See Also

More About
• “Address Results in Polyspace User Interface Through Bug Fixes or Justifications” on page 22-

2
• “Troubleshoot Compilation Errors”

21 Interpret Polyspace Bug Finder Results

21-8

Dashboard in Polyspace Desktop User Interface
This topic focuses on the Polyspace desktop user interface. To learn about the equivalent pane in the
Polyspace Access web interface, see “Dashboard in Polyspace Access Web Interface” on page 25-9.

The Dashboard pane provides statistics on the analysis results in a graphical format.

When you open a results file in Polyspace, this pane is displayed by default. You can view the
following graphs:

Code Covered by Analysis

From this graph you can obtain the following information:

• Files: Ratio of analyzed files to total number of files. If a file contains a compilation error,
Polyspace Bug Finder does not analyze the file.

If some of your files were only partially analyzed because of compilation errors, this pane contains
a link stating that some files failed to compile. To see the compilation errors, click the link and
navigate to the Output Summary pane.

• Functions: Ratio of analyzed functions to total number of functions in the analyzed files. If the
analysis of a function takes longer than a certain threshold value, Polyspace Bug Finder does not
analyze the function.

 Dashboard in Polyspace Desktop User Interface

21-9

Defect Distribution by Impact

From this pie chart, you can obtain a graphical visualization of the defect distribution by impact. You
can find at a glance whether the defects that Polyspace Bug Finder found in your code are low-impact
defects. For more information on impact, see “Classification of Defects by Impact” on page 18-49.

Defect Distribution by Category or File

From this graph you can obtain the following information.

21 Interpret Polyspace Bug Finder Results

21-10

 Category File
Top 10 The ten defect types with the highest

number of individual defects.

• Each column represents a defect type
and is divided into the:

• File with highest number of defects of
this type.

• File with second highest number of
defects of this type.

• All other files with defects of this type.

Place your cursor on a column to see the
file name and number of defects of this
type in this file.

• The x-axis represents the number of
defects.

Use this view to organize your check review
starting at defect types with more individual
defects.

The ten source files with the highest number
of defects.

• Each column represents a file and is
divided into the:

• Defect type with highest number of
defects in this file.

• Defect type with second highest
number of defects in this file.

• All other defect types in this file.

Place your cursor on a column to see the
defect type name and number of defects
of this type in this file.

• The x-axis represents the number of
defects.

Use this view to organize your check review
starting at files with more defects.

Bottom 10 The ten defect types with the lowest number
of individual defects. Each column on the
graph is divided the same way as the Top 10
defect types.

Use this view to organize your check review
starting at defect types with fewer individual
defects.

The ten source files with the lowest number
of defects. Each column on the graph is
divided the same way as the Top 10 files.

Use this view to organize your check review
starting at files with fewer defects.

Coding Rule Violations by Rule or File

For every type of coding rule that you check (MISRA, JSF, or custom), the Dashboard contains a
graph of the rule violations.

From this graph you can obtain the following information.

 Dashboard in Polyspace Desktop User Interface

21-11

 Category File
Top 10 The ten rules with the highest number of

violations.

• Each column represents a rule number
and is divided into the:

• File with highest number of violations
of this rule.

• File with second highest number of
violations of this rule.

• All other files with violations of this
rule.

Place your cursor on a column to see the
file name and number of violations of this
rule in the file.

• The x-axis represents the number of rule
violations.

Use this view to organize your review
starting at rules with more violations.

The ten source files containing the highest
number of violations.

• Each column represents a file and is
divided into the:

• Rule with highest number of violations
in this file.

• Rule with second highest number of
violations in this file.

• All other rules violated in this file.

Place your cursor on a column to see the
rule number and number of violations of
the rule in this file.

• The x-axis represents the number of rule
violations.

Use this view to organize your review
starting at files with more rule violations.

Bottom 10 The ten rules with the lowest number of
violations. Each column on the graph is
divided in the same way as the Top 10 rules.

Use this view to organize your review
starting at rules with fewer violations.

The ten source files containing the lowest
number of rule violations. Each column on
the graph is divided in the same way as the
Top 10 files.

Use this view to organize your review
starting at files with fewer rule violations.

Other Dashboard Features
You can also perform the following actions on this pane:

• Select elements on the graphs to filter results from the Results List pane. See “Filter and Group
Results in Polyspace Desktop User Interface” on page 23-2.

• View the configuration used to obtain the result. Select the link Configuration.
• View the modeling of the multitasking configuration of your code. Select the link Concurrency

modeling on page 21-13.

21 Interpret Polyspace Bug Finder Results

21-12

Concurrency Modeling in Polyspace Desktop User Interface
The Concurrency Modeling view displays all the tasks and interrupts that the analysis extracts from
your code and your Polyspace multitasking configuration.

in the table, the functions are listed in the first column by order of decreasing priority. The second
column shows how Polyspace detects each task or interrupt: automatically, manually from the
Polyspace configuration, or from an external file.

From this view, you can:

• Click a function name to go to its definition in the source code.
• Click an event to go to the corresponding call to the concurrency primitive in the source code, for

instance pthread_create.
• Click Manually configured, for functions that are manually configured, to go to the

Multitasking node on the Configuration pane.

See Also
External multitasking configuration

 Concurrency Modeling in Polyspace Desktop User Interface

21-13

More About
• “Analyze Multitasking Programs in Polyspace” on page 15-2
• “Auto-Detection of Thread Creation and Critical Section in Polyspace” on page 15-7
• “Configuring Polyspace Multitasking Analysis Manually” on page 15-17

21 Interpret Polyspace Bug Finder Results

21-14

Results List in Polyspace Desktop User Interface
This topic focuses on the Polyspace desktop user interface. To learn about the equivalent pane in the
Polyspace Access web interface, see “Results List in Polyspace Access Web Interface” on page 25-19.

The Results List pane lists all results along with their attributes. To organize your results review,
from the list on this pane, select one of the following options:

• None: Lists defects and coding rule violations without grouping. By default the results are listed
in order of severity.

• Family: Lists results grouped by grouping. For more information on the defects covered by a
group, see “Bug Finder Defect Groups” on page 18-43.

• Class: Lists results grouped by class. Within each class, the results are grouped by method. The
first group, Global Scope, lists results not occurring in a class definition.

This option is available for C++ code only.
• File: Lists results grouped by file. Within each file, the results are grouped by function.

For each result, the Results List pane contains the result attributes, listed in columns:

Attribute Description
Family Group to which the result belongs.
ID Unique identification number of the result.
Type Defect or coding rule violation.
Group Category of the result, for instance:

• For defects: Groups such as static memory, numerical, control flow,
concurrency, etc.

• For coding rule violations: Groups defined by the coding rule standard.

For instance, MISRA C:2012 defines groups related to code constructs
such as functions, pointers and arrays, etc.

Check Result name, for instance:

• For defects: Defect name
• For coding rule violations: Coding rule number

Detail Additional information about a result. The column shows the first line of the
Result Details pane.

For an example of how to use this column, see the result MISRA C:2012 Dir
1.1.

File File containing the instruction where the result occurs
Class Class containing the instruction where the result occurs. If the result is not

inside a class definition, then this column contains the entry, Global Scope.
Function Function containing the instruction where the result occurs. If the function is

a method of a class, it appears in the format class_name::function_name.
Folder Path to the folder that contains the source file with the result

 Results List in Polyspace Desktop User Interface

21-15

Attribute Description
CWE ID CWE IDs corresponding to Bug Finder results. See “Extend CWE Coding

Standard Coverage Using Polyspace Defect Checkers” on page 18-97.

Note This column is available only for results that were generated with a
Polyspace product version R2022b or earlier. For R2023a and later versions,
Polyspace shows CWE violations in same way as violations of other coding
standards. See “Common Weakness Enumeration (CWE)”.

Severity Level of severity you have assigned to the result. The possible levels are:

• Unset
• High
• Medium
• Low

Status Review status you have assigned to the result. The possible statuses are:

• Unreviewed (default status)
• To investigate
• To fix
• Justified
• No action planned
• Not a defect
• Other

To create and use custom review statuses, see “Create Custom Review Status”
on page 2-24.

Comments Comments you have entered about the result
Assigned to User name of reviewer assigned to this result.

This column is visible only for results that you open from Polyspace Access.
Ticket Key When you create a bug tracking tool (BTT) ticket for a result, this field

contains the ticket ID. Click the ticket ID in the Results Details to open the
ticket in the BTT interface.

This column is visible only for results that you open from Polyspace Access.

To show or hide any of the columns, right-click anywhere on the column titles. From the context
menu, select or clear the title of the column that you want to show or hide.

Using this pane, you can:

• Navigate through the results.
• Organize your result review using filters on the columns. For more information, see “Filter and

Group Results in Polyspace Desktop User Interface” on page 23-2.

21 Interpret Polyspace Bug Finder Results

21-16

Source Code in Polyspace Desktop User Interface
This topic focuses on the Polyspace desktop user interface. To learn about the equivalent pane in the
Polyspace Access web interface, see “Source Code in Polyspace Access Web Interface” on page 25-
21.

The Source pane shows the source code with the defects colored in red and the corresponding line
number marked by .

Placing your cursor over a result displays a tooltip that provides range information for variables,
operands, function parameters, and return values.

Examine Source Code
On the Source pane, if you right-click a text string, the context menu provides options to examine
your code:

 Source Code in Polyspace Desktop User Interface

21-17

For example, if you right-click the variable i, you can use the following options to examine and
navigate through your code:

• Search "j" in Current Source — List occurrences of the string within the current source file on
the Search pane.

• Search "j" in All Source Files — List occurrences of the string within the source files on the
Search pane.

• Search For All References — List all references in the Search pane. The software supports this
feature for global and local variables, functions, types, and classes.

• Go To Definition — Go to the line of code that contains the definition of i. The software supports
this feature for global and local variables, functions, types, and classes. If a definition is not
available to Polyspace, selecting the option takes you to the declaration.

• Go To Line — Open the Go to line dialog box. If you specify a line number and click Enter, the
software displays the specified line of code.

• Expand All Macros or Collapse All Macros — Display or hide the content of macros in current
source file.

Expand Macros
You can view the contents of source code macros in the source code view. A code information bar
displays icons that identify source code lines with macros.

21 Interpret Polyspace Bug Finder Results

21-18

When you click a line with this icon, the software displays the contents of macros on that line in a
box.

To display the normal source code again, click the line away from the box, for example, on the icon.

To display or hide the content of all macros:

1 Right-click anywhere on the source.
2 From the context menu, select either Expand All Macros or Collapse All Macros.

Note

 Source Code in Polyspace Desktop User Interface

21-19

1 The Result Details pane also allows you to view the contents of a macro if the check you select
lies within a macro.

2 You cannot expand OSEK API macros in the Source pane.

Manage Multiple Files in Source Pane
You can view multiple source files in the Source pane.

Right-click on the Source pane toolbar.

From the Source pane context menu, you can:

• Close - Close the currently selected source file. You can also use the χ button to close tabs.
• Close Others - Close all source files except the currently selected file.
• Close All - Close all source files.
• Next - Display the next view.
• Previous - Display the previous view.
• New Horizontal Group - Split the Source window horizontally to display the selected source file

below another file.
• New Vertical Group - Split the Source window vertically to display the selected source file side-

by-side with another file.
• Floating - Display the current source file in a new window, outside the Source pane.

21 Interpret Polyspace Bug Finder Results

21-20

View Code Block
On the Source pane, to highlight a block of code, click either its opening or closing brace. If the
brace itself is highlighted, click the brace twice.

 Source Code in Polyspace Desktop User Interface

21-21

Result Details in Polyspace Desktop User Interface
This topic focuses on the Polyspace desktop user interface. To learn about the equivalent pane in the
Polyspace Access web interface, see “Result Details in Polyspace Access Web Interface” on page 25-
26.

The Result Details pane contains comprehensive information about a specific defect. To see this
information, on the Results List pane, select the defect.

On this pane, you can also assign a Severity and Status to each check. You can also enter comments
to describe the results of your review. This action helps you track the progress of your review and
avoid reviewing the same check twice.

• The top right corner shows the file and function containing the defect, in the format file_name/
function_name.

• The yellow box contains the name of the defect with an explanation of why the defect occurs.
• The Event column lists the sequence of code instructions causing the defect. The Scope column

lists the function containing the instructions. If the instructions are not in a function, the column
lists the file containing the instructions. The Line column lists the line number of the instructions.

• The Variable trace check box allows you to see an additional set of instructions that are related
to the defect.

•
The button allows you to access documentation for the defect.

• For results that you open from Polyspace Access, you can also:

• Assign a reviewer to the result. A reviewer can filter the Results List to only show results that
are assigned to him or her.

• Create a ticket in a bug tracking tool (BTT) such as JIRA. Once you create the ticket the
Results Details for this defect shows the ticket ID. Click the ID to open the ticket in the BTT
interface.

21 Interpret Polyspace Bug Finder Results

21-22

See “Open or Export Results from Polyspace Access” on page 28-2.

 Result Details in Polyspace Desktop User Interface

21-23

Call Hierarchy in Polyspace Desktop User Interface
This topic focuses on the Polyspace desktop user interface. To learn about the equivalent pane in the
Polyspace Access web interface, see “Call Hierarchy in Polyspace Access Web Interface” on page 25-
28.

The Call Hierarchy pane displays the call tree of functions in the source code.

For each function foo, the Call Hierarchy pane lists the functions and tasks that call foo (callers)
and those called by foo (callees). The callers are indicated by (functions) or (tasks). The
callees are indicated by (functions) or (tasks). The Call Hierarchy pane lists direct function
calls and indirect calls through function pointers. The indirect calls are shown with the icon.

You open the Call Hierarchy pane by using the icon in your result details. To update the pane:

• You can click a defect, either on the Results List or Source pane. You see the function containing
the defect with its callers and callees.

• You can right-click the name of a function and select Go To Definition. You see the callers and
callees of the function.

In this example, the Call Hierarchy pane displays the function generic_validation, and with its
callers and callees.

The line number in the Call Hierarchy pane refers to a different line in the source code:

• For the function name, the line number refers to the beginning of the function definition. The
definition of generic_validation begins on line 69.

• For a callee name, the number refers to the line where the callee is called. The callee
functional_ranges is called by generic_validation on line 86.

• For a caller name, the number refers to the line where the caller calls the function. The caller
main calls generic_validation on line 50.

21 Interpret Polyspace Bug Finder Results

21-24

Tip To navigate to the call location in the source code, select a caller or callee name

Actions Supported on Call Hierarchy Pane
In the Call Hierarchy pane, you can perform these actions.

Show or Hide Callers and Callees

Customize the view to display callers only or callees only. Show or hide callers and callees by clicking
this button

Navigate Call Hierarchy

You can navigate the call hierarchy in your source code. For a function, double-click a caller or callee
name to navigate to the caller or callee definition in the source code.

Determine if Function is Stubbed

From the Stubbed column, you can determine if a function is stubbed. The entries in the column
show why a function was stubbed.

• Automatic: Polyspace cannot find the function definition. For instance, you did not provide the
file containing the definition.

• Std library: The function is a standard library function. You do not provide the function definition
explicitly in your Polyspace project.

• Mapped to std library: You map the function to a standard library function by using the option -
code-behavior-specifications.

Limitations of Call Hierarchy Display in Bug Finder
In Polyspace Bug Finder, you might not see all callers or callees of a function, especially for calls
through function pointers and dead code.

For instance, the Call Hierarchy pane:

• Does not display the functions registered with at_exit() and at_quick_exit(), and called by
exit() and quick_exit() respectively.

• Might not show all function calls if the calls are made through a large array of function pointers.
• Might not show all calls to C++ virtual functions.

 Call Hierarchy in Polyspace Desktop User Interface

21-25

Understanding Changes in Polyspace Results After Product
Upgrade

This topic describes how to interpret changes in results after upgrading Polyspace Code Prover. For
product upgrade instructions, see “Update Polyspace Products” (Polyspace Code Prover) or “Update
or Uninstall Polyspace Access” (Polyspace Code Prover).

If you upgrade to a newer release of Polyspace, you can see some changes in results for the same
analysis. Each release introduces many improvements in analysis precision. These improvements can
lead to the same analysis (same source files and options) showing a difference in results before and
after the upgrade.

This topic describes the kinds of differences you might see, why they might be expected and how you
can understand those differences. For information on how to compare two sets of results, see
“Migrate Polyspace Projects After Product Upgrade”.

Changes in Polyspace Code Prover Results
For the same source code and analysis configuration, you might see a change in results because of
improvements to the Polyspace Code Prover analysis engine. In Code Prover, a change in result
means a change in color for the same run-time check. When comparing results, you can focus only on
new red, grey and orange checks. As explained later, new green checks are typically the result of an
increase in precision.

• For major differences in results of a specific type, see if you can trace the difference to a
documented change in behavior or assumptions.

Check the release notes of all releases between your prior release and the release you upgraded
to. Look in the Verification results section in the Release Notes for Polyspace Code Prover
(Polyspace Code Prover) for changes in behavior of specific checks or changes in Code Prover
assumptions. Major changes in behavior or assumptions are typically documented in the release
notes.

• For differences in results that cannot be traced to a documented change, see if you can attribute
the change in color to an increase in verification precision.

In addition to documented major changes, each new release also involves many minor
improvements in the verification algorithms. These improvements typically lead to an increase in
verification precision (or at least maintain the same precision as before).

Run-time checks in Polyspace Code Prover can return results in one of three colors:

• Red (proof of definite error)
• Green (proof of definite absence of error)
• Red (unproven, probable error)

In addition, a grey color is used for code that is unreachable and therefore not checked for other
run-time errors. For more details, see “Code Prover Result and Source Code Colors” (Polyspace
Code Prover).

An increase in precision indicates changes in color in the direction shown in this figure:

21 Interpret Polyspace Bug Finder Results

21-26

In other words, one of these things might happen:

• Orange to green or red: An operation that shows an orange color might now be red or green.
Code Prover has a more precise knowledge of variable ranges when analyzing that operation,
so the presence or absence of an error can be proven.

During verification, to check if an operation causes run-time errors, Code Prover uses
previously computed possible values of the operands. Some of these values might be
accumulated from the code (from initializations and subsequent write operations along various
paths), but some of them are results of approximations and cannot happen in practice. An
increase in precision leads to fewer approximations, so fewer values that come solely from
approximations. As a result, it is possible to obtain proof in a greater number of cases.

Consider this simple, illustrative example:

x = initValue;
y = x - 1;

// Call below increases its second arg if the first is positive
incr_y_if_x_positive(x,&y);

// Later operations involving x and y
interval = x - y ;
if (x > 0)
 interval = x;
num = range / interval;

In this example, to prove that there is no division by zero, Code Prover has to keep track of the
fact that interval = x - y can be zero only if x > 0 (and the fact that the case x > 0 is
handled later). Because of approximations, Code Prover might not be able to keep track of

 Understanding Changes in Polyspace Results After Product Upgrade

21-27

relations between variables such as x and y across several lines of code leading to an orange
division by zero check. An increase in precision means that Code Prover is able to track such
kinds of relations on more complex operations, leading to a green division by zero check.

• Red, green or orange to grey: An operation that was previously checked and showed one of
red, green or orange colors is now proven unreachable and appears in grey.

As before, lower precision means considering more values from approximations. So, a
conditional branch such as:

if (x >= 0)

that is unreachable can be considered reachable because of a negative value of x coming from
approximations. With the increase in precision, this value might no longer be considered
making it possible to prove that the branch is unreachable. If the branch is proven
unreachable, red, green and orange checks inside the branch disappear.

For an individual check, it is easier to understand this change in direction of colors. However,
these changes of colors in individual statements do not translate directly to changes in overall
number of results of a certain color and type. For instance, some orange division by zero checks
might turn green, but some green checks might also turn grey, leading to an overall increase or
decrease in green division by zero checks. Therefore, when comparing results, instead of focusing
on changes in overall numbers of checks, compare a few individual checks that changed color. In
most cases, you will see that the color change is an expected result of an increase in precision.

In rare cases, you can see a decrease of precision (changes of colors in the opposite direction
compared to what is described in this section). Typically, changes in Polyspace algorithms are
vetted against a representative database of code samples to make sure that they do not cause
significant decrease in precision or increase in analysis time.

Changes in Polyspace Bug Finder Results
For the same source code and analysis configuration, you might see a change in results because of
improvements to the Polyspace Bug Finder analysis engine. In Bug Finder, a change in results falls in
one of these categories: a new result appears, an existing result no longer shows up, or the same
result appears on a different location in the source code.

Suppose that you see a new result in the current release. The new result might appear because of
updates to a specific checker or from general updates to the analysis algorithm that affects the result
locations for several checkers. To find more details, check the release notes of all releases between
your prior release and the release you upgraded to.

• Look in the Analysis results section of the Release Notes for Polyspace Bug Finder for updates to
a specific coding rule or defect checker:

• Updates to existing defect checkers appear in a specific entry Updated Bug Finder defect
checkers.

• Updates to existing external coding standard checkers appear in a specific entry Changes to
external coding standards checking.

• Look in the Reviewing results section of the Release Notes for Polyspace Bug Finder for changes
in location of checker results. For instance, if a result previously appeared in separate instances of
a macro, it might now be rolled up to the macro definition.

21 Interpret Polyspace Bug Finder Results

21-28

See Also

Related Examples
• “Migrate Polyspace Projects After Product Upgrade”

 Understanding Changes in Polyspace Results After Product Upgrade

21-29

Fix or Comment Polyspace Results

22

Address Results in Polyspace User Interface Through Bug Fixes
or Justifications

This topic describes how to add review information to Polyspace results in the user interface of the
Polyspace desktop products. For a similar workflow in the Polyspace Access web interface, see
“Address Results in Polyspace Access Through Bug Fixes or Justifications” on page 26-2.

Once you understand the root cause of a Polyspace finding, you can fix your code. Otherwise, add
review information to your Polyspace results to fix the code later or to justify the result. You can use
the information to keep track of your review progress.

If you add review information to your results file, they carry over to the results of the next analysis on
the same project. If you add the same information as comments to your code (annotate), they carry
over to any subsequent analysis of the code, whether in the same project or not. You can also hide
results using code annotations.

Add Review Information to Results File
You can add review information either on the Results List or Result Details pane. Select a result,
then set the Severity and Status fields, and optionally, enter notes with more explanations.

22 Fix or Comment Polyspace Results

22-2

The status indicates your response to the Polyspace result. If you do not plan to fix your code in
response to a result, assign one of the following statuses:

• Justified
• No Action Planned
• Not a Defect

These statuses indicate that you have given due consideration and justified that result (retained the
code despite the result). Note that subsequent analyses continue to show justified results as before.
For instance, a Code Prover result that was previously orange does not turn green after justification.
However, during review, you can filter out justified results in one click and focus only on results that
are not justified. See “Filter and Group Results in Polyspace Desktop User Interface” on page 23-2.

You can also create your own statuses to assign. See “Create Custom Review Status” on page 2-24.

Comment or Annotate in Code
You can also add specific code comments or annotations in response to Polyspace results. If you enter
code comments or annotations in a specific syntax, on the next analysis of the code, the software can
read them and populate the Severity, Status, and Comment fields in the result details.

 Address Results in Polyspace User Interface Through Bug Fixes or Justifications

22-3

You can either type the annotation directly or copy it from the user interface:

• In the user interface, to copy annotations, right-click a result and select Add Pre-Justification To
Clipboard. Open your source code in an editor and paste on the same line as the result.

• Type the annotation on on the same line as the result. See the annotation syntax in “Annotate
Code and Hide Known or Acceptable Results” on page 30-2.

If you copy or type the annotation without explicitly assigning a status, Polyspace assumes that you
have set a status of No Action Planned. The software hides the result from all places (except
reports needed for certification3). The only exceptions are the safety-critical Code Prover run-time
checks, which are hidden from the results list but not the source code. If you want to explicitly set a
status, first fill the Status field for a result and then copy the annotation to your code. Paste on the
line containing the result.

To unhide the hidden results, from the Showing menu, clear the box Hide results justified in code.

3 Reports generated from Polyspace results are typically meant for archiving and certification. Therefore, the reports
contain all Polyspace results, justified or otherwise. Justified results show the justification status, for instance, No
Action Planned, along with comments supporting the justification. These reports allow standards committees such as
certification authorities to verify if a Polyspace result was justified for approved reasons.

22 Fix or Comment Polyspace Results

22-4

See Also

More About
• “Annotate Code and Hide Known or Acceptable Results” on page 30-2
• “Import Review Information from Previous Polyspace Analysis” on page 20-2

 Address Results in Polyspace User Interface Through Bug Fixes or Justifications

22-5

Manage Results

23

Filter and Group Results in Polyspace Desktop User Interface
This topic describes how to filter, group, and otherwise manage results in the user interface of the
Polyspace desktop products. For a similar workflow in the Polyspace Access web interface, see “Filter
and Sort Results in Polyspace Access Web Interface” on page 27-8.

When you open the results of a Polyspace analysis, you see a flat list of defects (Bug Finder), run-time
checks (Code Prover), coding rule violations or other results. To organize your review, you can narrow
down the list or group results by file or result type.

Some of the ways you can use filtering are:

23 Manage Results

23-2

• You can display certain types of defects or run-time checks only.

For instance, in Bug Finder, you can display only high-impact defects. See “Classification of
Defects by Impact” on page 18-49.

• You can display only new results found since the last analysis.
• You can display only the results that are not justified.

Filter Results
Filter Using Results List

You can filter using the columns on the Results List pane. Click the icon on the column headers
to see the available filters. For instance:

• To see only Bug Finder defects with high impact, from the filters on the Information column,
clear all check boxes except Impact: High.

• To see only results that are not yet justified, clear the True filter on the Justification column. This
column might not be visible by default. To see the column, right-click any column header and
select Justification.

For information on justification, see “Address Results in Polyspace User Interface Through Bug
Fixes or Justifications” on page 22-2.

For information on the columns, see:

• “Results List in Polyspace Desktop User Interface” on page 21-15
• “Results List in Polyspace Desktop User Interface” (Polyspace Code Prover)

Results found since the last analysis appear with an asterisk (*) next to them. To see only these
results since the last analysis, click the New button. Note that if you run an analysis at the command
line (or even when you run an analysis in the user interface for the first time), you have to first import
from a previous analysis to create a baseline for the New button. See “Import Review Information
from Previous Polyspace Analysis” on page 20-2.

If you do not want to filter by the exact contents of a column, you can use a custom filter instead. For
instance, you want to filter out subfolders of a specific folder. Instead of filtering out each subfolder in

 Filter and Group Results in Polyspace Desktop User Interface

23-3

the Folder column, select Custom from the filter dropdown. Specify the root folder name for the
doesn’t contain filter.

You can use wildcard characters for the custom filter. The wildcard ? represents 0 or 1 character and
* represents 0 or more characters.

If you apply filters in this way, they carry over to the next analysis. You can also name and save a
subset of filters for use in multiple projects. To apply the named set of filters, pick this filter set from
the All results list. To create a new entry in this list, select Tools > Preferences and create your
own set of filters on the Review Scope tab.

23 Manage Results

23-4

Filter Using Dashboard

 Filter and Group Results in Polyspace Desktop User Interface

23-5

You can click graphs on the Dashboard pane to filter results. For instance:

• To see only high-impact defects in Bug Finder, click the corresponding section of the Defect
distribution by impact chart.

• To see only red checks in Code Prover, click the corresponding section of the Check distribution
chart.

To see all results again, click the link View all results in this scope.

Filter Using Orange Sources

An orange source can cause multiple orange checks in Code Prover. You can display all orange checks
from the same source and review them together.

For instance, in this code, the unknown value input can cause an overflow and a division by zero.
The variable input is an orange source that causes two orange checks.

void func (int input) {
int val1;
double val2;
val1 = input++;
val2 = 1.0/input;
}

To begin, select Window > Show/Hide View > Orange Sources. You see the list of orange sources.
Select an orange source to see all orange checks coming from this source.

See Filters Used

On the Results List header, you see the number of results displayed in the format Showing x/y, for
instance Showing 100/250. Click the dropdown beside this number to see the filters that are

23 Manage Results

23-6

currently active. You can also clear the active filters from this dropdown (all except the named set of
filters that you picked from the All results dropdown).

You see this information about the filters:

• Review Scope: If you pick a named set of filters from the All results dropdown, you see this filter
set.

• New results only: If you use the New button to see only new results, you see this filter enabled.
• Filtered results: You see the number of results filtered in the Polyspace user interface (by any

means: results list, dashboard or orange sources).
• Hidden results: You see the number of results hidden using code annotations. To unhide these

results, clear Hide results justified in code.

For information on hiding results through code annotations, see “Address Results in Polyspace
User Interface Through Bug Fixes or Justifications” on page 22-2.

• Columns with active filters: You see the columns in the Results List pane (or columns
corresponding to graphs in the Dashboard pane) that you used to filter results.

Group Results

On the Results List pane, from the list, select an option, for instance, grouping by file.
Alternatively, you can click a column header to sort the column contents alphabetically.

The available options for grouping are:

• None: Shows results without grouping.
• Family: Shows results grouped by result type.

The results are organized by type: checks (Code Prover), defects (Bug Finder), global variables
(Code Prover), coding rule violations, code metrics. Within each type, they are grouped further.

• The defects (Bug Finder) are organized by the defect groups. For more information on the
groups, see “Defects”.

• The checks (Code Prover) are grouped by color. Within each color, the checks are organized by
check group. For more information on the groups, see “Run-Time Checks” (Polyspace Code
Prover).

• The global variables (Code Prover) are grouped by their usage. For more information, see
“Global Variables” (Polyspace Code Prover).

 Filter and Group Results in Polyspace Desktop User Interface

23-7

• The coding rule violations are grouped by type of coding rule. For more information, see
“Coding Standards”.

• The code metrics are grouped by scope of metric. For more information, see “Code Metrics”.
• File: Show results grouped by file.

Within each file, the results are grouped by function. The results that are not associated with a
particular function are grouped under File Scope.

In Code Prover, the file or function name shows the worst check color in the file or function. The
severity of a check color decreases in the order: red, gray, orange, green.

• Class (for C++ code only): Shows results grouped by class.

Within each class, the results are grouped by method. The results that are not associated with a
particular class are grouped under Global Scope.

See Also

More About
• “Classification of Defects by Impact” on page 18-49

23 Manage Results

23-8

Generate Reports from Polyspace
Results

• “Generate Reports from Polyspace Results” on page 24-2
• “Export Polyspace Analysis Results” on page 24-5
• “Export Polyspace Analysis Results to Excel by Using MATLAB Scripts” on page 24-9
• “Visualize Bug Finder Analysis Results in MATLAB” on page 24-11
• “Customize Existing Bug Finder Report Template” on page 24-15
• “Generate Report Containing MISRA C:2012 Violations, Code Metrics, and Runtime Check

Results” on page 24-20

24

Generate Reports from Polyspace Results
This topic shows how to generate reports from results generated with a Polyspace desktop product.
To generate reports from results uploaded to the Polyspace Access web server, see polyspace-
report-generator.

To generate reports from Polyspace results, you can do one of the following:

• Run a Polyspace analysis and create a report from the analysis results. See the workflow
described here.

• Specify that a report will be automatically generated after analysis. For more information on the
options, see “Reporting”. Report generation immediately after analysis is supported for both
desktop and server products.

• Export your results to a text file and generate graphs and statistics. See “Export Polyspace
Analysis Results” on page 24-5.

Depending on the template you use, the report contains information about certain types of results
from the Results List pane. You can see the following information about a result:

• ID: Unique number for a result for the current analysis

To identify the result in your source code, you can use the ID in the Results List pane of the
Polyspace user interface or in your IDE if you are using a Polyspace plugin.

• Check: Defect names, MISRA C:2012 coding rule number, and so on.
• File and function
• Status, Severity, Comment: Information that you enter about a result.4

In Bug Finder, the report does not contain the line or column number for a result. Use the report for
archiving, gathering statistics and checking whether results have been reviewed and addressed (for
certification purposes or otherwise). To review a result in your source code, use the Polyspace user
interface or your IDE if you are using a Polyspace plugin.

Generate Reports from User Interface
You can generate a report from your analysis results. Using a customizable template, the report
presents your results in a concise manner for managerial review or other purposes.

1 Open your results file.
2 Select Reporting > Run Report.

The Run Report dialog box opens.

4 Reports generated from Polyspace results are typically meant for archiving and certification. Therefore, the reports
contain all Polyspace results, justified or otherwise. Justified results show the justification status, for instance, No
Action Planned, along with comments supporting the justification. These reports allow standards committees such
as certification authorities to verify if a Polyspace result was justified for approved reasons.

24 Generate Reports from Polyspace Results

24-2

3 Select the following options:

• In the Select Reports section, select the types of reports that you want to generate. Press
the Ctrl key to select multiple types. For example, you can select BugFinder and
CodeMetrics.

• Select the Output folder in which to save the report.
• Select an Output format for the report.
• If the display language (Windows) or locale (Linux) of your operating system is set to another

language, you see an option to generate English reports. Select this option if you want an
English report, otherwise the report is in another language.

• If you want to filter results from your report, use filters on the Results List pane to display
only the results that you want to report. Then, when generating reports, select Only include
currently displayed results. You cannot display filtered reports for results downloaded from
Polyspace Metrics.

For more information on filtering, see “Filter and Group Results in Polyspace Desktop User
Interface” on page 23-2.

4 Click Run Report.

The software creates the specified report and opens it.

Generate Reports from Command Line
You can script the generation of reports using the polyspace-report-generator command.

 Generate Reports from Polyspace Results

24-3

To generate BugFinder and CodeMetrics HTMLreports for results in C:\Users\johndoe
\Documents\Polyspace\Examples\Bug_Finder_Example\Module_1\BF_Result, use the
following options with the command:

SET template_path=^
"C:\Program Files\MATLAB\R2018a\toolbox\polyspace\psrptgen\templates\bug_finder"
SET bf_templates=^
%template_path%\BugFinder.rpt,%template_path%\CodingMetrics.rpt
SET results_dir=^
"C:\Users\johndoe\Documents\Polyspace\Examples\Bug_Finder_Example\Module_1\BF_Result"

polyspace-report-generator ^
-results-dir %results_dir% ^
-template %bf_templates ^
-format html

See Also
Generate report | Bug Finder and Code Prover report (-report-template) | Output
format (-report-output-format)

More About
• “Customize Existing Bug Finder Report Template” on page 24-15
• “Export Polyspace Analysis Results” on page 24-5

24 Generate Reports from Polyspace Results

24-4

Export Polyspace Analysis Results
You can export your analysis results to a tab separated values (TSV) text file, a MATLAB table, or to a
standard JSON format. Using the exported content, you can:

• Generate graphs or statistics about your results that you cannot readily obtain from the user
interface by using MATLAB or Microsoft Excel. For instance, for each Code Prover check type
(Division by zero, Overflow), you can calculate how many checks are red, orange, or green.

• Integrate the analysis results with other checks you perform on your code.

Export Results to Text File
You can export results to a tab delimited text file (TSV) from the user interface or command line.

The exported text file uses the character encoding on your operating system. If special characters
from your comments are not exported correctly in the text file, change the character encoding on
your operating system before exporting.

Export Results from User Interface (Desktop Products Only)

1 Open your analysis results.
2 Export all results or only a subset of the results.

• To export all results, select Reporting > Export > Export All Results.
• If you want to filter results from your report, use filters on the Results List pane to display

only the results that you want to report. Then, when exporting results, select Reporting >
Export > Export Currently Displayed Results.

For more information on filtering, see “Filter and Group Results in Polyspace Desktop User
Interface” on page 23-2.

3 Select a location to save the text file and click OK.

Note If you apply a review scope that sets thresholds for code metrics and you export all results, the
generated file lists the results for the code metrics as Green (pass) or Red (fail) in the color column
(third column). If you do not set thresholds for code metrics, the exported file shows Not Applicable
for code metrics results in the color column.

Export Results From Command Line

Use the option -format csv with the polyspace-results-export command. For example, to
generate a csv file from results file C:\Polyspace_Workspace\myProject
\Module_1\BF_Result\ps_results.psbf, run this command:
polyspace-results-export -format csv -results-dir C:\Polyspace_Workspace\myProject\Module_1\BF_Result

Export Results to MATLAB Table
If you write MATLAB scripts to run Polyspace, you can read your Polyspace analysis results into a
MATLAB table for further processing. See:

 Export Polyspace Analysis Results

24-5

• “Visualize Bug Finder Analysis Results in MATLAB” on page 24-11
• “Visualize Code Prover Analysis Results in MATLAB” (Polyspace Code Prover)

Export Results to JSON Format
You can export Polyspace results to a JSON object. The JSON format follows the standard notation
provided by the OASIS Static Analysis Results Interchange Format (SARIF).

Use the option -format json-sarif with the polyspace-results-export command. For more
information, see polyspace-results-export.

The JSON format contains some additional information such as the checker short name and the full
message that accompanies a result. Use the JSON format if you want to use this short name or
message. You can also use this format for a more standardized reporting of results. For instance, if
you use several static analysis tools and want to report their results in one interface by using a single
parsing algorithm, you can export all the results to the standard SARIF JSON format.

View Exported Results
The exported results include the information available on the Results List pane in the desktop user
interface or Polyspace Access web interface (except for line and column information). See:

• “Results List in Polyspace Desktop User Interface” on page 21-15
• “Results List in Polyspace Desktop User Interface” (Polyspace Code Prover)
• “Results List in Polyspace Access Web Interface” on page 25-19

Note that some Results List column headers might be labeled differently in the exported results file.

Some other differences in presentation between the Results List pane and exported results are
listed below.

• The TSV file and MATLAB table contain these additional columns compared to the Results List:

• New column — Shows whether a result is new compared to the previous run.
• Key column — The entry in this column is based on the result family, result acronym, and the

location of the result in the file. See also “Compare Merged Results Using Exported Keys” on
page 24-6.

• URL column (Polyspace Access results only) — Click the URL to open the corresponding result
in the Polyspace Access interface.

• The JSON file stores the results as objects contained in a results array. Each object has a list of
key-value pairs that store the results information, including whether the result is new compared to
the last run ("baselineState") and the result key. For more on the JSON format see SARIF-
v2.1.0.

You cannot identify the location of a Bug Finder result in your source code via the text file. However,
you can still parse the file and generate graphs or statistics about your results.

Compare Merged Results Using Exported Keys

When you merge exported analysis results from multiple modules that contain common files, you can
use the Key and other fields from the exported results to eliminate duplicates. For instance, if you

24 Generate Reports from Polyspace Results

24-6

https://docs.oasis-open.org/sarif/sarif/v2.1.0/os/sarif-v2.1.0-os.html
https://docs.oasis-open.org/sarif/sarif/v2.1.0/os/sarif-v2.1.0-os.html

run coding-rule checking on two different modules and merge the results, coding rule violations in
common header files appear twice in the results.

To eliminate duplicates, compare the Key and File values of the results. If two results have the same
Key and File values, one is a duplicate of the other.

By default, each result key is based on the result family (for instance numerical), result short name
(for instance float_ovfl), and the location of the result in the file. To generate more localized keys
for results that are located inside a function body, use the -key-mode function-scope option with
the polyspace-results-export or the polyspace-report-generator commands. The
commands generate keys that are based on the result family, result short name, and the location of
the result within the function body. You can then identify duplicates more accurately by also
comparing the Function values.

In rare instances, results that have the same key and the same location inside a file or function body
might not be duplicates. In those instances you need to compare the results manually, for instance by
comparing the result messages in the user interface, to determine whether the results are duplicates
or not.

Enable Function Scope for Exported Keys

To enable the function scope for exported keys:

• At The Command Line

Enter either of these commands to export locally stored results:
polyspace-results-export -results-dir folderPath -key-mode function-scope -format csv

or
polyspace-report-generator -generate-results-list-file -results-dir folderPath -key-mode function-scope

where folderPath is the path of the folder that contains the Polyspace analysis results.

Make sure that you run these commands from a location where you have write permissions, or use
option -output-name to specify a location to store the generated file of exported results.

• In the Polyspace Desktop User Interface

Create a menu item by going to Tools > Preferences and entering this command on the Tools
Menu tab:
$POLYSPACE_ROOT\bin\polyspace-results-export.exe -results-dir $RESULT_DIR
 -key-mode function-scope -format csv -output-name $RESULT_DIR

 Export Polyspace Analysis Results

24-7

You can then export results by using the menu item you created from Tools > External Tools.

To export results with the default key mode (without function location), use the Reporting >
Export menu.

When you export results with the function scope enabled, the key entries for results that are inside a
function have a FN prefix.

See Also
polyspace-results-export

Related Examples
• “Visualize Bug Finder Analysis Results in MATLAB” on page 24-11
• “Export Polyspace Analysis Results to Excel by Using MATLAB Scripts” on page 24-9

24 Generate Reports from Polyspace Results

24-8

Export Polyspace Analysis Results to Excel by Using MATLAB
Scripts

You can export the results of a Bug Finder or Code Prover analysis to an Excel report. See “Export
Polyspace Analysis Results” on page 24-5. The report contains Polyspace results in a tab-delimited
text file with predefined content and formatting.

You can also create Excel reports with your own content and formatting. Automate the creation of
this report by using MATLAB scripts.

Report Result Summary and Details in One Worksheet
This example shows a sample script for generating Excel reports from Polyspace results.

The script adds two worksheets to an Excel workbook. The worksheets report content from the
Polyspace results in polyspaceroot\polyspace\examples\cxx\Code_Prover_Example
\Module_1\CP_result. Here, polyspaceroot is the Polyspace installation folder, such as
C:\Program Files\Polyspace\R2019a.

Each worksheet contains the summary and details for a specific type of Polyspace result:

• MISRA C:2012: This worksheet contains a summary of MISRA C: 2012 rule violations in the
Polyspace results. The summary is followed by details of each MISRA C: 2012 violation.

• RTE: This worksheet contains a summary of run-time errors that Code Prover found. The summary
is followed by details of each run-time error.

% Copy a demo result set to a temporary folder.
resPath = fullfile(polyspaceroot,'polyspace','examples','cxx', ...
 'Code_Prover_Example','Module_1','CP_Result');
userResPath = tempname;
copyfile(resPath,userResPath);

% Read results into a table.
results = polyspace.CodeProverResults(userResPath);
resultsTable = results.getResults;

% Delete any existing file and create new file
filename = 'polyspace.xlsx';
if isfile(filename)
 delete(filename)
end

% Disable warnings about adding new worksheets
warning('off','MATLAB:xlswrite:AddSheet')

% Write MISRA summary to the MISRA 2012 worksheet
misraSummaryTable = results.getSummary('misraC2012');
writetable(misraSummaryTable, filename, 'Sheet', 'MISRA 2012');

% Write MISRA results to the MISRA 2012 worksheet
misraDetailsTable = resultsTable(resultsTable.Family == 'MISRA C:2012',:);
detailsStartingCell = strcat('A',num2str(height(misraSummaryTable)+ 4));
writetable(misraDetailsTable, filename, 'Sheet', 'MISRA 2012', 'Range', ...
detailsStartingCell);

% Write runtime summary to the RTE worksheet
rteSummaryTable = results.getSummary('runtime');
writetable(rteSummaryTable, filename, 'Sheet', 'RTE');

% Write runtime results to the RTE worksheet
rteResultsTable = resultsTable(resultsTable.Family == 'Run-time Check',:);
detailsStartingCell = strcat('A',num2str(height(rteSummaryTable)+ 4));
writetable(rteResultsTable, filename, 'Sheet', 'RTE', 'Range', detailsStartingCell);

The key functions used in the example are:

 Export Polyspace Analysis Results to Excel by Using MATLAB Scripts

24-9

• polyspace.CodeProverResults: Read Code Prover results into a table.
• writetable: Write a MATLAB table to a file. If the file name has the extension .xslx, the

function writes to an Excel file.

To specify the content to write to the Excel sheet, use these name-value pairs:

• Use the name Sheet paired with a sheet name to specify a worksheet in the Excel workbook.
• Use the name Range paired with a cell name to specify the starting cell in the worksheet

where the writing begins.

Control Formatting of Excel Report
Though you can control the content exported to the Excel report by using the preceding method, the
method has limited formatting options for the report.

To format the Excel report on Windows systems, access the COM server directly by using
actxserver. For example, Technical Solution 1-QLD4K uses actxserver to establish a connection
between MATLAB® and Excel, write data to a worksheet, and specify the colors of the cells.

See also “Get Started with COM”.

See Also

More About
• “Export Polyspace Analysis Results” on page 24-5

24 Generate Reports from Polyspace Results

24-10

https://www.mathworks.com/matlabcentral/answers/102070-how-do-i-write-data-to-an-excel-spreadsheet-with-a-custom-cell-background-color-and-custom-font-colo

Visualize Bug Finder Analysis Results in MATLAB
After a Polyspace analysis, you can read your results to a MATLAB table. Using the table, you can
generate graphs or statistics about your results. If you have MATLAB Report Generator, you can
include these tables and graphs in a PDF or HTML report.

Export Results to MATLAB Table
To read existing Polyspace analysis results into a MATLAB table, use a
polyspace.BugFinderResults object associated with the results.

For instance, to read the demo results in the read-only subfolder polyspace/examples/cxx/
Bug_Finder_Example/Module_1/BF_Result of the MATLAB installation folder, copy the results
to a writable folder and read them:

resPath = fullfile(polyspaceroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'Module_1','BF_Result');

userResPath = tempname;
copyfile(resPath,userResPath);

resObj = polyspace.BugFinderResults(userResPath);
resSummary = getSummary(resObj);
resTable = getResults(resObj);

resSummary and resTable are two MATLAB tables containing summary and details of the
Polyspace results.

Alternatively, you can run a Polyspace analysis on C/C++ source files using a polyspace.Project
object. After analysis, the Results property of the object contains the results. See “Run Polyspace
Analysis by Using MATLAB Scripts” on page 5-9.

Generate Graphs from Results and Include in Report
After reading the results to a MATLAB table, you can visualize them in a convenient format. If you
have MATLAB Report Generator, you can create a PDF or HTML report that contains your
visualizations.

This example creates a pie chart showing the distribution of showing the distribution of defects by
defect groups on page 18-43, and includes the chart in a report.

%% This example shows how to create a pie chart from your
% results and append it to a report.

%% Generate Pie Chart from Polyspace Results

% Copy a demo result set to a temporary folder.
resPath = fullfile(polyspaceroot,'polyspace','examples','cxx', ...
 'Bug_Finder_Example','Module_1','BF_Result');
userResPath = tempname;
copyfile(resPath,userResPath);

% Read results into a table.

 Visualize Bug Finder Analysis Results in MATLAB

24-11

resObj = polyspace.BugFinderResults(userResPath);
resTable = getResults(resObj);

% Eliminate results that are not defects.
matches = (resTable.Family == 'Defect');
defectTable = resTable(matches ,:);

% Create a pie chart showing distribution of defects.
defectGroupList = removecats(defectTable.Group);
pieDefects = pie(defectGroupList);
labels = get(pieDefects(2:2:end),'String');
set(pieDefects(2:2:end),'String','');
legend(labels,'Location','bestoutside')

% Save the pie chart.
print('file','-dpng');

%% Append Pie Chart to Report
% Requires MATLAB Report Generator

% Create a report object.
import mlreportgen.dom.*;
report = Document('PolyspaceReport','html');

% Add a heading and paragraph to the report.
append(report, Heading(1,'Bug Finder Defect Distribution Graph'));
paragraphText = ['The following graph shows the distribution of ' ...
 'defects in your code.'];
append(report, Paragraph(paragraphText));

% Add the image to the report.
chartObj = Image('file.png');
append(report, chartObj);

% Add another heading and paragraph to the report.
append(report, Heading(1,'Defect Details'));
paragraphText = ['The following table shows the defects ' ...
 'in your code.'];
append(report, Paragraph(paragraphText));

% Add the table of defects to the report.
reducedInfoTable = defectTable(:,{'File','Function','Check',...
 'Status','Severity','Comment'});
reducedInfoTable = sortrows(reducedInfoTable,[1 2]);
tableObj = MATLABTable(reducedInfoTable);
tableObj.Style = {Border('solid','black'),ColSep('solid','black'),...
 RowSep('solid','black')};
append(report, tableObj);

% Close and view the report in a browser.
close(report);
rptview(report.OutputPath);

The key functions used in the example are:

• polyspace.BugFinderResults: Read Bug Finder results into a table.

24 Generate Reports from Polyspace Results

24-12

• pie: Create pie chart from a categorical array. You can alternatively use the function histogram
or heatmap.

To create histograms, replace pie with histogram in the script and remove the pie chart
legends.

• mlreportgen.dom.Document: Create a report object that specifies the report format and where
to store the report.

• append: Append contents to the existing report.

When you execute the script, you see a distribution of defects by defect group. The script also creates
an HTML report that contains the graph and table of Polyspace defects.

You can use any criteria to remove rows from the results table before reporting. The preceding
example uses the criteria that the result must be from the defect family. See also Bug Finder result
families.

matches = (resTable.Family == 'Defect');
defectTable = resTable(matches ,:);

Instead, you can use another criteria. For instance, you can remove results in header files and retain
the results from source files only.

sourceExtensions = [".c",".cpp",".cxx"];
fileNameStrings = string(resTable.File);
matches = endsWith(fileNameStrings,sourceExtensions);
sourceTable = resTable(matches ,:);

 Visualize Bug Finder Analysis Results in MATLAB

24-13

See Also

Related Examples
• “Export Polyspace Analysis Results” on page 24-5
• “Export Polyspace Analysis Results to Excel by Using MATLAB Scripts” on page 24-9

24 Generate Reports from Polyspace Results

24-14

Customize Existing Bug Finder Report Template
In this example, you learn how to customize an existing report template to suit your requirements. A
report template allows you to generate a report from your analysis results in a specific format. If an
existing report template does not suit your requirements, you can change certain aspects of the
template.

For more information on the existing templates, see Bug Finder and Code Prover report (-
report-template).

Prerequisites
Before you customize a report template:

• See whether an existing report template meets your requirements. Identify the template that
produces reports in a format close to what you need. You can adapt this template.

To test a template, generate a report from sample results using the template. See “Generate
Reports from Polyspace Results” on page 24-2.

• Make sure you have MATLAB Report Generator installed on your system.

In this example, you modify the BugFinder template that is available in Polyspace Bug Finder.

View Components of Template
A report template can be broken into components in MATLAB Report Generator. Each component
represents some of the information that is included in a report generated using the template. For
example, the component Title Page represents the information in the title page of the report.

In this example, you view the components of the BugFinder template.

1 Add paths to Polyspace-specific report components by pointing to subfolders of your Polyspace
installation folder. At the MATLAB command prompt, enter:
addpath(fullfile(polyspaceroot, 'toolbox', 'polyspace', 'psrptgen', 'psrptgen'));
addpath(fullfile(polyspaceroot, 'toolbox', 'polyspace', 'psrptgen', 'templates'));

Here, polyspaceroot is the Polyspace installation folder, for instance, C:\Program Files
\Polyspace\R2019a. If you integrate MATLAB and Polyspace, you can use the
polyspaceroot function in MATLAB to find the installation folder location. See “Integrate
Polyspace with MATLAB and Simulink” on page 5-2.

2 Open the Report Explorer interface. At the MATLAB command prompt, enter:

report
3 Open the BugFinder template in the Report Explorer interface.

The BugFinder template is in polyspaceroot/toolbox/polyspace/psrptgen/
templates/bug_finder where polyspaceroot is the Polyspace installation folder.

Your template opens in the Report Explorer. On the left pane, you can see the components of the
template. You can click each component and view the component properties on the right pane.

 Customize Existing Bug Finder Report Template

24-15

Some components of the BugFinder template and their purpose are described below.

Component Purpose
Title Page (MATLAB
Report Generator)

Inserts title page in the beginning of report

Chapter/Subsection
(MATLAB Report
Generator)

Groups portions of report into sections with titles

Code Verification
Summary

Inserts summary table of Polyspace analysis results

Logical If (MATLAB
Report Generator)

Executes child components only if a condition is satisfied

Run-time Checks
Summary Ordered by
File

Inserts a table with Polyspace Bug Finder defects grouped by file

To understand how the template works, compare the components in the template with a report
generated using the template.

For more information on the components, see “Work with Components” (MATLAB Report Generator).
For information on Polyspace-specific components, see “Generate Reports”.

Note Some of the component properties are set using internal expressions. Although you can view
the expressions, do not change them. For instance, the conditions specified in the Logical If
components in the BugFinder template are specified using internal expressions.

Change Components of Template
In the Report Explorer interface, you can:

• Change properties of existing components of your template.
• Add new components to your template or remove existing components.

In this example, you add a component to the BugFinder template so that the template includes only
Integer division by zero and Float division by zero defects in a report.

1 Open the BugFinder template in the Report Explorer interface and save it elsewhere with a
different name, for instance, BugFinder_Division_by_Zero.

24 Generate Reports from Polyspace Results

24-16

2 Add a new global component that filters every defect except division by zero from the
BugFinder_Division_by_Zero template. The component is global because it applies to the full
report and not one chapter of the report.

To perform this action:

a Drag the component Report Customization (Filtering) located under Polyspace in
the middle pane and place it above the Title Page component. The positioning of the
component ensures that the filters apply to the full report and not one chapter of the report.

b Select the Report Customization (Filtering) component. On the right pane, you can set
the properties of this component. By default, the properties are set such that all results are
included in the report.

To include only Integer division by zero and Float division by zero defects, under the
Advanced Filters group, enter Integer division by zero and Float division by
zero in the Check types to include field.

You can also use MATLAB regular expressions in this field to exclude results. For instance, to
exclude the result Dead code, enter ^(?!Dead code).*. The report generator applies the
regular expressions against the Polyspace result names. For instance:

 Customize Existing Bug Finder Report Template

24-17

• The caret ^ indicates that the subsequent pattern must be at the beginning of the string.
• The characters (?!pattern).* indicates that the subsequent pattern must not appear

in the string.

Together, the regular expression ^(?!Dead code).* indicates that Polyspace result names
beginning with Dead code must be excluded from the report.See “Regular Expressions”.

You can toggle between activating and deactivating this component. Right-click the
component and select Activate/Deactivate Component.

3 Change an existing chapter-specific component so that it does not override the global filter you
applied in the previous step. If you prevent the overriding, the chapter-specific component
follows the filtering specifications in the global component.

To perform this action:

a On the left pane, select the Run-time Checks Details Ordered by Color/File
component. This component produces tables in the report with details of run-time checks
found in Polyspace Bug Finder.

The right pane shows the properties of this component.
b Clear the Override Global Report filter box.

Save the BugFinder_Division_by_Zero template after making your changes.
4 In the Polyspace user interface, create a report using both the BugFinder and

BugFinder_Division_by_Zero template from results containing division by zero defects.
Compare the two reports.

For instance:

a Open Help > Examples > Bug_Finder_Example.psprj.

The demo result contains Integer division by zero and Float division by zero defects.
b Create a PDF report using the BugFinder template. See “Generate Reports from Polyspace

Results” on page 24-2.

In the report, open Chapter 5. Defects (in your version of the product, the chapter number
might be different). You can see all defects from the example result. Close the report.

c Create a PDF report using the BugFinder_Division_by_Zero template. In the Run Report
window, use the Browse button to add the BugFinder_Division_by_Zero template to the
existing template list.

24 Generate Reports from Polyspace Results

24-18

In the report, open Chapter 6. Defects (in your version of the product, the chapter number
might be different). You see only Integer division by zero and Float division by zero
defects.

Note After you add the template to the existing list of templates, before generating the
report, make sure to select the newly added template.

 Customize Existing Bug Finder Report Template

24-19

Generate Report Containing MISRA C:2012 Violations, Code
Metrics, and Runtime Check Results

To obtain a report that contains the Code Prover results, all code metrics, and MISRA C:2012
violations, run the command polyspace-report-generator. Generate a combined report
containing these results:

• MISRA C:2012. See “MISRA C:2012 Directives and Rules”.
• Code metrics. See “Code Metrics”.
• Stack usage metrics. See Stack Usage Metrics (Polyspace Code Prover).
• Run-time checks. See “Run-Time Checks” (Polyspace Code Prover).

For more information, see polyspace-report-generator.

Code Prover does not check for violations of coding standards, such as MISRA C:2012. Use Bug
Finder to check for coding rule violations. Code Prover computes the stack usage code metrics only.
The other code metrics are calculated by Bug Finder.

Prerequisite
• Before generating the report, confirm that your installed Polyspace version is R2021b or later.
• To use the C source file used in this example, navigate to polyspaceroot\polyspace

\examples\cxx\Bug_Finder_Example\sources\numerical.c. Substitute polyspaceroot
with your Polyspace installation path, for instance, C:\Program Files\Polyspace\R2023a.
See also “Installation Folder”.

Obtain Code Metrics and Coding Rules Results by Using Bug Finder
Run a Bug Finder analysis and store the results.

1 Run Bug Finder on numerical.c to check for coding rule standard violations, and then store the
results in a folder named BFResults. For instance, at the command line, enter:
polyspace-bug-finder
-sources “polyspaceroot\polyspace\examples\cxx\Bug_Finder_Example\sources\numerical.c”
-results-dir BFResults -code-metrics -misra3 all-rules -lang c -checkers none

The command runs Bug Finder on numerical.c and stores the results in a folder named
BFResults. Bug Finder checks for violations of MISRA C:2012 coding rules and computes the
code metrics.

In the next steps, Code Prover performs an exhaustive check for run-time errors and other
issues. In such a case, activating the Bug Finder defects might be redundant. Polyspace Report
Generator does not support putting Code Prover run-time errors and Bug Finder defects in the
same report. The defect checkers are deactivated in this step.

2 Navigate to Current Folder\BFResults and open the file ps_results.psbf. Verify that the
results contain MISRA C;2012 violations and code metrics results.

24 Generate Reports from Polyspace Results

24-20

Obtain Run Time Check and Stack Usage Results by Using Code Prover
Run a Code Prover analysis and store the results.

1 Run Code Prover on numerical.c to check for run-time issues and to calculate stack usage
metrics. Store the results in a folder named CPResults. For instance, at the command line,
enter:
polyspace-code-prover
-sources “polyspaceroot\polyspace\examples\cxx\Bug_Finder_Example\sources\numerical.c”
-results-dir CPResults -stack-usage -lang c -main-generator

The command runs Code Prover on numerical.c and stores the results in a folder named
CPResults. Because numerical.c does not have a main() function, specify the option Verify
module or library (-main-generator).

2 Navigate to Current Folder\CPResults and open the file ps_results.pscp. Verify that the
results contain run-time checks and stack usage results.

 Generate Report Containing MISRA C:2012 Violations, Code Metrics, and Runtime Check Results

24-21

Generate a Combined Report
After generating the Bug Finder and Code Prover results, summarize the results into a single report.
To generate the report, specify an appropriate template and the results folders as inputs to the
command polyspace-report-generator.

1 Before executing the report generation command, select an appropriate template. For this
example, the report must contain a chapter each for code metrics, Code Prover runtime checks,
and MISRA C:2012 violations. The template Developer.rpt accommodates all of these results.

To include additional chapters about coding standards such as AUTOSAR C++14 or CERT C/C+
+, modify the existing templates. See “Customize Existing Bug Finder Report Template” on page
24-15.

2 Start the report generation by using the command polyspace-report-generator. Specify the
template Developer.rpt as the input to -template. Provide the folders containing the Bug
Finder and Code Prover results as inputs to -results-dir. At the command line, enter:
polyspace-report-generator
-template "polyspaceroot\toolbox\polyspace\psrptgen\templates\Developer.rpt"
-results-dir “CPResults”,”BFResults” -output-name combined_report -format PDF

The file combined_report.pdf is saved in your current folder. Open the file and verify that the
report contains code metrics, Code Prover run-time checks, and MISRA C:2012 violations.

24 Generate Reports from Polyspace Results

24-22

See Also
polyspace-report-generator | polyspace-bug-finder

Related Examples
• “Customize Existing Bug Finder Report Template” on page 24-15
• “Export Polyspace Analysis Results” on page 24-5
• “Generate Reports from Polyspace Results” on page 24-2
• “Migrate Code Prover Workflows for Checking Coding Standards and Code Metrics to Bug

Finder” on page 16-55

 Generate Report Containing MISRA C:2012 Violations, Code Metrics, and Runtime Check Results

24-23

Review Results on Web Browser

25

Interpret Polyspace Bug Finder Results

• “Interpret Bug Finder Results in Polyspace Access Web Interface” on page 25-2
• “Investigate the Cause of Empty Results List” on page 25-7
• “Dashboard in Polyspace Access Web Interface” on page 25-9
• “Code Metrics Dashboard in Polyspace Access Web Interface” on page 25-11
• “Quality Objectives Dashboard in Polyspace Access” on page 25-14
• “Results List in Polyspace Access Web Interface” on page 25-19
• “Source Code in Polyspace Access Web Interface” on page 25-21
• “Result Details in Polyspace Access Web Interface” on page 25-26
• “Call Hierarchy in Polyspace Access Web Interface” on page 25-28
• “Configuration Settings in Polyspace Access Web Interface” on page 25-30
• “Review History in Polyspace Access Web Interface” on page 25-33
• “Create Bug Tracking Tool Tickets from the Polyspace Access Web Interface” on page 25-35

25

Interpret Bug Finder Results in Polyspace Access Web
Interface

This topic shows how to review Bug Finder results in the Polyspace Access web interface. For a
similar workflow in the user interface of the Polyspace desktop products, see “Interpret Bug Finder
Results in Polyspace Desktop User Interface” on page 21-2. To see how to review results of Polyspace
as You Code in IDEs, see “Review Polyspace as You Code Results in IDEs”.

When you open the results of a Bug Finder analysis in the REVIEW view of Polyspace Access, you see
a list on the Results List pane. The results consist of defects, coding rule violations or code metrics.

You can first narrow down the focus of your review:

• Use filters in the toolstrip to narrow down the list. For instance, you can focus on the high-impact
defects.

• Click the a column header in the Results List to sort the list according to the content of that
column. For instance you can sort by Group or by File.

Once you narrow down and sort the list, you can begin reviewing individual results. This topic
describes how to review a result.

To begin your review, select a result in the list.

25 Interpret Polyspace Bug Finder Results

25-2

Interpret Result Details Message

Interpret Message

The first step is to understand what is wrong. Read the message on the Result Details pane and the
related line of code on the Source Code pane.

Seek Additional Resources for Help

Sometimes, you need additional help for certain results. Click the icon to open a help page for
the selected result. See code examples illustrating the result. Check external standards such as CERT-
C that provide additional rationale for fixing the issue. When available, click the icon to see fix
suggestions for the defect.

At this point, you might be ready to decide whether to fix the issue or not. Once you identify a fix, it
might help to review all results of that type together.

Find Root Cause of Result
Sometimes, the root cause might be far from the actual location where the result is displayed. For
instance, a variable that you read might be non-initialized because the initialization is not reachable.
The defect is shown when you read the variable, but the root cause is perhaps a previous if or
while condition that is always false.

 Interpret Bug Finder Results in Polyspace Access Web Interface

25-3

Navigate to Related Events

Typically, the Result Details pane shows one sequence of events that leads to the result. The Source
Code pane also highlights these events.

In the above event traceback, this sequence is shown:

1 A variable value is declared.
2 The execution path bypasses an if statement. This information might be relevant if the variable

is initialized inside the if block.
3 Location of the current defect: Non-initialized variable

Typically, the traceback shows major points in the control flow: entering or bypassing conditional
statements or loops, entering a function, and so on. For specific defects, the traceback shows other
kinds of events relevant to the defect. For instance, for a Declaration mismatch defect, the
traceback shows the two locations with conflicting declarations.

Create Your Own Navigation Path

If the event traceback is not available, use other navigation tools to trace your own path through the
code.

25 Interpret Polyspace Bug Finder Results

25-4

Before you begin navigating through pathways in your code, ask the question: What am I looking for?
Based on your answer, choose the appropriate navigation tool. For instance:

• To investigate a Non-initialized variable defect, you might want to make sure that the variable is
not initialized at all. To look for previous instances of the variable, on the Source Code pane,
right-click the variable and select Search For All References. This option lists only instances of a
specific variable and not other variables with the same name in other scopes.

• To investigate a violation of MISRA C:2012 Rule 17.7:

The value returned by a function having non-void return type shall be used.

you might want to navigate from a function call to the function definition. Right-click the function
and select Go To Definition.

After you navigate away from the current result, use the icon on the Result Details pane to
come back.

To select a different result from the Source Code pane, Ctrl-click the result or right-click and select
Select Results At This Location. The Results Details pane updates but the result you select is not
highlighted in the Results List pane. Clicking a result in the Results List updates the Results
Details and Source Code panes.

 Interpret Bug Finder Results in Polyspace Access Web Interface

25-5

See Also

More About
• “Address Results in Polyspace Access Through Bug Fixes or Justifications” on page 26-2
• “Filter and Sort Results in Polyspace Access Web Interface” on page 27-8

25 Interpret Polyspace Bug Finder Results

25-6

Investigate the Cause of Empty Results List
This topic shows how to interpret an empty results list in the Polyspace Access web interface. To see
how to interpret a similar empty list in the user interface of the Polyspace desktop products, see
“Investigate the Cause of Empty Results List” on page 21-7.

When you review results from a Polyspace Bug Finder or Polyspace Bug Finder Server analysis, the
Results List pane can be empty or it can display this message:

No results available for currently selected filters,
or no results available for the selected project.

The message can indicate that your code has no defect or coding rule violation. However, before you
reach this conclusion:

1 Open the Run Log pane by going to Window > Run Log.
2 Maximize the pane by double-clicking the Run Log tab, then use CTRL-F to check for the

following.

• Did all your source files compile?

Search for Failed compilation

If a file does not compile, Bug Finder can return some results, but only files with no
compilation errors are fully analyzed.

• Did you include all your source files in your project?

Search for verifying sources ...

Make sure that all the files that you want to analyze are listed under this message.
3 Open the Configuration Used pane by going to Window > Configuration Used, then:

• Verify that the appropriate options are activated to check for coding standards violations and
to compute code metrics.

• Check if the -fast-analysis option is activated. Bug Finder checks for only a subset of
defects and coding rules in fast analysis mode.

• Click Checkers to see a list all the defects and coding rules checkers selected for this
analysis.

4 Check whether you are applying any filters to the results.

To see which filters you are applying to the results, see the filter bar below the FAMILY
FILTERS section of the toolstrip. To clear all applied filters, click the eraser icon.

 Investigate the Cause of Empty Results List

25-7

If you review results for an analysis you did not configure, discuss the possible causes of an empty
results list with the project buildmaster. If you use polyspace-configure as part of your analysis
workflow, the Run Log and Configuration Used panes might not contain all the analysis
configuration parameters. For more information on analysis options and project configuration, see the
documentation for Polyspace Bug Finder or Polyspace Bug Finder Server.

See Also

More About
• “Address Results in Polyspace Access Through Bug Fixes or Justifications” on page 26-2

25 Interpret Polyspace Bug Finder Results

25-8

Dashboard in Polyspace Access Web Interface
This topic focuses on the Polyspace Access web interface. To learn about the equivalent pane in the
Polyspace desktop user interface, see “Dashboard in Polyspace Desktop User Interface” on page 21-9.

The DASHBOARD perspective provides an overview of the analysis results in graphical format, with
clickable fields that let you drill down into your findings by project, file, or category.

When you upload an analysis run to the Polyspace Access database, the DASHBOARD updates to
display the statistics for the latest run.

On the Project Overview dashboard, you see statistics for the currently selected project. When you
select a folder in the Project Explorer, you see an aggregate of statistics for all the projects under
that folder. The aggregate does not include the statistics of projects for which you do not have a role
of Administrator, Owner, or Contributor.

In the Summary section of the Project Overview dashboard, cards display information about open
issues, code metrics, quality objectives, and the different families of findings.

 Dashboard in Polyspace Access Web Interface

25-9

• The Run-time Check card (Code Prover) shows a distribution of findings as red, orange, gray,
and green. The card also shows the Selectivity, the number of green checks as a percentage of all
detected run-time checks.

• Defects and Coding Rules cards show a distribution of findings as:

• To Do — Findings with a status of Unreviewed that need to be addressed with a fix or a
justification.

• In Progress — Findings with a status of To fix, To investigate, or Other that need to be
addressed with a fix or a justification.

• Done — Findings with a status of Justified, No action planned, or Not a defect.

The card also shows the Density, the number of To Do and In Progress defects or coding
standard violations per one thousand lines of code without comments. To view the density you
must enable Code Metrics in your analysis.

Note Green run-time checks, green shared variables, non-shared variables, and code metrics do not
need to be addressed or justified. These findings do not count toward the number of findings that are
To Do, In Progress, and Done.

To see a more in-depth overview for a family of findings, open additional dashboards by clicking the
corresponding card title in the Project Overview dashboard or by using the DASHBOARDS section
of the toolstrip.

In the additional dashboards:

• The Summary section displays project statistics for that family of findings such as current
progress of results review or code coverage information.

• The Details section displays a table that allows you to drill down into the findings by category or
by file. If you select a folder that contains multiple projects, you see a categorization by project
instead of by file.

You can also perform these actions on the DASHBOARD perspective:

• View statistics for a previous run or compare a current run to a previous run. See “Compare
Results in Polyspace Access Project to Previous Runs and View Trends” on page 27-19.

• Click elements on the graphs or tables to filter results from the Results List pane. See “Filter and
Sort Results in Polyspace Access Web Interface” on page 27-8.

• Define and set quality objective levels. See “Quality Objectives Dashboard in Polyspace Access” on
page 25-14.

• Manage projects and user authorizations. See “Manage Permissions and View Project Trends in
Polyspace Access Web Interface” on page 27-2.

• Open the current project findings in the Polyspace desktop interface.

25 Interpret Polyspace Bug Finder Results

25-10

Code Metrics Dashboard in Polyspace Access Web Interface
To view the code complexity metrics that Polyspace computes, use the Code Metrics dashboard. See
“Code Metrics”.

Polyspace computes the code complexity metrics during an analysis only when you use the option
Calculate code metrics (-code-metrics).

In the Project Explorer, select a project. Use the Code Metrics card in the Project Overview
dashboard to get a quick overview of these code metrics:

• Number of Files (Files)
• Number of Lines Without Comment (Uncommented)
• Cyclomatic Complexity (Cyclomatic)

If you select a folder in the Project Explorer, the Code Metrics card shows:

• The number of Sub Projects in that folder. This number includes only subprojects that are
directly (one level) below the top level folder.

• An aggregate of the other metrics on the card for all the subprojects at any level for which you are
a Contributor, an Owner, or an Administrator.

To open the Code Metrics dashboard, click the Code Metrics icon in the DASHBOARD section of
the toolstrip. Or, click Code Metrics on the card in the Project Overview dashboard.

 Code Metrics Dashboard in Polyspace Access Web Interface

25-11

In the Summary section, you see trend charts of the Number of lines Without Comment and
Number of Files for the project.

The other sections of the dashboard display tables with the computed value or range of the different
project, file, and function metrics. When applicable, the table shows the predefined threshold and
pass/fail status for the corresponding code metric. For a list of code complexity metrics thresholds,
see “HIS Code Complexity Metrics” on page 16-54. If you select a folder in the Project Explorer, the
tables in the Code Metrics dashboard do not show the threshold or pass/fail status. The value or
range of the metrics are aggregate of all subprojects in the selected folder. To drill down to a project
from this aggregate view, expand a table row and click the project name.

To improve your code quality, use the pass/fail status to identify and lower metrics values that
exceeds a threshold.

For instance, if the Number of Called Functions range exceeds the predefined threshold:

25 Interpret Polyspace Bug Finder Results

25-12

1 Click FAIL in the Status column or click the range in the Min..Max column to open the Results
List filtered to the Number of Called Functions metric

2 Review the results that exceed the metric threshold. If several of those functions are always
called together, you can write one function that fuses the bodies of those functions. Call that one
function instead of the group of functions that are called together.

 Code Metrics Dashboard in Polyspace Access Web Interface

25-13

Quality Objectives Dashboard in Polyspace Access
To monitor the quality of your code against predefined on page 31-2 software quality thresholds or
user-defined thresholds, use the Quality Objectives dashboard. You can use the thresholds as pass
or fail criteria during the various stages of your project. From the dashboard, you can:

• Apply the default on page 31-2 Polyspace Access quality objectives or create custom objectives
that suit your requirements. See “Customize Software Quality Objectives” on page 25-16.

• view a snapshot of your code quality against all levels of the currently applied quality objectives
definition.

To manage the thresholds that you assign to projects, see “Manage Software Quality Objectives in
Polyspace Access” on page 27-13.

Monitor Code Quality Against Software Quality Objectives

In the Project Overview dashboard, use the Quality Objectives card to get a quick overview of your
progress in achieving a quality objective threshold. The card shows:

• The percentage of findings already addressed to achieve the selected threshold.
• One of these labels:

•
 (pass) — All findings for this threshold have been addressed.

•
 (in progress) — Some findings for this threshold are still open. A finding is open if it has a

review status of Unreviewed, To fix, To investigate, or Other.
•

 (incomplete) — Some checkers required for this threshold were not activated in the
analysis. For instance, if a threshold requires that you address all Polyspace Bug Finder
defects, but the analysis includes only Numerical defects, the level is incomplete, even if you

address all findings. To see a list of checkers you must activate, click .

25 Interpret Polyspace Bug Finder Results

25-14

Note This label applies only to SQO thresholds 1 through 6. If you select the Exhaustive

software quality threshold and you address all the findings, the threshold is labeled as
(pass) even if all required checkers for this threshold were not activated in the analysis.

•
 (not computed) — No quality objective results were computed.

After you apply a new quality objectives definition to a project, you see the not computed label
until you upload a new run to the project.

•
The assigned Threshold. To select a different threshold or quality objectives definition, click .
You must be an Administrator or project Owner to assign quality objective definitions or
thresholds to a project. You can also assign quality objectives by right-clicking a project in the
Project Explorer.

• The Remaining number of findings that you need to address to reach the threshold. Click this
number to open the Review perspective and see these findings in the Results List.

For a more comprehensive view, open the Quality Objectives dashboard. In the Summary section,

click in the card on the left to pick a threshold and see the remaining open issues, including a
breakdown for each category, such as code metrics or coding rules.

In this Quality Objectives dashboard, 7% of the findings required to achieve threshold Exhaustive
have been addressed, include 38% of Defects. There are 1983 open issues, which are split between
Code Metrics (55), Coding Rule (1676), and Defects (252).

This table shows the current progress of code quality for all quality objective thresholds. To view the
Results List for a set of open issues, click the corresponding value in the table.

 Quality Objectives Dashboard in Polyspace Access

25-15

Additionally, you can view aggregated SQO statistics by selecting an entire project folder in the
Project Explorer pane. Note these differences between viewing SQO information at the folder level
and the project level.

• For folders, the Progress and Details sections do not contain links to filtered results in the tables.
• You cannot assign quality objective levels to all projects in the folder at once.
• The Quality Objectives card for folders does not show Pass, In progress, or Incomplete labels.

Polyspace Access aggregates SQO statistics even if the quality objectives configuration levels are not
homogeneous. While individual projects might contain separate definitions of each SQO level,
Polyspace Access does not separate the statistics by level details when aggregating the statistics. All
SQO1 level projects are aggregated together, as are SQO2 and so forth.

Customize Software Quality Objectives
To customize the thresholds that you use as pass or fail criteria to track the quality of your code,
create or edit quality objective definitions and apply these definitions to specific projects. For
instance, you might have a project where you want to check the quality of your code against only the
MISRA C:2012 coding standard.

To open the quality objectives settings, click Quality Objectives Settings on the Quality
Objectives dashboard.

Create Quality Objectives Definition

To create a quality objectives definition, click New and enter a name for the new definition. You can
optionally provide a description for the quality objectives definition and for the different SQO levels of
that definition. Go to the Information tab to view or make additional edits to the descriptions.

After you assign this definition to a project, the name of the definition is displayed on the card in the
summary section of the Quality Objectives dashboard for that project.

25 Interpret Polyspace Bug Finder Results

25-16

Edit Quality Objectives Definition

You can edit quality objective definitions only if you have a Polyspace Access role of Administrator
or Owner. To set user roles, see “Manage Project Permissions” on page 27-3.

This table lists the different Polyspace Access roles and their corresponding write permissions for the
quality object definitions.

Project Role Write Permission
Administrator You can edit any quality objective definition.
Owner You can edit the quality objective definitions that you created.
Contributor you have a read-only view of the quality objective settings and cannot make

edits.

You cannot edit the default Polyspace Software Quality Objectives, no matter your role.

To edit the thresholds selection for a quality objectives definition:

1 Select the definition in the left pane of the Configuration tab.
2 Click a findings family, for instance, MISRA C:2004.

To choose individual results, select or expand the nodes. For each family of results, you can view
the nodes by group, or by category when available.

When you select nodes in the leftmost part of the table:

• indicates that all entries under the node are enabled.
• indicates that some entries under the node are not enabled.

For the quality objective thresholds under the SQO columns:

• indicates that all the entries that are enabled under the node on that row apply to this
threshold.

• indicates that some of the entries that are enabled under the node on that row do not apply to
this threshold.

For example, in the previous figure, looking at the Language extensions node:

• The leftmost part of the table is marked as because rule 2.1 is not enabled.
• The SQO5 and SQO6 entries along the row of the node are marked as because all the rules that

are enabled under the node apply to these SQO thresholds.

 Quality Objectives Dashboard in Polyspace Access

25-17

• The SQO4 entry along the row of the node is marked as because rule 2.2 is enabled but does
not apply to this SQO threshold.

These results are customizable by specifying numerical inputs:

• Run-time Checks — Customize the percentage of findings that you must address or justify for
each threshold. Enter a value between 0 and 100. To disable the selection, leave the entry blank.

• Code Metrics — Customize the value of the different metrics for each threshold. To disable the
selection, leave the entry blank.

When you make a selection for a threshold, all higher thresholds inherit that selection. For instance,
if you select a coding rule for SQO3, the rule is also selected for SQO4, SQO5, and SQO6. By default,
when you first select a node or an individual result, the selection applies only to SQO6.

To save your changes, click Save. You can also edit a quality objective definition by creating a copy of
the definition using the Save as button and making edits to that copy. You might want to create a
copy if:

• You do not have write permissions for a quality objective definition.
• You want to edit a quality objective definition but apply the changes to only your project.
• You want to use an existing definition as a template.

If you make changes to a quality objectives definition that applies to multiple projects, Polyspace
Access displays a warning with a link to the Project Assignment tab on the Quality Objectives
Settings window. Open the tab to determine which projects are affected by your changes and inform
users that have access to those projects of your changes.

See Also

More About
• “Evaluate Polyspace Bug Finder Results Against Bug Finder Quality Objectives” on page 31-2
• “Code Metrics”

25 Interpret Polyspace Bug Finder Results

25-18

Results List in Polyspace Access Web Interface
This topic focuses on the Polyspace Access web interface. To learn about the equivalent pane in the
Polyspace desktop user interface, see “Results List in Polyspace Desktop User Interface” on page 21-
15.

The Results List pane lists all results along with their attributes.

For each result, the Results List pane contains the result attributes, listed in columns:

Attribute Description
Family Group to which the result belongs.
ID Unique identification number of the result.
Type Defect or coding rule violation.
Group Category of the result, for instance:

• For defects: Groups such as static memory, numerical, control flow,
concurrency, etc.

• For coding rule violations: Groups defined by the coding rule standard.

For instance, MISRA C: 2012 defines groups related to code constructs
such as functions, pointers and arrays, etc.

Check Result name, for instance:

• For defects: Defect name
• For coding rule violations: Coding rule number

Information Result sub-type when available.

• For defects: Impact classification.

For coding standards: required or mandatory, rule or recommendation.
Detail Additional information about a result. The column shows the first line of

the Result Details pane.

For an example of how to use this column, see the result MISRA C:2012
Dir 1.1.

File File containing the instruction where the result occurs
Function Function containing the instruction where the result occurs. If the

function is a method of a class, it appears in the format
class_name::function_name.

 Results List in Polyspace Access Web Interface

25-19

Attribute Description
Status Review status you have assigned to the result. The possible statuses are:

• Unreviewed (default status)
• To investigate
• To fix
• Justified
• No action planned
• Not a defect
• Other

See also “Add Custom Status in Polyspace Access Project” on page 26-3.
Severity Level of severity you have assigned to the result. The possible levels are:

• Unset
• High
• Medium
• Low

Assigned to User name of reviewer assigned to this result.
Ticket Key When you create a bug tracking tool (BTT) ticket for a result, this field

contains the ticket ID. Click the ticket ID in the Results Details to open
the ticket in the BTT interface.

Comments Comments you have entered about the result
Folder Path to the folder that contains the source file with the result

To show or hide any of the columns, click the icon in the upper-right of the Results List pane,
then select or clear the title of the column that you want to show or hide.

Using this pane, you can:

• Navigate through the results.
• Organize your result review using filters in the toolstrip or in the context menu. For more

information, see “Filter and Sort Results in Polyspace Access Web Interface” on page 27-8.
• Right-click a result to get the URL of the result. When you open this URL in a web browser you get

see the Results List pane filtered to that one result.

If the Results List exceeds 10000 findings, Polyspace Access truncates the list and displays this icon
 in the filters bar. To show all findings, see the contextual help of the icon.

The 10000 findings limit is preset and cannot be changed.

25 Interpret Polyspace Bug Finder Results

25-20

Source Code in Polyspace Access Web Interface
This topic focuses on the Polyspace Access web interface. To learn about the equivalent pane in the
Polyspace desktop user interface, see “Source Code in Polyspace Desktop User Interface” on page 21-
17.

The Source Code pane shows the source code with the defects colored in red.

Tooltips
Placing your cursor over a result displays a tooltip that provides range information for variables,
operands, function parameters, and return values.

 Source Code in Polyspace Access Web Interface

25-21

Examine Source Code
On the Source Code pane, if you right-click a text string, the context menu provides options to
examine your code:

For example, if you right-click the variable, you can use the following options to examine and navigate
through your code:

25 Interpret Polyspace Bug Finder Results

25-22

• Search For All References — List all references in the Code Search pane. The software
supports this feature for global and local variables, functions, types, and classes.

• Go To Definition — Go to the line of code that contains the definition of i. The software supports
this feature for global and local variables, functions, types, and classes. If a definition is not
available to Polyspace, selecting the option takes you to the declaration.

• Select Results –– Show more information about the selected result in the Results Details pane
and pin the result in the Source Code pane.

After you navigate away from the current result, use the icon on the Result Details pane to
come back.

• Go To Line — Open the Go to line dialog box. If you specify a line number and click Enter, the
software displays the specified line of code.

To search for instances of your selection in the Current Source File or in All Source Files, double-
click your selection before you right-click.

Expand Macros
You can view the contents of source code macros in the source code view. A code information bar
displays icons that identify source code lines with macros.

When you click this icon, the software displays the contents of macros on the next line.

To display the normal source code again, click the icon again.

Note
1 The Result Details pane also allows you to view the contents of a macro if the check you select

lies within a macro.

 Source Code in Polyspace Access Web Interface

25-23

2 You cannot expand OSEK API macros in the Source Code pane.

View Code Block
On the Source Code pane, to highlight a block of code, click either its opening or closing brace. If
the brace itself is highlighted, click the brace twice.

Navigate from Code to Model
If you run Polyspace on generated code in Simulink and upload the results to Polyspace Access, you
can navigate from the source code in Polyspace Access to blocks in the model.

On the Source Code pane in the Polyspace Access web interface, links in code comments show
blocks that generate the subsequent lines of code. To see the block in the model:

• Right-click a link and select Copy MATLAB Command to Highlight Block.

25 Interpret Polyspace Bug Finder Results

25-24

This action copies the MATLAB command required to highlight the block. The command uses the
Simulink.ID.hilite function.

• In MATLAB editor, paste and run the copied command with the model open.

 Source Code in Polyspace Access Web Interface

25-25

Result Details in Polyspace Access Web Interface
This topic focuses on the Polyspace Access web interface. To learn about the equivalent pane in the
Polyspace desktop user interface, see “Result Details in Polyspace Desktop User Interface” on page
21-22.

The Result Details pane contains comprehensive information about a specific defect. To see this
information, on the Results List pane, select the defect.

• The top right corner shows the file and function containing the defect, in the format file_name/
function_name.

• The yellow box contains the name of the defect with an explanation of why the defect occurs.

The button allows you to access documentation for the defect. When available, click the
icon to see fix suggestions for the defect.

On this pane, you can also:

• Assign a Severity and Status to each check, and enter comments to describe the results of your
review.

• Assign a reviewer to the result. A reviewer can filter the Results List to only show results that are
assigned to him or her.

• Create a ticket in a bug tracking tool such as JIRA. Once you create the ticket the Results Details
for this defect shows a clickable link to the ticket you created.

• View the event traceback.

25 Interpret Polyspace Bug Finder Results

25-26

The Event column lists the sequence of code instructions causing the defect. The Scope column
lists the function containing the instructions. If the instructions are not in a function, the column
lists the file containing the instructions.

The Variable trace check box allows you to see an additional set of instructions that are related
to the defect.

• Click the icon to open the “Call Hierarchy in Polyspace Access Web Interface” on page 25-28.
•

Click the icon to open the “Review History in Polyspace Access Web Interface” on page 25-
33.

•
Click the icon to open the:

• Error Call Graph if the selected finding is a Run-time Check.

The pane displays the call sequence that leads to the detected finding. Click a node on the
graph to navigate back to the source code.

• Variable Access Graph if the selected finding is a Global variable.

The pane displays a graphical representation of the access operations on global variables.
Click a node on the graph to navigate back to the source code at the location of calling and
called functions.

See Also

More About
• “Address Results in Polyspace Access Through Bug Fixes or Justifications” on page 26-2
• “Review History in Polyspace Access Web Interface” on page 25-33

 Result Details in Polyspace Access Web Interface

25-27

Call Hierarchy in Polyspace Access Web Interface
This topic focuses on the Polyspace Access web interface. To learn about the equivalent pane in the
Polyspace desktop user interface, see “Call Hierarchy in Polyspace Desktop User Interface” on page
21-24.

The Call Hierarchy pane displays the call tree of functions in the source code.

For each function foo, the Call Hierarchy pane lists the functions and tasks that call foo (callers)

and those called by foo (callees). The callers are indicated by . The callees are indicated by .
The Call Hierarchy pane lists direct function calls and indirect calls through function pointers.

Note For Polyspace Access findings, you might not see all callers or callees of a function, especially
for calls through function pointers and dead code.

For instance, Polyspace Access does not display the functions registered with at_exit() and
at_quick_exit(), and called by exit() and quick_exit() respectively.

You open the Call Hierarchy pane by using the icon in your Results Details pane, or by going to
Window > Call Hierarchy.

To update the pane, click a defect on the Results List or CTRL-click a result in the Source Code
pane. You see the function containing the defect with its callers and callees.

In this example, the Call Hierarchy pane displays the function generic_validation, and with its
callers and callees.

25 Interpret Polyspace Bug Finder Results

25-28

Tip To navigate to the call location in the source code, select a caller or callee name

In the Call Hierarchy pane, you can perform these actions:

• Show/Hide Callers and Callees

Customize the view to display callers only or callees only. Show or hide callers and callees by
clicking this button

• Navigate Call Hierarchy

You can navigate the call hierarchy in your source code. For a function, double-click a caller or
callee name to navigate to the caller or callee definition in the source code.

• Determine If Function Is Stubbed

From the Stubbed column, you can determine if a function is stubbed. The entries in the column
show why a function was stubbed.

• Automatic: Polyspace cannot find the function definition. For instance, you did not provide the
file containing the definition.

• Std library: The function is a standard library function. You do not provide the function
definition explicitly in your Polyspace project.

• Mapped to std library: You map the function to a standard library function by using the
option -code-behavior-specifications.

 Call Hierarchy in Polyspace Access Web Interface

25-29

Configuration Settings in Polyspace Access Web Interface
The Configuration Used pane displays the options and checkers that were enabled to generate the
results in the currently selected project. The Options tab shows user-specified options and options
that are enabled by default.

You open the Configuration Used pane by going to Window > Configuration Used.

25 Interpret Polyspace Bug Finder Results

25-30

 Configuration Settings in Polyspace Access Web Interface

25-31

Click Checkers to see which checkers are enabled for:

• “Defects”.
• “Coding Standards”, for instance MISRA C: 2012.
• “Custom Coding Rules”.

Checkers is not available for a Code Prover project if no coding standard or custom coding rules are
enabled.

25 Interpret Polyspace Bug Finder Results

25-32

Review History in Polyspace Access Web Interface
The Review History pane displays changes to the Status, Severity, or Comment for a finding. For
each change to these review fields, you see a separate row with:

• The date and time of the change.
• The user name of the user who made the change.
• The review field that changed, for instance Severity.
• The original value of the review field.
• The new value of the review field.

All the changes that you make to the review fields of findings in the Polyspace desktop interface are
shown in a single row after you upload these findings to Polyspace Access. The Review History pane
does not display the user name of the user who made these changes.

You open the Review History pane by using the icon in your Results Details pane, or by going
to Window > Review History.

You can display changes for all the review fields, or you can filter for changes by Status, Severity,
and Comment.

 Review History in Polyspace Access Web Interface

25-33

See Also

More About
• “Address Results in Polyspace Access Through Bug Fixes or Justifications” on page 26-2
• “Result Details in Polyspace Access Web Interface” on page 25-26

25 Interpret Polyspace Bug Finder Results

25-34

Create Bug Tracking Tool Tickets from the Polyspace Access
Web Interface

If you use a bug tracking tool (BTT) such as Jira Software or Redmine as part of your software
development process, you can configure Polyspace Access to create BTT tickets for Polyspace
findings and add those tickets to the relevant project in your BTT software. See “Configure Issue
Tracker”.

Create a Ticket
To create a BTT ticket, select one or more findings in the Results list and, from the Results Details

pane, click in Polyspace Access or Create ticket in the Polyspace desktop interface. To select
multiple findings, press CTRL and click the findings.

Note In the desktop interface, you can create a BTT ticket only for results that you open from
Polyspace Access.

If you use Jira, you may be prompted to enter your credentials. These credentials might be different
from your Polyspace Access credentials.

After you create a BTT ticket, click the link in the Results Details pane to open the ticket in the BTT
interface and track the progress in resolving the issue. For each finding that you selected when you
created the ticket, the Description field of the ticket includes a URL to the Polyspace Access Results
List filtered down to that finding.

 Create Bug Tracking Tool Tickets from the Polyspace Access Web Interface

25-35

Manage Existing Tickets
Once you create a BTT ticket, you can attach the ticket to additional findings or detach the ticket
from findings associated with the ticket. To attach a ticket to additional findings:

1
Select findings in the Results List and then click in the Result Details.

2 When prompted, enter the ticket ID in the dialogue window.

Click the copy icon in the Result Details pane of a finding already associated with the ticket to
copy the ticket ID. The copy icon is not available when you select multiple findings with
different ticket IDs. The ticket ID is also available in the Ticket Key column of the Results List.

3 Click the copy icon in the dialogue window to copy the findings URL, then click Save.
4 Click the ticket URL in the Result Details to open the ticket in the BTT interface and paste the

findings URL you copied into the ticket description field.

You cannot attach more than one ticket to a finding. If a finding is already associated with a ticket,
attaching a new ticket overwrites the existing ticket ID. This operation does not overwrite the ticket
in your BTT. You can see all findings associated with a ticket ID by using the Show only text filter in
the toolstrip.

To detach a ticket from a finding, select the finding in the Results List, then click in the Result
Details. The link to the ticket is removed from the Result Details pane. This operation does not
remove the ticket in your BTT.

25 Interpret Polyspace Bug Finder Results

25-36

Note You cannot manage existing BTT tickets in the Polyspace desktop interface.

 Create Bug Tracking Tool Tickets from the Polyspace Access Web Interface

25-37

Fix or Comment Polyspace Results on
Web Browser

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” on page 26-2
• “Import Review Information from Existing Polyspace Access Projects” on page 26-5

26

Address Results in Polyspace Access Through Bug Fixes or
Justifications

This topic describes how to add review information to Polyspace results in the Polyspace Access web
interface. For a similar workflow in the user interface of the Polyspace desktop products, see
“Address Results in Polyspace User Interface Through Bug Fixes or Justifications” on page 22-2.

Once you understand the root cause of a Polyspace finding, you can fix your code. Otherwise, add
review information to your Polyspace results to fix the code later or to justify the result. You can use
the information to keep track of your review progress.

If you add review information to your results file, they carry over to the results of the next analysis on
the same project. If you add the same information as comments to your code (annotate), they carry
over to any subsequent analysis of the code, whether in the same project or not.

Add Review Information in Result Details pane
Set the Status and Severity, and optionally enter notes with more explanations in the Result
Details pane. The status indicates your response to the Polyspace result.

26 Fix or Comment Polyspace Results on Web Browser

26-2

If you do not plan to fix your code in response to a result, assign one of the following statuses:

• Justified
• No Action Planned
• Not a Defect

These statuses indicate that you have given due consideration and justified that result (retained the
code despite the result). Note that subsequent analyses continue to show justified results as before.
For instance, a Code Prover result that was previously orange does not turn green after justification.
However, during review, you can filter out justified results in one click and focus only on results that
are not justified. See “Filter and Sort Results in Polyspace Access Web Interface” on page 27-8.

Add Custom Status in Polyspace Access Project

If your company uses custom review statuses for results, you add those statuses in Polyspace Access.
To add a custom Status:

1 Open the results in a Polyspace desktop interface. See “Open Polyspace Access Results in a
Desktop Interface” on page 28-2.

2 In the Polyspace desktop interface, create a custom status. See “Create Custom Review Status”
on page 2-24.

After you create the status, it is available from the Status dropdown in the Results Details pane.
You can assign that custom status from Polyspace Access or from the Polyspace desktop interface.

Once you assign a custom status to a finding, you can apply that status to other findings in the same
project. You cannot assign the custom status to findings in other projects.

Track Review Progress

To facilitate your review workflow in Polyspace Access, the findings are classified as:

• To Do — Findings with a status of Unreviewed that need to be addressed with a fix or a
justification.

• In Progress — Findings with a status of To fix, To investigate, or Other that need to be
addressed with a fix or a justification.

• Done — Findings with a status of Justified, No action planned, or Not a defect.

 Address Results in Polyspace Access Through Bug Fixes or Justifications

26-3

Note Green run-time checks, green shared variables, non-shared variables, and code metrics do not
need to be addressed or justified. These findings do not count toward the number of findings that are
To Do, In Progress, and Done.

In the DASHBOARD perspective, findings that are To Do or In Progress are considered as Open
Issues. If a Polyspace analysis of your code finds known or acceptable defects or coding rule
violations, you can remove the defects or violations from this list of Open Issues in subsequent
analyses by assigning one of the justified statuses outlined above.

Comment or Annotate in Code
You can also add specific code comments or annotations in a code editor in response to Polyspace
results. If you enter code comments or annotations in a specific syntax, on the next analysis of the
code, the software can read them and populate the Severity, Status, and Comment fields in the
result details.

For the annotation syntax, see “Annotate Code and Hide Known or Acceptable Results” on page 30-
2.

If you do not explicitly specify a status in your annotation, Polyspace assumes that you have set a
status of No Action Planned.

See Also

More About
• “Annotate Code and Hide Known or Acceptable Results” on page 30-2

26 Fix or Comment Polyspace Results on Web Browser

26-4

Import Review Information from Existing Polyspace Access
Projects

This topic describes how to import review information from previous results in Polyspace Access. For
information on importing from results that are not uploaded to Polyspace Access, see “Import Review
Information from Previous Polyspace Analysis” on page 20-2.

If you review findings in a Polyspace Access project and you reuse the same source code that contains
those findings in another project, you can import the existing review information to the other project.
You do not need to review the findings again in the other project. The project you import from is the
source project. The project you import to is the target project.

For instance, suppose your team has reviewed all findings for the file customClass.cpp in the
Polyspace Access project components/oldProject (BF). If you use customClass.cpp in a
different project, you can import review information such as Status and Severity from components/
oldProject (BF) into the other project.

Note that when you upload a run to a project, Polyspace Access automatically imports the review
information from previous runs of that project to the newly uploaded run.

These values are imported when you merge review information between projects:

• Status
• Severity
• Assigned to
• Comments
• Ticket Key

Import Review Information from Source Project to Target Project in
Polyspace Access
Import review information from a source project to a target project.

1 In the Project Explorer, right-click your target project and select Import Reviews from
Another Project.

2 Locate and select the source project. You can only import from one source at a time.
3 Select one of these import policies:

• Write review when there is no review on target finding

Import non-empty source project review information only if all the review fields of the target
finding are empty.

• Source reviews always replace target

Import non-empty source project review information and replace target fields, even if the
target review already contains review information.

4 Click OK. A dialog box appears at the top of the Dashboard when the import begins and when it
completes. Imports for larger projects can take several minutes to complete.

 Import Review Information from Existing Polyspace Access Projects

26-5

View and Select Imported Reviews
Click Open Results in the Project Overview dashboard to view the Results List. Project results
with imported review information have an icon next to them in the Familycolumn. The icon indicates
the current state of the imported review. This table describes the states of imported reviews.

Icon Status Status Description
Not Applied Review information from the

source project is not applied to
the target project findings.

Overwritten Review information from the
source project is applied to the
target project finding. The
source overwrites the original
target review information.

Written Review information from the
source project is applied to
previously empty target project
findings.

You can switch between original and imported review information. To decide what review information
to use, view imported and original result information side-by-side. Use the Imported Review
Selection window to view result information in this way. To access this pane:

• Right-click the result you want to review in the Results List .
• Select Show Imported Review Selection.

In the Imported Review Selection panel, three columns represent the Review Fields, the Original
Values, and the Imported Values. A radio button next to Original Values and Imported Values
enables you to quickly select which values to apply to the findings.

Confirm Imported Review Information
Imported review information is considered unconfirmed until you manually confirm it. You can
confirm result information individually or as a group.

1 Expand the Filters list and select the Unconfirmed Imports filter.

2 Select a result. To select multiple results, click those results while holding the Ctrl key. To select
a range of adjacent results, click the first and last result in that range while holding the Shift
key.

3 Right-click the selected result, go to Confirm imported reviews in the context menu and choose
one of these options.

26 Fix or Comment Polyspace Results on Web Browser

26-6

Option Option Description
Use original values Keep the original review information in the

target finding for all selected results. If this
option is grayed out, the target finding
already uses the original review information.

Use imported values Apply the imported review information to the
target finding for all selected results. If this
option is grayed out, the target finding
already uses the imported review
information.

Confirm current selection Confirm review information as it currently is
set. If this option is grayed out, the target
finding is already confirmed.

In some instances, it is useful to know the review history of a result. To open the Review History

pane, from the Result Details pane, click the icon. The Review History shows information
about changes to individual result details including the name of the editor and time of the edit. See
“Review History in Polyspace Access Web Interface” on page 25-33.

Import Review Information at the Command-Line
To import review information from an existing project to another project that reuses the code that
contains the reviewed finding, use command polyspace-access -import-reviews and specify:

• The full path of the project that you want to import the review information from (source project).
• The full path of the project that you want to import the review information to (target project).
• Optionally, you can specify one of these import strategies:

• never-overwrite-target (default) — If a review field in the target project is already filled,
do not overwrite it with the content from the source project

• always-overwrite-target — Always overwrite the content of the review fields in the target
project, even if they are already filled.

For example, if you have already reviewed findings in project public/example/branchA, and you
reuse the reviewed code in project public/example/branchB, use this command to import the
review information from branchA to branchB:

polyspace-access $login -import-reviews public/example/branchA \
 -to-project-path public/example/branchB

Here, $login is a variable that stores the login credentials and other connection information. To
configure this variable, see “Encrypt Password and Store Login Options in a Variable”.

After you complete the import, you might want to examine the result of the import operation. Use the
polyspace-access -export command with option -imported-reviews and filter by one of
these values:

• Not applied — Review information was imported from the source project but the review fields
in the target project kept the original values.

 Import Review Information from Existing Polyspace Access Projects

26-7

• Written — The Review information from the source project was written to the target project only
if the review fields in the target project were previously empty.

• Overwritten — The Review information from the source project was written to the target project
even if the review fields in the target project were not previously empty.

• Unconfirmed — Use this filter to select findings that where the result of the import operation has
not been confirmed by a reviewer. You confirm the result of the import operation in the Polyspace
Access interface. See “Confirm Imported Review Information” on page 26-6 .

For example, to get a list of findings from the target project whose review information was
overwritten, enter this command:

polyspace-access $login -export public/example/branchB \
 -imported-reviews Overwritten -output overWrittenReviews.txt

The command output tab-separated values (TSV) file overWrittenReviews.txt which contains
only findings that had their review information overwritten in the target project.

See Also
polyspace-access | polyspace-bug-finder-server

Related Examples
• “Address Results in Polyspace Access Through Bug Fixes or Justifications” on page 26-2

26 Fix or Comment Polyspace Results on Web Browser

26-8

Manage Results

• “Manage Permissions and View Project Trends in Polyspace Access Web Interface” on page 27-2
• “Filter and Sort Results in Polyspace Access Web Interface” on page 27-8
• “Create Custom Filter Groups in Polyspace Access Web Interface” on page 27-11
• “Manage Software Quality Objectives in Polyspace Access” on page 27-13
• “Add Labels to Project Runs in Polyspace Access” on page 27-16
• “Compare Results in Polyspace Access Project to Previous Runs and View Trends” on page 27-19

27

Manage Permissions and View Project Trends in Polyspace
Access Web Interface

Before you start reviewing the overall quality of a project and investigating findings in your code,
create project folders and set permissions to allow or restrict team members access to your projects.

Create a Project Folder
To facilitate the review process, create folders in Polyspace Access to group related results.

Create Folder from the Polyspace Access Interface

From the Project Explorer in the DASHBOARD perspective, select any existing folder or project
and click Create Folder in the context menu. In the Create Folder window, click an existing folder
to create a subfolder. To create a folder at the top of the Project Explorer hierarchy, click Projects.

Create Project Folder at Command Line

To create a folder in Polyspace Access from the DOS or UNIX command lines, use the polyspace-
access binary. This binary is available under the polyspaceroot/polyspace/bin folder. The
polyspaceroot folder is the Polyspace product installation folder, for example C:\Program Files
\Polyspace Server\R2023a.

For instance, to create myProject under the folder myRelease, use this command:

polyspace-access -host hostName -port port -create-project myRelease/myProject

hostName and port correspond to the host name and port number that you specify in the URL of the
Polyspace Access interface, for example https://hostName:port/metrics/index.html. If you
are unsure about which host name and port number to use, contact your Polyspace Access

27 Manage Results

27-2

administrator. Depending on your configuration, you might also need to specify the -protocol
option in the command.

Manage Project Permissions
To set permissions for folders or projects in Polyspace Access, assign roles to users or groups. The
permissions that correspond to each role are listed in this table.

Role Permission
Administrator • Move, rename, or delete any folder or project and review their content.

• Assign roles Owner, Contributor, or Forbidden to other users or groups.
• View and manage contents of ProjectsWaitingForDeletion folder. See

“Delete Project Runs or Entire Projects”.

To set a user as Administrator, see “Configure User Manager”.

You cannot move a folder or project to a new location if a folder or project
with the same name already exists at that location.

Owner • Move, rename, or delete folders or projects that you own and review their
content.

• Assign roles Contributor or Forbidden to other users or groups.

You are the owner of folders that you create and of project results that you
upload.

You cannot move a folder or project to a new location if a folder or project
with the same name already exists at that location.

Contributor • Review content of folders or projects for which you are a contributor.
• See the roles of other users and groups for the project.

Forbidden No access to the specified folder or project. Set this role to restrict the access
of a user or group if:

• The user or group inherits access from a parent folder.
• The user or group inherits access from a parent group.

.

• The user or group roles that you assign for a project folder apply to all the projects and subfolders
under that folder. You can also set different user or group roles for each project or subfolder. For
instance, you can assign user jsmith as a contributor for folder myRelease, and then restrict the
access of jsmith to subfolder myRelease/update1.

• Only Administrator or Owner roles can allow or restrict the access of other team members or
groups to a project or folder.

• Only Administrator roles can assign other users or groups as owners of a project or folder.
• Unless you explicitly set a user or group role for a project, the user or group inherit the role of

their parent group for that project. For instance, if user jsmith is not assigned any role for folder
myRelease, and jsmith is a member of a group that is a contributor for folder myRelease, then
jsmith is also a contributor to folder myRelease.

 Manage Permissions and View Project Trends in Polyspace Access Web Interface

27-3

By default, all users are members of the Polyspace Access public group and all users inherit the
role of that group (Contributor) for the public folder. You cannot change the permissions for the
public folder, but you can change permissions for subfolders or projects inside the public folder.

Manage Permissions in Polyspace Access Web Interface

From the Project Explorer in the DASHBOARD perspective, select any existing folder or project
and click Manage Project Permissions in the context menu.

The Manage Project Permissions interface opens for the selected project.

• To assign or unassign roles, right-click a user or group in any of the panes.
• Place your cursor over a user or group in any of the panes to see a tooltip that has information

about the user or group role for the selected project, and whether that role is inherited from a
parent project or parent group.

27 Manage Results

27-4

This table provides additional information about the different panes in the Manage Project
Permissions interface.

Pane Description
Search Results To view a list of user or groups that match your search string, type the user

name or group name in the search bar.
Selection Details From any of the other panes, click a user to view the groups that the user

belongs to in this pane.

If you click a group, this pane shows only the direct descendant members of
the group. For instance, if group nestedGroup is a member of group
parentGroup, when you click parentGroup, you do not see the members of
nestedGroup in this pane.

Administrator

Owner

Contributor

Forbidden

• View list of users or groups that have a role assigned for the project.
• If the role is assigned explicitly on the selected project, the user or group

icon is black, for instance .
• If the role is inherited from a parent folder, the user or group icon is gray,

for instance .
• These four panes do not show users or groups that inherit their role from a

parent group. For instance, if group Contractors is assigned as a
contributor to the project, the members of this group are not listed in the
Contributor pane.

The list of Polyspace Access users and groups (identities) is populated from the User Manager
database. If an identity is removed from this database and the identity was assigned a role explicitly
on at least one Polyspace Access project, that identity is highlighted in red in the Manage Project
Permissions interface and is listed by ID instead of display name, for instance jsmith, instead of
John Smith. A role is not explicitly assigned if it is inherited from a parent group or a parent project
folder.

Contact a Polyspace administrator to remove that identity from the Polyspace Access. See “Update
List of Polyspace Access Users and Groups”.

Identities that are deleted from the User Manager database and that do not have roles explicitly
assigned to them are removed from Polyspace Access when you refresh your web browser.

Manage Permissions at Command Line

To manage access to uploaded results from the DOS or UNIX command lines, use the polyspace-
access binary. This binary is available under the polyspaceroot/polyspace/bin folder. The
polyspaceroot folder is the Polyspace product installation folder, for example C:\Program Files
\Polyspace Server\R2023a.

For instance, to assign jsmith as Contributor for project myProject, use this command:

polyspace-access -host hostName ^
-set-role contributor -user jsmith ^
-project-path myProject

hostName and port correspond to the host name and port number that you specify in the URL of the
Polyspace Access interface, for example https://hostName:port/metrics/index.html. If you

 Manage Permissions and View Project Trends in Polyspace Access Web Interface

27-5

are unsure about which host name and port number to use, contact your Polyspace Access
administrator. Depending on your configuration, you might also need to specify the -protocol
option in the command.

You cannot assign the Administrator role to a user at the command line.

View Project Trends

In the DASHBOARD perspective, select the project that you want to investigate from the PROJECT
BROWSER.

If you select a folder that includes multiple projects, the dashboard displays an aggregate of results
for all the projects that you have permission to view. If the folder contains a project for which you are
not an Administrator, Owner, or Contributor, results for that project are not included in the
aggregate calculation.

In the Project Overview dashboard, you see a summary of Open Issues, including the number of
New results since the previous analysis run and the number of results that are Unassigned.

Other cards provide statistics for each family of findings. The Run-time Checks card shows the
Selectivity, that is, the percentage of all findings that are green. When you enable the calculation of

27 Manage Results

27-6

code metrics in your analysis, the Defects and Coding Standards cards show the Density, the
number of findings per thousand lines of code without comments.

In the Details section, you see the review progress for each family of results. The results are
classified as:

• To Do — Findings with a status of Unreviewed that need to be addressed with a fix or a
justification.

• In Progress — Findings with a status of To fix, To investigate, or Other that need to be
addressed with a fix or a justification.

• Done — Findings with a status of Justified, No action planned, or Not a defect.

Note Green run-time checks, green shared variables, non-shared variables, and code metrics do not
need to be addressed or justified. These findings do not count toward the number of findings that are
To Do, In Progress, and Done.

If the number of open issues increases, open additional dashboards by using the buttons in the
DASHBOARDS section of the toolstrip. Each button opens a dashboard for a family of findings, for
instance Defects. To determine the root cause of the increase, use the information on these
dashboards. Once you determine the set of findings that you want your team to focus on, open the
REVIEW perspective to start managing the results. See “Manage Results”.

See Also

More About
• “Upload Results to Polyspace Access” on page 2-25

 Manage Permissions and View Project Trends in Polyspace Access Web Interface

27-7

Filter and Sort Results in Polyspace Access Web Interface
This topic describes how to filter, sort, and otherwise manage results in the Polyspace Access web
interface. For a similar workflow in the user interface of the Polyspace desktop products, see “Filter
and Group Results in Polyspace Desktop User Interface” on page 23-2.

When you open the results of a Polyspace analysis in the DASHBOARD view of Polyspace Access,
you see statistics about your project in the Project Overview dashboard. The statistics cover findings
for:

• Bug Finder “Defects”.
• Code Prover “Run-Time Checks” (Polyspace Code Prover).
• “Coding Standards” violations.
• “Code Metrics” and “Evaluate Polyspace Bug Finder Results Against Bug Finder Quality

Objectives” on page 31-2 compliance.

To organize your review, you can narrow down the list or group results by file or result type.

Some of the ways you can use filtering are:

27 Manage Results

27-8

• You can display only certain types of defects or run-time checks.

For instance, for a Bug Finder analysis, you can display only high-impact defects. See
“Classification of Defects by Impact” on page 18-49.

• You can display only new results found since the last analysis or since a previous analysis. See
“Compare Results in Polyspace Access Project to Previous Runs and View Trends” on page 27-19.

• You can display only the results that you have not justified. Results that are not justified are
considered Open. They are results with status Unreviewed, To Investigate, To Fix, or
Other.

For information on justification, see “Address Results in Polyspace Access Through Bug Fixes or
Justifications” on page 26-2.

• You can display only results that you still need to address to reach a Quality Objectives
threshold.

Filter Results
You can filter results by drilling down on a set of results in a dashboard, or directly in the Results
List pane by using the REVIEW toolstrip filters.

Filter Using Dashboards

In the DASHBOARD view, you can:

• Click a section of a pie chart or a pie chart legend on the Project Overview dashboard to see the
corresponding set of results.

• Open dashboards for different families of results, then click a number to open a list filtered to the
corresponding set of results. For instance:

• To see only high-impact defects that are still Open in a Bug Finder analysis, click the
corresponding number in the Summary section of the Defects dashboard. Open results have
status Unreviewed, To Investigate, To Fix, or Other.

• To see only red checks that are Done in a Code Prover analysis, click the corresponding
number in the Summary section of the Run-time Checks dashboard. Done results have
status Justified, No Action Planned, or Not A Defect.

• To see violations of the MISRAC C:2012 coding standards in a particular file, use the table in
the Details section of the MISRA C:2012 dashboard.

• Compare the Current run to an earlier Baseline run and review New or Unresolved findings.
See “Compare Results in Polyspace Access Project to Previous Runs and View Trends” on page 27-
19.

 Filter and Sort Results in Polyspace Access Web Interface

27-9

If you select a folder that contains multiple projects in the Project Explorer, the dashboards display
an aggregate of results for all the projects. Most of the fields in the dashboard are not clickable when
you look at the statistics for multiple projects.

Filter Using REVIEW Toolstrip

In the REVIEW view, you can filter results by families of Polyspace results (FAMILY FILTERS), or by
result review progress (FILTERS). For instance:

• To see Bug Finder defects only, select the Defects filter in the FAMILY FILTERS group.
• To see only results that are not justified, select the Open filter in the FILTERS group.

The filter bar underneath the toolstrip shows how many findings are displayed out of the total
findings, along with which filters are currently applied.

Note If you are reviewing a filtered list of open results and you add an SQO filter, the number of
filtered results might increase. This can happen when your project has code metrics with a status of
FAIL. The SQO filter adds the failing code metric results to the list of results.

The buttons in the FILTERS section of the toolstrip are global. They apply to all families of findings.

To filter results by specific content, such as a function name, use the Show only or Filter out text
filters. These filters match the text you enter against the content of all the columns in the “Results
List in Polyspace Access Web Interface” on page 25-19. For instance, if you enter foo in the Filter
out filter, the Results List hides all the results that contain foo in any of the Results List columns.

You can also filter results by right-clicking the content of a column in the Results List. This action is
equivalent to entering the content directly in the Show only or Filter out text filters. For instance, if
you right-click foo in the Function column, the filter applies to all results that contain foo in any of
the Results List columns.

Filters you apply do not carry over to the next analysis.

See Also

More About
• “Classification of Defects by Impact” on page 18-49

27 Manage Results

27-10

Create Custom Filter Groups in Polyspace Access Web
Interface

When you review results in the Results List, you can apply filters from the FAMILY FILTERS
section of the toolstrip to focus your review on specific Polyspace families of results, such as:

• Bug Finder “Defects”.
• Code Prover “Run-Time Checks” (Polyspace Code Prover) and “Global Variables” (Polyspace Code

Prover).
• “Coding Standards” violations.
• “Code Metrics”.

Define custom filters to narrow the scope of your review to only findings that are relevant to your
project or organization. For instance, you might be interested in reviewing only Numerical Bug
Finder defects and violations of Mandatory MISRA C:2012 rules.

Once you define custom filters, you can share those filters with other Polyspace Access users to
ensure consistent review scopes across your projects or organization.

To create or edit a custom filter, click Apply/Manage > Manage filters.

To create a new filter, in the Custom filters window, click New and then enter the filter name in the
New Custom Filter pop-up window. You can optionally provide a description and enable the Shared
filter checkbox to share the filter with other Polyspace Access users.

 Create Custom Filter Groups in Polyspace Access Web Interface

27-11

By default, custom filters are private and can be viewed only by the user who creates the filter. A
private filter can be edited only by the user who creates that filter. A shared filter can be edited by
the user who creates the filter or by a user with the role of Administrator.

To make changes to a filter name, description, or to enable or disable filter sharing, go to the
Information tab.

To edit the filter selection, on the Configuration tab, click a Polyspace results family, for instance
MISRA C:2012, and then select a node or expand the node to select individual results. For each family
of results, you can view the nodes by group or by category when available.

To save your changes, click Save or Save as to save your edits in as new custom filter.

Apply custom filters by selecting the appropriate filter from Apply/Manage > Private filters or
Apply/Manage > Shared filters. You can apply more than one custom filter, including combinations
of private and shared filters.

Custom filters do not apply to the DASHBOARD view.

See Also

Related Examples
• “Filter Results” on page 27-9
• “Customize Software Quality Objectives” on page 25-16

27 Manage Results

27-12

Manage Software Quality Objectives in Polyspace Access
To monitor the quality of your code against predefined on page 31-2 software quality thresholds or
user-defined thresholds, use the Quality Objectives dashboard. See “Quality Objectives Dashboard
in Polyspace Access” on page 25-14.

The first time that you upload results to a new project, Polyspace Access assigns the default
Polyspace Software Quality Objectives definition to that project. To create custom software quality
objective (SQO) definitions, see “Customize Software Quality Objectives” on page 25-16.

You can manage the SQO of a project from the user interface or at the command line.

After you assign an SQO definition, you see the label (not computed) on the Quality Objectives
card and dashboard until the project statistics are recalculated.

The SQO statistics for a project are recalculated when:

• You upload a new run for the project.
• You select a finding and make a change to any of the fields in the Result Details pane.

The SQO definition that you assign to a project applies only to runs that you upload to the project
after assigning the definition.

Tip When the Quality Objectives settings and the calculated statistics for a project are out of sync,
the Quality Objectives dashboard displays a warning .

If you delete an SQO definition, Polyspace Access assigns the Polyspace Software Quality
Objectives to all the projects to which the deleted definition was assigned.

Manage SQOs in the User Interface
To assign an SQO definition or level to a project, right-click a project in the Project Explorer or click

 on the Quality Objectives card or the Quality Objectives dashboard.

 Manage Software Quality Objectives in Polyspace Access

27-13

If you make changes to a quality objectives definition that applies to multiple projects, Polyspace
Access displays a warning with a link to the Project Assignment tab on the Quality Objectives
Settings window. Open the tab to determine which projects are affected by your changes and inform
users that are contributors to those projects of the changes to the quality objectives definition.

To view which projects an SQO definition is assigned to, go to the Project Assignment tab in the
Quality Objectives Settings.

Manage SQOs at the Command Line
To manage SQOs from the command line, use the polyspace-access command. In the following
examples, $LOGIN is a variable that stores the login credentials and other connection information. To
configure this variable, see “Encrypt Password and Store Login Options in a Variable”.

You can:

• Assign an SQO level, and optionally an SQO definition to a project. For instance, to assign level 3
of SQO definition My Custom SQO to project myProject with project path public/examples/
myProject, enter this command:
polyspace-access -set-sqo public/examples/myProject -level 3 -name "My Custom SQO" $LOGIN

Option -level is mandatory and can be any value from 1 to 6 or "exhaustive", while option -name
is optional.

If you do not use -name, the level that you specify is applied for the currently assigned SQO
definition.

• View the currently assigned SQO definition and SQO level for a project. For instance, to view the
assigned SQO level and definition for project myProject with project path public/examples/
myProject, enter this command:
polyspace-access -get-sqo public/examples/myProject $LOGIN

27 Manage Results

27-14

The command outputs the SQO name and level in this format:

Current Quality Objectives: NAME My Custom SQO LEVEL SQO-3
• View a list of all currently available SQO definitions. Enter this command:

polyspace-access -list-sqo $LOGIN

See Also

More About
• “Quality Objectives Dashboard in Polyspace Access” on page 25-14
• “Evaluate Polyspace Bug Finder Results Against Bug Finder Quality Objectives” on page 31-2
• “Code Metrics”

 Manage Software Quality Objectives in Polyspace Access

27-15

Add Labels to Project Runs in Polyspace Access
To help identify project runs uploaded to Polyspace Access, you can assign custom labels to runs.
Custom labels are in addition to the unique run IDs that Polyspace Access assigns to each run.

You can assign labels from the user interface through the Project Details pane on the Dashboard,
or from the command line.

Manage Labels in the User Interface
To add a label to a run, first select a project in the Project Explorer. Select the run that you want to
add a label to by using the Current drop-down list.

In the Project Details pane, in the Labels box under the Run section, click the icon. In the Add
label to current run box, enter the label name to assign to the run, and then click OK.

Labels are sorted in alphabetical order. There is no limit on how many labels you can assign to a
single run.

To delete a label, select the label and click the icon. You can select multiple labels to delete them
simultaneously.

27 Manage Results

27-16

Manage Labels at the Command Line
To add a label to a run from the command line, use the polyspace-access command with the -
add-label option.

For instance, suppose that you use a continuous integration tool like Jenkins and that you want to
associate the Jenkins build number with the project run that you upload to Polyspace Access. The
following steps show how to extract the run ID of the uploaded project run and add a label to that run
by using Bash commands:

1 Store the output of the polyspace-access -upload command to a file out.txt which you
can then parse to extract the run ID of the uploaded run.
polyspace-access $login -upload results/Folder/Path -parent-project myProject -output out.txt
runID=$(grep -oP '(?<=RUN_ID)\d+' out.txt)

Here:

• The grep expression extracts the digits after the string "RUN_ID " in file out.txt. The
content of that file looks similar to this:
Upload with IMPORT_ID 1640263976711_d8b0fc8b-edfe-41c4-b718-6fd4b930e910.zip
Upload successful for RUN_ID 14970 and PROJECT_ID 5145

• $login is a variable that stores the login credentials and other connection information. To
configure this variable, see “Encrypt Password and Store Login Options in a Variable”.

If you use DOS commands, you can extract the run ID by using a for loop:

for /f "skip=1 tokens=5" %i in (out.txt) do set runID=%i

 Add Labels to Project Runs in Polyspace Access

27-17

The loop skips the first line of the file and extracts the fifth space-delimited element (token) in
the second line.

2 Add the Jenkins build number as a label to the project run that you uploaded. You can obtain the
Jenkins build number for the Jenkins environment variable BUILD_NUMBER. Run this command:

polyspace-access $login -add-label $BUILD_NUMBER -run-id $runID

To add additional labels to the project run, execute the command again for each label. You cannot
specify the -add-label option more than once each time you execute the command.

If the label that you specify for addition to a project run is already assigned to that run, the
command is ignored.

To remove a label, use the polyspace-acess command with the -remove-label option. For
example, to remove the label you added in step 2, use this command:

polyspace-access $login -remove-label $BUILD_NUMBER -run-id $runID

If the label that you specify for removal from a project run does not match any of the labels assigned
to that run, the command is ignored.

27 Manage Results

27-18

Compare Results in Polyspace Access Project to Previous Runs
and View Trends

When you open Polyspace analysis results in the Polyspace Access DASHBOARD or REVIEW, you
see a snapshot of the most recent run that was uploaded to the project. To view a snapshot from an
earlier run, select that run from the Current run drop-down list.

Select a previous run to see the state of your project from a few submissions ago. For instance, you
might want to investigate a spike in findings in a previous version of your project. When you view an
older project run in the DASHBOARD or REVIEW views, all the information for the currently
selected run is displayed, except:

• The Quality Objectives settings and the Review History pane show the same information no
matter which run you select.

• You cannot edit the Result Details fields if the selected run is not the latest run.

If you share a finding URL from an older run, the Polyspace Access interface opens that finding in the
most recent version of the project. If the finding is not present in the most recent run, through the
interface, you can open the finding in the older run.

Comparison Mode in the Polyspace Access Interface
To compare two runs in from the same project in the Polyspace Access interface, on the toolstrip,
select a Current run and a Baseline run. Check that the Baseline checkbox is enabled. You can
compare current runs to only older baseline runs.

 Compare Results in Polyspace Access Project to Previous Runs and View Trends

27-19

In the DASHBOARD view, the comparison shows a summary of statistics for each run and details of
the number of findings that are:

• Resolved — Findings from the baseline run that are Done in the current run, or findings that are
not in the current run because they are Fixed.

• Findings are Done if they have a status of Justified, No Action Planned, or Not A
Defect.

• Findings are Fixed if they are fixed in the source code or the source code containing the
finding is deleted or no longer part of the analysis.

• New — Findings that are in the current run but not in the baseline run.
• Unresolved — Findings that are in the baseline run and the current run.

The comparison mode is not available for the Code Metrics and Quality Objectives dashboards.

Click a cell in the Details table to open the corresponding results in the Results List.

• The total number of findings displayed in the Results List corresponds to the findings from the
Current run and the findings from the Baseline run that are Fixed in the Current run.

• If a finding is Resolved, the interface displays the Source Code and Result Details information
from the Baseline run.

In the REVIEW view, in addition to Resolved, New, and Unresolved, you can filter findings by
Fixed. These findings are no longer in the current run because they are fixed, or the source code
containing the findings is deleted or no longer part of the analysis.

27 Manage Results

27-20

To turn off the comparison mode, deselect the Baseline checkbox or select None in the Baseline
drop-down list.

Comparison Mode at the Command Line
To compare two runs from the same project at the command-line, use the polyspace-access -
export command and specify the run ID of a current run, the run ID of an earlier run that you use as
a baseline, and the resolution type that you want to use for the comparison.

When you specify a baseline to compare with the current run, the run ID that you specify for the
baseline run must exist and must point to a run in the same project as the current run.

The command generates a file with a list of findings filtered by one of these resolution types:

• New — Findings that are in the current run but not in the baseline run.
• Fixed — Findings that are fixed in the current run, either because the finding was fixed in the

source code, or because the source code containing the finding is deleted or no longer part of the
analysis.

• Unresolved — Findings from the baseline run that are still present in the current run.
• Resolved — Findings that are Fixed in the current run or findings with a status of Justified,

No Action Planned, or Not A Defect in the current run.

For example, to compare the latest run of project public/Bug_Finder_Example(Bug Finder) to
an earlier run:

1 Use the polyspace-access -list-runs to obtain the run IDs of the runs that you want to
compare:
polyspace-access $login -list-runs "public/Bug_Finder_Example(Bug Finder)"

Connecting to https://example-access-server:9443
Connecting as jsmith
PROJECT_PATH "public/Bug_Finder_Example(Bug Finder)" RUN_ID 28
PROJECT_PATH "public/Bug_Finder_Example(Bug Finder)" RUN_ID 29
PROJECT_PATH "public/Bug_Finder_Example(Bug Finder)" RUN_ID 30
PROJECT_PATH "public/Bug_Finder_Example(Bug Finder)" RUN_ID 124
PROJECT_PATH "public/Bug_Finder_Example(Bug Finder)" RUN_ID 125

Here, $login is a variable that stores the login credentials and other connection information. To
configure this variable, see “Encrypt Password and Store Login Options in a Variable”.

2 Use the command polyspace-access -export and specify:

• The run ID of a current run.
• The run ID of an earlier run that you use as a baseline.
• The resolution type that you want to use a as a filter.

For instance, to compare the last run (run ID 125) to the second run (run ID 29) and export
findings that are Fixed, enter this command:
polyspace-access $login -export 125 -baseline 29 -resolution Fixed -output ./diff_fixed.txt

Connecting to https://example-access-server:9443
Connecting as jsmith
Exporting results from RunId 125 and comparing to RunId 29
Command Completed

The command exports the list of findings that are fixed in the current run compared to the
baseline run to file diff_fixed.txt.

 Compare Results in Polyspace Access Project to Previous Runs and View Trends

27-21

You cannot specify more than one resolution type when you execute the command. To compare
project runs for multiple resolution types, run the polyspace-access -export command for each
resolution type.

See Also

Related Examples
• “Address Results in Polyspace Access Through Bug Fixes or Justifications” on page 26-2
• “Filter Results” on page 27-9

27 Manage Results

27-22

Export Results from Polyspace Access
Web Server

28

Open or Export Results from Polyspace Access
Polyspace Access offers a centralized database where you can store Polyspace analysis results for
sharing with your team and collaborative reviews. After you upload analysis results to the database,
you can:

• View the results in your web browser.
• Open the results from any Polyspace desktop interface that is configured for Polyspace Access
• Export a list of results to a tab-separated value (TSV) file for further processing, such as applying

custom filters and pass/fail criteria.
• Download results by using the polyspace-access . You use these downloaded results to merge

review information between Polyspace Access projects , or as part of the baseline workflow in
Polyspace as You Code. See also:

• “Import Review Information from Existing Polyspace Access Projects” on page 26-5
• “Baselining in Polyspace as You Code”

You cannot open results that you download with polysace-access in any Polyspace interface.

The rest of this topic discusses how to open Polyspace Access results in a desktop interface and how
to export results to a TSV file.

Open Polyspace Access Results in a Desktop Interface
Before you open Polyspace Access results in a desktop interface, you must configure the Polyspace
desktop interface to communicate with Polyspace Access. See “Register Polyspace Desktop User
Interface”.

To open results stored in the Polyspace Access database, go to Access > Open Result in the desktop
interface, and follow the prompts. If you get a login request, use your Polyspace Access login
credentials.

You can also open the desktop interface from the Polyspace Access web interface. On the toolstrip,
click Open in Desktop. The desktop interface opens and shows the analysis results currently
displayed in the Polyspace Access web interface.

Note In Linux, the desktop interface must already be open before you can view analysis results
currently open in Polyspace Access.

Once you open results in the Polyspace desktop interface, changes you make to the Status, Severity,
or comments fields are reflected in Polyspace Access after you save those changes.

If you open a local copy of the results that you uploaded to Polyspace Access in the desktop interface,
the review fields in the Result Details pane are read-only. You cannot edit the Status, Severity, or
comments fields.

Export Polyspace Access Results to a TSV File
You can export Polyspace Access results to a tab-separated values (TSV) file only from the command
line by using the polyspace-access binary. When you export results, you generate a TSV file that

28 Export Results from Polyspace Access Web Server

28-2

lists results with most of the same results attributes as the “Results List in Polyspace Access Web
Interface” on page 25-19. Each listed result also includes a URL through which you can open the
result in Polyspace Access. To filter the list of results you export, see the polyspace-access export
options.

For example, to export all coding rules with status Unreviewed from project myProject stored in the
public folder on Polyspace Access, open a command prompt terminal and enter:

polyspace-access -host hostName -port port ^
-export public/myProject -coding-rules -review-status Unreviewed ^
-output coding_rules.tsv

The command prompts you for your Polyspace Access login credentials, and then outputs file
coding_rules.tsv.

hostName and port correspond to the host name and port number you specify in the URL of the
Polyspace Access interface, for example https://hostName:port/metrics/index.html. If you
are unsure about which host name and port number to use, contact your Polyspace Access
administrator. Depending on your configuration, you might also have to specify the -protocol
option in the command. See “Configure and Start the Cluster Admin”.

See Also
polyspace-access

Related Examples
• “Add Custom Status in Polyspace Access Project” on page 26-3
• “Import Review Information from Existing Polyspace Access Projects” on page 26-5

 Open or Export Results from Polyspace Access

28-3

Generate Report and Variables List from Polyspace Access

Note To generate reports of results on Polyspace Access at the command line, you must have a
Polyspace Bug Finder Server or Polyspace Code Prover Server installation.

Suppose that you want to generate a report and export the variables list from the results of a Code
Prover analysis that you can view in a Polyspace Access project.

To connect to Polyspace Access, provide a host name and your login credentials including your
encrypted password. To encrypt your password, use the polyspace-access command and enter
your user name and password at the prompt.

polyspace-access -encrypt-password
login: jsmith
password:
CRYPTED_PASSWORD LAMMMEACDMKEFELKMNDCONEAPECEEKPL
Command Completed

Store the login and encrypted password in a credentials file and restrict read and write permission on
this file. Open a text editor, copy these two lines in the editor, then save the file as
myCredentials.txt for example.

 -login jsmith
 -encrypted-password LAMMMEACDMKEFELKMNDCONEAPECEEKPL

To restrict the file permissions, right-click the file and select the Permissions tab on Linux or the
Security tab on Windows.

To select a project to summarize in Polyspace Access, specify the run ID of the project. To obtain a list
of projects with their latest run IDs, use the command polyspace-access with option -list-
project.
polyspace-access -host myAccessServer -credentials-file myCredentials.txt -list-project
Connecting to https://myAccessServer:9443
Connecting as jsmith
Get project list with the last Run Id
Restricted/Code_Prover_Example (Code Prover) RUN_ID 14
public/Bug_Finder_Example (Bug Finder) RUN_ID 24
public/CP/Code_Prover_Example (Polyspace Code Prover) RUN_ID 16
public/Polyspace (Code Prover) RUN_ID 28
Command Completed

For more information on this command, see polyspace-access.

Generate a Developer report for results with run ID 16 from the Polyspace Access instance with
host name myAccessServer. The URL of this instance of Polyspace Access is https://
myAccessServer:9443.

SET template_path=^
"C:\Program Files\Polyspace\R2019a\toolbox\polyspace\psrptgen\templates"

polyspace-report-generator -credentials-file myCredentials.txt ^
-template %template_path%\Developer.rpt ^
-host myAccessServer ^
-run-id 16 ^
-output-name myReport

28 Export Results from Polyspace Access Web Server

28-4

The command creates report myReport.docx by using the template that you specify. The report is
stored in folder Polyspace-Doc on the path from which you called the command.

Generate a tab-delimited text file that contains a list of global variables in your code for the specified
analysis results.

polyspace-report-generator -credentials-file myCredentials.txt^
-generate-variable-access-file ^
-host myAccessServer ^
-run-id 16

The list of global variables Variable_View.txt is stored in the same folder as the generated
report. For more information on the exported variables list, see “View Exported Variable List”
(Polyspace Code Prover).

 Generate Report and Variables List from Polyspace Access

28-5

Review Results in IDEs

7

Review Results in Polyspace as You
Code

29

Run Polyspace as You Code in Visual Studio and Review
Results

You can choose to run Polyspace as You Code on each save in the Visual Studio IDE, or at will. The
analysis runs on the file that is currently active in the IDE (the file must be part of a Visual Studio
project, which can be part of a larger Visual Studio solution). After analysis, you see bugs and coding
standard violations as source code markers or in a separate list.

Confirm Installation of Extension
To confirm that your Visual Studio installation has the Polyspace as You Code extension, check the list
of extensions installed.

• In Visual Studio 2019, select Extensions > Manage Extensions.
• In Visual Studio 2017, select Tools > Extensions and Updates.

You can also confirm that the extension starts as expected on the Output pane. Select View >
Output and then from the dropdown, select Polyspace. If the extension starts without errors, you
see a message such as:

11/25/2020 3:59:37 PM.005: Please wait while Polyspace Connector is starting on port '9091'...
11/25/2020 3:59:41 PM.229: Polyspace Connector has started successfully.

The Polyspace Connector is an internal server that handles communication between the Polyspace as
You Code analysis engine and the Visual Studio extension. If the default port is not available, the
extension increments the port number and attempts to start the Polyspace Connector on the next
port. If you use multiple Visual Studio instances, you can run Polyspace as You Code on all the
instances. The Polyspace Connector in each instance uses a different port.

Run Analysis on Save
By default, Polyspace as You Code is configured to run analysis on save. Analysis results appear
within a few seconds but in case of an error, you can check the progress of analysis on the Output
pane.

After analysis, results appear as source code markers (lines below source code tokens). You also see
the error locations as red circles in the scroll bar on the left.

To disable analysis on save:

1 Select Tools > Options.
2 On the Polyspace node, in the Analysis launch mode section, select Manually.

If results do not appear, see “Troubleshoot Failed Analysis or Unexpected Results in Polyspace as You
Code” on page 11-81.

Run Analysis on Demand
You can also explicitly start a Polyspace analysis. To start an analysis, right-click a source file in the
Visual Studio Solution Explorer or right-click on the source file content itself, and select Run
Polyspace analysis.

29 Review Results in Polyspace as You Code

29-2

Review Results
After analysis, the results appear in two forms:

• As source code markers (with a line below source code tokens).

You can hover on a source code token to see more details about a result.

• In a list on the Polyspace Results List pane.

To open the pane, select View > Other Windows > Polyspace Results List.

The results list shows results only for the file that is currently active in the IDE. For instance, if
you switch to another file, the results list shows defects found in the new file that is active.

If you select a result in this list, you see further details of the result on the Polyspace Result
Details pane.

Note If you rename a file in the Solution Explorer, the Polyspace as You Code extension treats the
renamed file as a new file and does not show previous results for this file. To view results for the
renamed file, run an analysis.

 Run Polyspace as You Code in Visual Studio and Review Results

29-3

Justify Results Using Code Annotations
If you decide not to fix a result, you can add code annotations to the result to avoid another review. If
the annotations follow a specific syntax, subsequent Polyspace as You Code runs can read these
annotations and suppress the corresponding results.

To add a code annotation, click the source code token containing a result. Click the light bulb icon
that appears and select Polyspace Annotate finding result_name. The annotation is entered on
the same line as the result.

If you import review information from a baseline run, the code annotation includes any status,
severity, or comment assigned to that result in the baseline run. If the imported status is set to To
investigate, To fix, or Other, the annotation does not suppress the result.

See also:

• “Annotate Code and Hide Known or Acceptable Results” on page 30-2
• “Short Names of Bug Finder Defect Groups and Defect Checkers” on page 30-11

View Help
You can see more information on a type of result by visiting the context-sensitive help page for the
result.

• To open the context-sensitive help for a result, first open the Polyspace Result Details pane for a
result. Then, click the question mark icon next to the result details.

• To navigate directly to the Fix section of the context-sensitive help for a result, click the wrench
icon next to the result details.

29 Review Results in Polyspace as You Code

29-4

You can also open the full searchable documentation for the Polyspace as You Code extension in your
system browser. To open the documentation, select Help > Open Polyspace Product Help.

Configure Checkers and Other Settings
By default, Polyspace as You Code checks for defects that are likely to be of most interest to
developers. You can expand the set of checkers and perform other configuration through the
Polyspace as You Code extension settings in Visual Studio. To open the settings, select Tools >
Options and specify appropriate settings on the Polyspace node.

For instance, you might want to:

• Enable or disable certain checkers.

See “Configure Checkers for Polyspace as You Code in Visual Studio” on page 11-63.
• See only new results.

See “Baseline Polyspace as You Code Results in Visual Studio” on page 11-44.

For the full list of settings, see “Configure Polyspace as You Code Extension in Visual Studio” on page
11-2.

 Run Polyspace as You Code in Visual Studio and Review Results

29-5

Run Polyspace as You Code in Visual Studio Code and Review
Results

You can choose to run Polyspace as You Code on each save in the Visual Studio Code editor, or at will.
The analysis runs on the file that is currently active in the editor. After you run the analysis, you see
bugs and coding standard rule violations as source code markers and as a list in the Problems panel.

Check Installation and Start Extension
To confirm that the Polyspace as You Code extension is installed in Visual Studio Code, check the
INSTALLED section in the Extensions view.

To open this view, in Visual Studio Code, select View > Extensions or click in the activity bar on
the left and look for Polyspace as You Code in the list of installed extensions.

To start the Polyspace as You Code extension, open a C or C++ file in the editor. The extension does
not start automatically when you open Visual Studio Code when no C or C++ file is open in the editor.
To check the status of the extension, do one of the following:

• Open the Problems panel and select Polyspace as You Code from the dropdown on the right.
• Place your cursor over the icons in the status bar on the lower left. See “View Extension

Information in Status Bar” on page 29-6.
• Open the Polyspace views. See “Open Additional Polyspace Views” on page 29-7.

Look for Polyspace as You Code in the list of extensions installed.

Note

• If you use Visual Studio Code version 1.57.1 or later, the Polyspace as You Code extension is
disabled when you open a folder in Restricted Mode. To enable the extension, mark the folder as
trusted. See Workspace Trust.

• For better performance on Windows systems, the files that you analyze should not be stored on
network drives.

View Extension Information in Status Bar
Once you start the extension, Polyspace as You Code displays icons in the status bar (lower left) to
provide information about the state of the extension, such as errors in the configuration or whether
an analysis is running on the currently selected file.

• Place your cursor over an icon to view a tooltip containing additional information.
• Click an icon (when applicable) to perform common operations, such as opening the extension

settings or viewing the OUTPUT panel.

The information that you see in the status bar is either global () or specific to the currently
selected file (). The file specific status bar icons update when you select a different file.

29 Review Results in Polyspace as You Code

29-6

https://code.visualstudio.com/docs/editor/workspace-trust

To disable or reenable the Polyspace as You Code status bar icons, right-click the icons and select the
appropriate option from the menu.

Open Additional Polyspace Views
The Polyspace as You Code extension provides different views in the side bar that show information

about the state of your configuration and of the files that you select for analysis. Click in the
activity bar on the left to show or hide these Polyspace views.

QUALITY MONITORING View

This view shows all the files that you have selected for analysis, the status of the analysis for each file,
and the number of findings.

In this view, you can also start a file-by-file analysis of all the files that you added to the view or you
can choose to analyze only a specific file.

Use the Analysis Options: Add To Quality Monitoring On Save setting to enable or disable
adding files to this view on save (Ctrl + S). See “Analysis Behavior On Save” on page 11-9. To add a
file manually, right-click the file in the editor, the EXPLORER view, or SOURCE CONTROL view in
the side bar.

HEADERS view

When you analyze a file, Polyspace also analyzes header files that are included by the analyzed file, if
those headers are in the same folder as the analyzed file. If Polyspace reports findings in a header
file, you see an H next to the analyzed file in the Quality Monitoring view. Click the analyzed file in
that view to list the header in the HEADERS view.

 Run Polyspace as You Code in Visual Studio Code and Review Results

29-7

Header files are listed only if they contain findings. Click a header file in the HEADERS view to open
its finding in the PROBLEMS panel and start inspecting those findings in the Editor.

RESULT DETAILS View

When you select a finding in the OUTPUT panel or in the editor, this view shows additional
information about the finding, including, when available, the traceback and the review information
imported from the baseline.

If you select multiple lines of code, the view lists additional details for all the findings reported in the
selected code.

Click to open the contextual help for a finding.

Whenever you select a finding, the RESULT DETAILS view updates to show information about the
selected finding. To lock the view and keep it from updating when you browse through findings in the
source code or the PROBLEMS panel, click the icon in the upper right. To unlock the view, click

.

BASELINE View

View the current mode for the baseline (whether you are using the baseline or not) and, if you use the
baseline, the status of the baseline download. If you have configured the baseline settings, you see

29 Review Results in Polyspace as You Code

29-8

information about the Polyspace Access server and the project you use as a baseline. See “Baseline
Polyspace as You Code Results in Visual Studio Code” on page 11-48.

In this view, you can:

• Click to download a baseline.
• Click to open the baseline project in the Polyspace Access interface
• Click to open the baseline settings.

If the results from the baseline run are generated with a Polyspace product that is older than your
version of Polyspace as You Code, this view shows a warning.

CONFIGURATION View

This view shows your current Analysis Options settings and the status of the generated build
options file, if applicable.

• Click to open the Analysis Options settings. See “Analysis Setup” on page 11-9.
• Click to open the Checkers selection interface. See “Configure Checkers for Polyspace as You

Code in Visual Studio Code” on page 11-66.

Run Analysis
On Save

By default, Polyspace as You Code adds the current file to the Quality Monitoring list and analyzes
this file on save. Analysis results appear within a few seconds on the source code. In case of an error,
you see a popup with the error message. To diagnose further, select View > Output. On the
OUTPUT panel, from the dropdown on the upper right, select Polyspace as You Code.

After analysis, results appear as source code markers (wavy lines below source code tokens). You also
see the error locations as red marks on the scroll bar. Click an error location to navigate to the
corresponding source code.

To disable analysis on save:

1 Open the settings by pressing Ctrl + , (comma) and type polyspace.analysisOptions
OnSave in the settings search bar.

2 Deselect the setting for Analysis Of Files On Save.

If results do not appear, see “Troubleshoot Failed Analysis or Unexpected Results in Polyspace as You
Code” on page 11-81.

On Demand

You can also explicitly start a Polyspace analysis. To start an analysis, do one of the following:

• Right click a source file in the EXPLORER view or right-click on the file content itself in the editor
and select Run Polyspace Analysis.

• Click the play button in the QUALITY MONITORING view.

 Run Polyspace as You Code in Visual Studio Code and Review Results

29-9

• With your cursor in the source file, press Ctrl + Shift + Alt + A.

Review Results
After analysis, the results appear in two forms:

• As source code markers (with a wavy line below source code tokens).

You can hover on a source code token to see more details about a result.
• In a list on the PROBLEMS panel.

To open the panel, select View > Problems.

When you select a finding you can view additional details about the result or an event trace in the
RESULT DETAILS view.

Click in this view to open the contextual help for this finding.

Apply Suggested Fix for Common Defects or Coding Rule Violations

If Polyspace reports certain common defects or coding rule violations in your code, the Polyspace as
You Code extension proposes one or more fixes you can apply to these findings.

This table lists the common defects and coding rule violations for which Polyspace proposes a fix,
along with the Polyspace checkers that report these errors.

Defect or Coding Rule Violation Polyspace Checkers
Function that could be evaluated a compile time
missing constexpr specifier.

Missing constexpr specifier

29 Review Results in Polyspace as You Code

29-10

Defect or Coding Rule Violation Polyspace Checkers
Unmodified expensive-to-copy parameter passed
by value.

AUTOSAR C++14 Rule A8-4-7

Expensive pass by value
Unmodified variable not declared const. AUTOSAR C++14 Rule A7-1-1

CERT C: Rec. DCL00-C

MISRA C++:2008 Rule 7-1-1

Unmodified variable not const-
qualified

Unused include AUTOSAR C++14 Rule A16-2-2

Useless include
Unused parameter AUTOSAR C++14 Rule A0-1-4

CERT C: Rec. MSC13-C

MISRA C:2012 Rule 2.7

Unused parameter
Use of std::endl std::endl may cause an unnecessary

flush

To apply a quick fix, select a finding in the editor or the Problems panel, and then, from the light
bulb menu, click the appropriate option. The quick fix options have the format Fix checkerName:
proposedFix. Here, checkerName is the name of the selected defect checker or coding rule, and
proposedFix is the fix that Polyspace applies to your code. Polyspace edits your code and fixes the
issue or all instances of the issue in the currently active file, depending on the option that you select.
If there is more than one proposed fix, you see all available fixes in the menu.

 Run Polyspace as You Code in Visual Studio Code and Review Results

29-11

Justify Results Using Code Annotations

If you decide not to fix a result, you can add code annotations to the result to avoid having to fix the
result again. If the annotations follow a specific syntax, subsequent Polyspace as You Code runs can
read these annotations and suppress the corresponding results.

• To add a code annotation, click the light bulb icon beside the source code token containing a
result and select Justify result_name with annotation. The annotation is entered on the same
line as the result.

• To mass-justify findings of the same defect or coding rule violations in the current file, select an
instance of that finding and click the Justify all result_name option from the light bulb menu.
Polyspace inserts an annotation in your code on each line that contains this finding

• If you import review information from a baseline run, select Annotate result_name with
baseline comment to include any status, severity, or comment assigned to that result in the
baseline run. If the imported status is set to To investigate, To fix, or Other, the annotation
does not suppress the result.

If you select multiple lines of code, the light bulb menu show annotation options for each finding in
your selection.

Polyspace as You Code inserts code annotations as comments enclosed in "/* */" for C files and
prefixed with "//" in C++ files (C++ style). The comment format in C files complies with MISRA
C:2004 rule 2.2.

Justified results are removed from the PROBLEMS panel and are suppressed in subsequent
analyses.

29 Review Results in Polyspace as You Code

29-12

See also:

• “Annotate Code and Hide Known or Acceptable Results” on page 30-2
• “Use a Justification Catalog to Autocomplete Annotations in Polyspace as You Code plugins” on

page 29-27
• “Short Names of Bug Finder Defect Groups and Defect Checkers” on page 30-11

View Context-Sensitive Help for Result
You can see more information on a type of result by visiting the context-sensitive help page for the
result.

• To open the context-sensitive help for the currently selected finding, click in the RESULT
DETAILS view. see “Open Additional Polyspace Views” on page 29-7.

• You can also view the context-sensitive help for any Polyspace as You Code result by going to the
Command Palette (Ctrl + Shift + P) and selecting Polyspace: Open Contextual Help. Choose
a result family from the menu and then enter a result name, for instance
UNMODIFIED_VAR_NOT_CONST.

To open the full searchable documentation for the Polyspace as You Code extension in your system
browser, go to the Command Palette (Ctrl + Shift + P) and select Polyspace: Open
Documentation.

Configure Checkers and Other Settings
By default, Polyspace as You Code checks for defects that are likely to be of most interest to
developers. You can expand the set of checkers and perform other configuration through the
Polyspace as You Code extension settings in Visual Studio Code.

Open the settings by pressing Ctrl + , (comma) and type polyspace in the settings search bar.

For instance, you might want to:

• Enable or disable certain checkers.

See “Configure Checkers for Polyspace as You Code in Visual Studio Code” on page 11-66.

 Run Polyspace as You Code in Visual Studio Code and Review Results

29-13

• See only new results.

See “Baseline Polyspace as You Code Results in Visual Studio Code” on page 11-48.

For the full list of settings, see “Configure Polyspace as You Code Extension in Visual Studio Code” on
page 11-8.

29 Review Results in Polyspace as You Code

29-14

Run Polyspace as You Code in Eclipse and Review Results
This topic describes how to run a single-file analysis in Eclipse using Polyspace as You Code. For
Polyspace desktop products such as Polyspace Bug Finder, see “Bug Finder Analysis Based on Eclipse
Projects”

You can configure Polyspace as You Code to run on each save in your Eclipse-based IDE, or you can
start the analysis manually. The analysis runs on the file that is currently active in the IDE. After
analysis, you see bugs and coding standard violations as source code markers or in a separate list.

Check Installation and Start Plugin
To confirm that the Polyspace as You Code plugin is installed in your Eclipse-based IDE, check the list
of installed plugins.

1 Select Help > About Eclipse IDE.
2 Click Installation Details and type polyspace in the search bar on the Plug-ins tab.

To start the Polyspace as You Code plugin, open a C or C++ file in the editor. The plugin does not
start automatically when you open the Eclipse IDE when no C or C+ file is open in the editor. You can
confirm that the extension starts as expected in the Console view. To open this view, select Window
> Show View > Console. If the plugin starts without errors, you see a message similar to this:
[2023-01-26 00:43:42.68] [Information] No setting set for the port. Trying to find a free port.
[2023-01-26 00:43:49.539] [Information] Connector was successfully started on port 56041

You can also open the Console view by pressing Alt+Shift+Q and then Q again, and start typing
console in the search bar.

The Polyspace as You Code plugin establishes an internal connection with the analysis engine on the
selected port. If you do not specify a port, Polyspace queries your system for an open port and uses
the port that your system returns.

Open Polyspace as You Code Perspective
The Polyspace as You Code plugin has a dedicated perspective in the Eclipse IDE that groups all the
relevant Polyspace views.

To open the Polyspace as You Code perspective, click on the far right of the tool bar. If the

perspective is already open but a different perspective is active, click to return to the Polyspace
perspective.

The different views in the Polyspace as You Code perspective show information about the state of
your configuration and about the files that you select for analysis. For more information, click in
each view (when available) to open the documentation.

Quality Monitoring View

This view shows all the files that you have selected for analysis, along with the status of the analysis
and the number of findings for each file.

 Run Polyspace as You Code in Eclipse and Review Results

29-15

To analyze a file, select that file and click . You can also start a sequential file-by-file analysis by
clicking .

Open the Analysis node setting by clicking to configure adding files to this view save. See “Plugin
Behavior on Save” on page 11-20. To add a file manually, right-click the file in the editor or in the
Project Explorer.

Headers View

When you analyze a file, Polyspace also analyzes the header files that are included by and that are in
the same folder as the analyzed file. If Polyspace reports findings in a header file, you see an H next
to the analyzed file in the Quality Monitoring view. Click the analyzed file in that view to list the
headers file in the Headers view.

Header files are listed only if they contain findings. Click the file in the Headers view to open its
findings in the Polyspace Problems view.

Polyspace Problems View

This view shows the all the analysis findings listed as one finding per line. Each line shows additional
information such as the rule description, rule name, file containing the finding, and review
information. The findings are grouped by results family. To change the grouping or view a flat list,
click the three vertical dots and select Grouping options.

29 Review Results in Polyspace as You Code

29-16

Click a column header to sort findings by the content of that column. For instance, you can sort
findings by files. Findings from a header file list the source file that includes the header in the
'Header column.

Result Details View

When you select a finding in the Polyspace Problems view or in the editor, this view shows
additional information about the finding, including (when available) the traceback and the review
information imported from the baseline.

If you select multiple lines of code, the view shows the results details for all the findings in the
selection. Click to view contextual help about the selected finding.

To lock this view while you browse through findings in the source code or the Polyspace Problems
view, click . The view does not update when you select a different finding. Click the icon again to
unlock the view.

Configuration View

This view shows the current Analysis node settings and the status of the generated build options, if
applicable.

• Click to generate a build options file. This button is available only if you configure the plugin to
extract build options from your build command, from your Eclipse C/C++ project, or from a JSON
compilation database. See “Generate Build Options for Polyspace as You Code Analysis in Eclipse”
on page 11-37.

• Click to open the Analysis node settings. See “Analysis Node” on page 11-20.
• Click to open the Checkers selection interface. See “Configure Checkers for Polyspace as You

Code in Eclipse” on page 11-60.

Baseline View

View whether you are using the baseline or not, and the status of the baseline download if applicable.
If you configure the baseline settings, you see information about the Polyspace Access server and the
project you use as a baseline. See “Baseline Polyspace as You Code Results in Eclipse” on page 11-53.

 Run Polyspace as You Code in Eclipse and Review Results

29-17

In this view, you can:

• Click to download or update a baseline.
• Click to open the baseline settings.

If the results from the baseline run are generated with a Polyspace product version that is older than
the Polyspace as You Code version, the view shows a warning.

Run Analysis
On Save

By default, the Polyspace as You Code plugin adds the current file to the Quality Monitoring view on
save but does not start the analysis.

To enable the analysis of the current file on save, click in the Quality Monitoring view and select
Start analysis on save in the Preferences window. You can also open the preferences by pressing
Alt+W+P.

After analysis, findings appear as source code markers. You also see the finding locations as red
marks on the scroll bar. Click a finding location to navigate to the corresponding source code. If the
analysis fails, check the messages in the Console view to diagnose the cause of the failure.

If results do not appear, see “Troubleshoot Failed Analysis or Unexpected Results in Polyspace as You
Code” on page 11-81.

On Demand

To disable starting an analysis on save, go to the Polyspace as You Code preferences and unselect
Start analysis on save. To start an analysis manually, do one of the following:

• Click in the Quality Monitoring view.
• Right-click the file in the editor and click Run Polyspace Analysis.

Review Results
After analysis, the results appear in two forms:

• As source code markers.

You can hover on a source code marker to view more details about the finding and view options to
justify that finding.

• In a list on the Polyspace Problems view.

If you select a finding in the Polyspace Problems view or in the editor, you see additional details
about the finding in the Results Details view. Click to open the contextual help for the currently
selected finding.

29 Review Results in Polyspace as You Code

29-18

Justify Results Using Code Annotations
If you decide not to fix a result, you can add code annotations to the result to avoid having to fix the
result again. If the annotations follow a specific syntax, subsequent Polyspace as You Code runs can
read these annotations and suppress the corresponding results.

• To add a code annotation, right-click a finding in the Polyspace Problems and select Polyspace
> Justify the current result. The annotation is entered on the same line as the finding. You can
also apply an annotation by hovering on the code marker for that result.

• To mass-justify findings of the same defect or coding rule violation in the current file, right-click a
finding in the Polyspace Problems and select Polyspace > Justify all instances of the
selected finding. Polyspace inserts an annotation in your code on each line that contains this
finding.

• if you import review information from a baseline run, any status, severity, or comment from the
baseline run is automatically applied to the corresponding Polyspace as You Code finding.

if the imported status is Not a defect, Justified, or No action planned in the baseline
run are suppressed from the Polyspace Problems view and in subsequent analyses.

If you select multiple lines of code and then go to the right-click menu in the Polyspace Problems
view, the Polyspace > Justify the current result option justifies each result in the selected code.

Polyspace as You Code inserts code annotations as comments enclosed in "/* */" for C files and
prefixed with "//" in C++ files (C++ style). The comment format in C files complies with MISRA
C:2004 rule 2.2.

See also:

• “Annotate Code and Hide Known or Acceptable Results” on page 30-2
• “Short Names of Bug Finder Defect Groups and Defect Checkers” on page 30-11

“Use a Justification Catalog to Autocomplete Annotations in Polyspace as You Code plugins” on
page 29-27

View Context-Sensitive Help for Result
You can see more information on a type of result by visiting the context-sensitive help page for the
result.

To open the context-sensitive help for a finding, select that finding in your code or in the Polyspace
Problems view, and then click in the Result Details view.

You can also open the full searchable documentation for the Polyspace as You Code plugin in your
system browser by clicking in the Baseline, Configuration, or Quality Monitoring view.

Configure Checkers and Other Settings
By default, Polyspace as You Code checks for defects that are likely to be of most interest to
developers. You can expand the set of checkers and perform other configuration through the
Polyspace as You Code plugin settings in Eclipse. To open the settings, press Alt+W+P and go to the
Polyspace as You Code node in the Configuration window.

 Run Polyspace as You Code in Eclipse and Review Results

29-19

For instance, you might want to:

• Enable or disable certain checkers.

See “Configure Checkers for Polyspace as You Code in Eclipse” on page 11-60.
• See only new results.

See “Baseline Polyspace as You Code Results in Eclipse” on page 11-53.

For the full list of settings, see “Configure Polyspace as You Code Plugin in Eclipse” on page 11-19.

29 Review Results in Polyspace as You Code

29-20

Run Polyspace as You Code from Command Line and Export
Results

You can run Polyspace as You Code on source files directly at the command line.

For IDEs that are not directly supported with a Polyspace as You Code plugin, you can open a
terminal within the IDE and run the commands, or create a menu item to run the commands on the
file currently open in the IDE. You can even incorporate these commands in a makefile, so that
building your code also runs static analysis on the code. See also “Integrate Polyspace as You Code in
IDEs and Editors Without Plugins” on page 29-24.

Add Install Folder to Path
To avoid typing the full path to Polyspace as You Code commands, add the paths to these commands
to the PATH environment variable on your operating system.

The paths in the default installation folder are the following:

Windows C:\Program Files\Polyspace as You Code\R2023a\polyspace\bin
Linux /usr/local/PolyspaceAsYouCode/R2023a/polyspace/bin

After you add the paths, you can enter commands such as the following in a terminal without errors:

polyspace-bug-finder-access -help

Run Analysis and See Results on Console
To run Polyspace as You Code, use the polyspace-bug-finder-access command. Export the
results to the console using the polyspace-results-export command.

polyspace-bug-finder-access -sources filename
polyspace-results-export -format console

In this example, the polyspace-bug-finder-access command generates results in the current
folder. The polyspace-results-export command reads results from the current folder and
exports to the console.

The analysis typically takes a few seconds to complete (slightly longer for C++ files). If the analysis
fails to complete, further details of the error appear on the console. You can use the option -no-
quiet to see a more detailed analysis log on the console.

Store Results in Specific Folder
To use a specific results folder resultsFolder instead of the current folder, change the preceding
lines as follows:

polyspace-bug-finder-access -sources filename -results-dir resultsFolder
polyspace-results-export -format console -results-dir resultsFolder

 Run Polyspace as You Code from Command Line and Export Results

29-21

Export Results to JSON Format (SARIF Output)
Instead of displaying analysis results on the console, you can export the results to a JSON file. You
can then parse this file using a JSON parser method in any language that you want.

polyspace-bug-finder-access -sources filename.c
polyspace-results-export -format json-sarif -output-name outputFilePath

Here, outputFilePath is the full path to the JSON file.

The JSON format follows the standard notation provided by the OASIS Static Analysis Results
Interchange Format (SARIF).

Specify Analysis Options by Using Options Files
To adapt the Polyspace analysis configuration to your development environment and requirements,
you have to modify the default configuration through command-line options such as -compiler.
Options files are a convenient way to collect multiple options together and reuse them across
projects.

Options files are text files with one option per line. For instance, the content of an options file can
look like this:

Options for Polyspace analysis
Options apply to all projects in Controller module
-compiler visual16.x
-D _WIN32
-checkers-activation-file "Z:\utils\checkers.xml"

Specify an options file using the option -options-file. For instance:

polyspace-bug-finder-access -sources file.c -options-file "Z:\utils\polyspace\options.txt"

See also “Options Files for Polyspace Analysis” on page 12-5. For all options available with Polyspace
as You Code, see “Complete List of Polyspace Bug Finder Analysis Engine Options”.

Create Options File by Analyzing Build
Instead of entering options by hand in an options file, you can create an options file with all Polyspace
options required for compilation by analyzing your build system. For instance, you can trace your
build command and save the options in a file buildOptions.txt that you can use for the
subsequent analysis.

polyspace-configure -no-sources -output-options-file buildOptions.txt buildCommand
polyspace-bug-finder-access -sources file.c -options-file buildOptions.txt

Here, buildCommand is a build command that performs a full build of your source code, for instance,
make -B or make --always-make. For build systems that can output compilation options in the
JSON compilation database format, you can obtain the options from the JSON file:
polyspace-configure -no-sources -output-options-file buildOptions.txt -compilation-database jsonFile

Here, jsonFile is the full path to the compilation database JSON file.

29 Review Results in Polyspace as You Code

29-22

You can also append a second options file with options related to the analysis such as checkers. For
instance, if the second options file is called checkersOptions.txt, you can run Polyspace as You
Code as follows:

#DOS Command
polyspace-bug-finder-access -sources file.c ^
 -options-file buildOptions.txt^
 -options-file checkersOptions.txt

#Linux Command
polyspace-bug-finder-access -sources file.c \
 -options-file buildOptions.txt\
 -options-file checkersOptions.txt

See Also
polyspace-bug-finder-access | polyspace-results-export | polyspace-configure

More About
• “Options Files for Polyspace Analysis” on page 12-5
• “Integrate Polyspace as You Code in IDEs and Editors Without Plugins” on page 29-24

 Run Polyspace as You Code from Command Line and Export Results

29-23

Integrate Polyspace as You Code in IDEs and Editors Without
Plugins

Polyspace as You Code supports these IDEs with extensions or plugins: Visual Studio, Visual Studio
Code, and Eclipse. Even if an IDE is not explicitly supported with a Polyspace as You Code plugin, you
can open a console within the IDE and run Polyspace as You Code commands, or create a menu item
to run the commands on the file currently open in the IDE.

This topic demonstrates how to integrate Polyspace as You Code in a simple editor such as Notepad+
+. You can use the principles here to integrate Polyspace as You Code in most editors or IDEs.

Overview of Approach
In supported IDEs, a Polyspace as You Code extension allows you to analyze the file that is currently
active in the IDE and see results within the IDE (as source code markers or in a list). In an
unsupported IDE or editor, you can partly emulate this workflow, that is, run analysis within the IDE
and view results. The workflow consists of two steps:

• Running analysis and exporting results

Most IDEs or editors provides environment variables that resolve to the current file path. You can
create menu items that execute a script which runs the polyspace-bug-finder-access
command on this path. In the same script, you can export the results to the IDE console.

• Parsing console output to allow navigation to line

Each Polyspace as You Code result in the console output starts with a line in this format:

filepath:lineNumber:columnNumber

Here, filepath is the path to the current file, lineNumber is the line number of the result, and
columnNumber is the column that starts the token with the result. For instance:

C:\MyProj\myFile.c:17:31:

indicates that the file C:\MyProj\myFile.c contains a result on line 17, starting from column
31. If you can parse the console output, you can enable a navigation to line 31 to the start of the
token containing the result.

Integration Steps
This example shows an integration of Polyspace as You Code in a simple editor such as Notepad++.
You can follow similar integration steps in other editors such as GNU Emacs, Sublime Text, and so on.

Step 1: Set Up Script Runs from Within Editor

In Notepad++, you can use a plugin such as NppExec that allows you to execute any script from
within the editor. The editor also provides the environment variable $(FULL_CURRENT_PATH) that
resolves to the file that is currently active in the IDE.

The simplest script that can be run within the plugin can be the following:

cd $(CURRENT_DIRECTORY)
set POLYSPACE_EXECUTABLES_FOLDER=C:\Program Files\Polyspace as You Code\R2023a\polyspace\bin

29 Review Results in Polyspace as You Code

29-24

set POLYSPACE_ENGINE=$(POLYSPACE_EXECUTABLES_FOLDER)\polyspace-bug-finder-access.exe
set POLYSPACE_REPORT_EXPORTER=$(POLYSPACE_EXECUTABLES_FOLDER)\polyspace-results-export.exe
$(POLYSPACE_ENGINE) -sources $(FULL_CURRENT_PATH)
$(POLYSPACE_REPORT_EXPORTER) -results-dir . -format console

In practice, you might want to specify additional analysis options using an options file. If the options
file is called polyspace_options.txt, the command to run Polyspace as You Code in the preceding
script can be replaced with:

$(POLYSPACE_ENGINE) -sources $(FULL_CURRENT_PATH) -options-file polyspace_options.txt

See also “Options Files for Polyspace Analysis” on page 12-5.

For other command-line examples, see “Run Polyspace as You Code from Command Line and Export
Results” on page 29-21. For instance, instead of exporting to the console directly, you can export the
results to a JSON format, use a JSON parser to package the results, and then export them to the
console or use them in some other way.

Step 2: Set Up Parsing of Console Output

The NppExec plugin allows you to parse console output and navigate to the appropriate line of code.
You can also optionally apply specific formatting to the console output.

For instance, your console output can look like the following:

You can set up the output so that clicking a link directly takes you to the start of the relevant token on
the relevant line of code.

To set up this presentation of results, select Plugins > NppExec and then select the Console
Output Filters option. The following options allow the previous presentation of results:

The first highlight mask indicates that lines having the format

...:...:...

contain the absolute path to the file before the first colon, the line number between the first and
second colon, and the column number (or character number) after the second colon. The mask reads
the information (file, line and column), underlines these lines and colors them blue.

The second highlight mask simply bolds lines having the format

...(...)

 Integrate Polyspace as You Code in IDEs and Editors Without Plugins

29-25

These lines contain the result name, for instance, the name of a defect.

Further Exploration
The official Polyspace as You Code extensions enable other actions such as analyzing build
commands, configuring checkers, and downloading baselines from the Polyspace Access web server.
In a real development environment, you want to analyze your build commands to emulate your
compilation toolchain as closely as possible, configure the checkers that are most meaningful to you,
and baseline results so that you focus only on new results coming from your changes.

You can extend the approach described here to create menu items in your IDE or editor for all these
actions. For more information on these workflows from the command line, see:

• “Generate Build Options for Polyspace as You Code Analysis at the Command Line” on page 11-41
• “Configure Checkers for Polyspace as You Code at the Command Line” on page 11-70
• “Baseline Polyspace as You Code Results on Command Line” on page 11-56

With your IDE or editor set up for Polyspace as You Code, you can create a quality gate for
submission. You can set up a configuration with checkers for which you do not want any finding in
your submission. Before submitting a file, you can make sure that you have fixed all findings from
those checkers.

See Also
polyspace-bug-finder-access | polyspace-results-export

29 Review Results in Polyspace as You Code

29-26

Use a Justification Catalog to Autocomplete Annotations in
Polyspace as You Code plugins

After you run an analysis, you can suppress known or acceptable defects or coding rule deviations by
adding code annotations to indicate that the issue has been reviewed and will not be fixed.

If your organization has a predefined set of comments that you use to justify known are acceptable
defects and coding standard deviations, you can store these comments in a justification catalog where
you associate one or more comment with each defect or coding rule deviation. You can then pass this
catalog to the Polyspace as You Code Visual Studio Code extension or Eclipse plugin and use the
predefined comments to autocomplete code annotations comments when you annotate the code.

You pass the catalog to Polyspace as You Code by specifying the path of the catalog file in these
settings:

• Visual Studio Code — polyspace.justification.catalog setting. See “Justification Catalog”
on page 11-15.

• Eclipse — Justification catalog setting. See “Polyspace justification” on page 11-19.

Create and Edit Justification Catalog
The justification catalog is a JSON file that uses the Polyspace code annotation syntax. For details of
the syntax, see “Annotation Syntax Details” on page 30-4. To create a catalog, copy
justification_catalog.json to a text editor and save it as a JSON file with UTF-8 encoding.

justification_catalog.json
{
 "justifications": [

 Use a Justification Catalog to Autocomplete Annotations in Polyspace as You Code plugins

29-27

 {
 "family": "Defect",
 "acronym": "METHOD_NOT_CONST",
 "comment": [
 "This is my preset justification",
 "Another justification for same defect"
]
 },
 {
 "family": "*",
 "acronym": "INT_ZERO_DIV",
 "comment": "Family wildcard justification"
 },
 {
 "family": "Defect",
 "acronym": "*",
 "comment": "Rule wildcard justification applies to all defects"
 },
 {
 "family": "MISRA C:2012",
 "acronym": "21.*",
 "comment": "Justification for 21.* rules"
 },
 {
 "family": "AUTOSAR-CPP14",
 "acronym": "M9-3-3",
 "comment": "Preset justification for M9-3-3"
 }
]
}

The JSON structure consists of a justifications array which contains a collection of objects with
at least three key-value pairs each. An object represents a result and the comments that you want to
associate with that result.

{
 "justifications":[
 {
 "family": "familyValue",
 "acronym": "acronymValue",
 "comment":[
 "autocomplete comment for family:acronym result",
 "some other autocomplete comment for the same result"
]
 }
]
}

• Specify a Polyspace results family value for the family key.
• Specify a Polyspace result name value for the acronym key.
• Specify a comment for comment key to associate that comment with the Polyspace results with the

family and result name that you specified in the other key-value pairs.

To associate additional comments with a result, add more comment key-value pairs in the object
the represents that finding.

For example, in the file justification_catalog.json, the comments "This is my preset
justification" and "Another justification for same defect" are available for
autocomplete when you type an annotation for defect METHOD_NOT_CONST. Because the comment
"Rule wildcard justification applies to all defects" applies to all defects, this
comment is also available for autocomplete when you annotate METHOD_NOT_CONST.

29 Review Results in Polyspace as You Code

29-28

See Also

External Websites
• “Annotate Code and Hide Known or Acceptable Results” on page 30-2

 Use a Justification Catalog to Autocomplete Annotations in Polyspace as You Code plugins

29-29

Review Workflows Common to All
Platforms

31

Hide Known or Acceptable Results Using
Code Annotations

30

Annotate Code and Hide Known or Acceptable Results
If a Polyspace analysis of your code finds known or acceptable defects or coding rule violations, you
can suppress the defects or violations in subsequent analyses. Add code annotations indicating that
you have reviewed the issues and that you do not intend to fix them.

You can add annotations through menu items in the Polyspace user interface (or IDE plugins) or by
typing them directly in your code. For the general workflow of adding annotations:

• In the Polyspace desktop user interface, see “Address Results in Polyspace User Interface Through
Bug Fixes or Justifications” on page 22-2.

• In the Polyspace Access web interface, see “Address Results in Polyspace Access Through Bug
Fixes or Justifications” on page 26-2.

• In IDEs using Polyspace as You Code plugins or extensions, see “Review Polyspace as You Code
Results in IDEs”.

This topic shows the annotation syntax.

Note that you cannot hide the run-time errors detected with Code Prover from your source code even
with code annotations. However, like all other results, the review information associated with a run-
time error is extracted from the corresponding code annotation and shown with the result.

Code Annotation Syntax
To add comments directly to your source file, use the Polyspace annotation syntax. The syntax is not
case sensitive, and has the following format. Both C style comments within /* */ and C++ style
comments starting with // are supported.

Annotating Single Line of Code

To annotate a result on the current line of code (including macros), use this syntax:

line of code; /* polyspace Family:Result_name */

For instance:

var++; /* polyspace DEFECT:INT_OVFL */

Annotations begin with the keyword polyspace and must include the Family and Result_name
field values.

You can optionally specify a Status, Severity, and Comment field value:

polyspace Family:Result_name [Status:Severity] "Comment"

For instance:

var++; /* polyspace DEFECT:INT_OVFL [Justified:Low] "Overflow taken into
 account."*/

If you do not specify a status, Polyspace considers the result justified, and assigns the status No
action planned to the result.

For further details, see “Annotation Syntax Details” on page 30-4 and “Syntax Examples” on page
30-6.

30 Hide Known or Acceptable Results Using Code Annotations

30-2

Annotating Code Block

To annotate a block of code, use the following syntax. Note that the annotations apply only to the
block of code itself and not to bodies of functions called from the block.

• Annotation for current line of code and n following lines:

line of code; /* polyspace +n Family:Result_name */
• Annotation for block of code:

/* polyspace-begin Family:Result_name */
{
 block of code
}
/* polyspace-end Family:Result_name */

Optionally, specify a status, severity and comment.

If annotations for results with the same Family and Result_name are nested, the innermost
annotation is used.

For example, in this code, the annotation on line 9 is applied instead of the block annotation, but the
block annotation is applied to the violation on line 7.

1 /*polyspace-begin MISRA-C:14.9 [To fix:High] */
2 int main(void)
3 {
4 int x = 1;
5 int y = x / 2;
6
7 if (y < 0) /* Block annotation is applied to this violation of MISRA-C:14.9*/
8 y++;
9 if (x > y) /*polyspace MISRA-C:14.9 [Justified:Low] */
10 return x;
11 return x;
12 }
13 /*polyspace-end MISRA-C:14.9 [To fix:High] "Block annotation"*/

When you annotate a code block, the annotation applies only to the issues that arise from within the
block. For instance, say you have a function call in the annotated block, and the body of the function
gives rise to a violation. This violation is not affected by the annotation around the code block where
the function is called.

For further details, see “Annotation Syntax Details” on page 30-4 and “Syntax Examples” on page
30-6.

Justifying Multiple Results in One Annotation

To justify multiple results in the same annotation, use the following syntax.

• If the results belong to the same family, specify comma-separated result names.

line of code; /* polyspace Family:Result_1_name,Result_2_name */
• If the results belong to different families, specify space-separated family names.

line of code; /* polyspace Family_1:Result_1_name Family_2:Result_2_name */

Optionally, specify a status, severity and comment.

For further details, see “Annotation Syntax Details” on page 30-4 and “Syntax Examples” on page
30-6.

 Annotate Code and Hide Known or Acceptable Results

30-3

Annotation Syntax Details

To replace the different annotation fields with their allowed values, use the values in this table or see
the examples on page 30-6.

Field Allowed Value
Family Type of analysis result:

• DEFECT (Polyspace Bug Finder)
• RTE, for run-time checks (Polyspace Code

Prover)
• CODE-METRICS, for function-level code

complexity metrics
• VARIABLE, for global variables (Polyspace

Code Prover)
• MISRA-C or MISRA2004 for MISRA C: 2004

rule violations. These annotations also apply
to MISRA C: 2012 violations based on the
mapping between the two standards. The
mapping allows you to reuse your
justifications for the older standard when
migrating to the newer one. See “Import
Existing MISRA C: 2004 Justifications to
MISRA C: 2012 Results” on page 20-5.

• MISRA-AC-AGC for violations of MISRA
C:2004 rules applicable to generated code

• MISRA-C3 or MISRA2012 for MISRA C: 2012
rule violations. The annotation works even for
the rules applicable to generated code.

• CERT-C for CERT C coding standard violations
• CERT-CPP for CERT C++ coding standard

violations
• ISO-17961 for ISO/IEC TS 17961 coding

standard violations
• MISRA-CPP for MISRA C++ rule violations
• AUTOSAR-CPP14 for AUTOSAR C++14 rule

violations
• JSF for JSF++ rule violations
• GUIDELINE for software complexity

guidelines.
• CUSTOM for violations of custom coding rules

To specify all analysis results, use the asterisk
character *:*.

See “Syntax Examples” on page 30-28.

30 Hide Known or Acceptable Results Using Code Annotations

30-4

Field Allowed Value
Result_name For DEFECT, use short names of checkers. See

“Short Names of Bug Finder Defect Groups and
Defect Checkers” on page 30-11.

For RTE, use short names of run-time checks. See
“Short Names of Code Prover Run-Time Checks”
(Polyspace Code Prover).

For CODE-METRICS, use short names of code
complexity metrics. See “Short Names of Code
Complexity Metrics” on page 30-24. Note that
project and file metrics cannot be justified using
code annotations.

For VARIABLE, the only allowed value is the
asterisk character " * ".

For coding standard violations, specify the rule
number or numbers.

For software complexity guidelines, use acronyms
for the guidelines. See pages for individual
guidelines in “Guidelines”.

To specify all parts of a result name
[MISRA2012:17.*] or all result names in a
family [DEFECT:*], use the asterisk character.

See “Syntax Examples” on page 30-28.
Status Text to indicate how you intend to address the

error in your code. This value populates the
Status column in the Results List pane as:

• Unreviewed
• To investigate
• To fix
• Justified
• No action planned
• Not a defect
• Other

Polyspace suppresses results annotated with
status Justified, No action planned, or Not
a defect in subsequent analyses. If you specify
a status that is not an allowed value, Polyspace
stores it as a custom status.

 Annotate Code and Hide Known or Acceptable Results

30-5

Field Allowed Value
Severity Text to indicate how critical you consider the

error in your code. This value populates the
Severity column in the Results List pane as:

• Unset
• High
• Medium
• Low

If you specify a severity that is not an allowed
value, Polyspace appends it to the status field and
stores it as a custom status. For example, [To
investigate:sporadic] is displayed in the
Status column of the Results List pane as To
investigate sporadic.

Comment Additional text, such as a keyword or an
explanation for the status and severity. This value
populates the Comment column in the Results
List pane.

The additional text can span more than one line
in the code. When showing this text in reports,
leading and trailing spaces on a line are merged
into one space so that the entire text can be read
as a single paragraph.

Syntax Examples
Suppress a Single Defect

Enter an annotation on the same line as the defect and specify the Family (DEFECT) and the
Result_name (INT_OVFL). When you do not specify a status, Polyspace assigns the status No
action planned, and then suppresses the result in subsequent analyses.

int var = INT_MAX;
var++; /* polyspace DEFECT:INT_OVFL */

Suppress a Single Coding Standard Violation

Justify a coding standard violation, for instance, a CERT-C violation.

Enter an annotation on the same line as the violation and specify the Family (CERT-C) and the
Result_name (the rule number, for instance, STR31-C). Assign the status Justified, severity Low
and a comment.

line of code; /* polyspace CERT-C:STR31-C [Justified:Low] "Overflow cannot happen
 because of external constraints." */

30 Hide Known or Acceptable Results Using Code Annotations

30-6

Suppress All MISRA C: 2012 Violations Over Multiple Lines

Enter an annotation with +n between polyspace and the Family:Result_name entries. The
annotation applies to the same line and the n following lines.

This annotation applies to lines 4–7. The line count includes code, comments, and blank lines.

4. line of code ; // polyspace +3 MISRA2012:*
5. //comment
6.
7. line of code;
8. line of code;

Suppress All Code Metrics on Function

To annotate function-level code complexity metrics, in the function definition, enter an annotation on
the same line as the function name.

This annotation suppresses all code complexity metrics for function func:

char func(char param) { //polyspace CODE-METRICS:*
 ...
}

Specify Multiple Families in the Same Annotation

Enter each family separated by a space. This annotation applies to all MISRA C:2012 rules 17 and to
all run-time checks.

line of code; /* polyspace MISRA2012:17.* RTE:* */

Specify Multiple Result Names in the Same Annotation

After you specify the Family (DEFECT), enter each Result_name separated by a comma.

system("rm ~/.config"); /* polyspace DEFECT:UNSAFE_SYSTEM_CALL,RETURN_NOT_CHECKED */

Suppress Result Showing Global Variable Usage

To justify a Code Prover result showing global variable usage, for instance, an unused global variable,
enter the annotation next to the variable declaration.

For instance, to suppress a global variable result with a Justified status, Low severity and some
comments, you can enter an annotation like this:

int var; /* polyspace VARIABLE:* [Justified: Low] "Storage repo for later use"*/

Add Explanatory Notes to Annotation

After you specify a Family and a Result_name, you can add a Comment with additional information
for your justification. You can provide a comment for all families and result names, or a comment for
each family or result name.

 Annotate Code and Hide Known or Acceptable Results

30-7

//Single comment

line of code; /* polyspace DEFECT:BAD_FREE MISRA2004:* "OK Defect and MISRA" */
//Multiple comments incorrect syntax:

line of code; /* polyspace DEFECT:* "OK defect" MISRA2004:5.2 "OK MISRA" */

//Multiple comments correct syntax:
line of code; /* polyspace DEFECT:* "OK defect" polyspace MISRA2004:5.2 "OK MISRA" */

In annotations, Polyspace ignores all text following double quotes. To specify additional
Family:Result_name, [Status:Severity] or Comment entries, you must reenter the keyword
polyspace after text in double quotes.

Set Status and Severity

You can specify allowed values on page 30-2 or enter custom values for status and severity. A custom
severity entry is appended to the status and stored as a custom Status in the user interface.

//Set Status only
line of code; /* polyspace DEFECT:* [To fix] "some comment" */

//Set Status 'To fix' and Severity 'High'
line of code; /* polyspace VARIABLE:* [To fix: High] "some comment"*/

//Set custom status 'Assigned' and Severity 'Medium'
line of code; /* polyspace MISRA2012:12.* [Assigned: Medium] */

Justify Violations in a Code Block

Use annotation to justify violations arising from a block of code. For instance, consider this code:

double foo(void){
 constexpr int speedLimit = 65;
 constexpr double coeff = 0.2;
 int flag{0};
 int negOne{-1};
 //...
 return (flag)?speedLimit*coeff*negOne
 : speedLimit*coeff*negOne - 35; //Noncompliant
}

int main(){

 /* polyspace-begin AUTOSAR-CPP14:A5-1-1 [Justified: Low]"Known Constant"*/
 //....
 for(int i = 0; i<10;++i){
 foo();
 //...
 }

 /* polyspace-end AUTOSAR-CPP14:A5-1-1 [Justified: Low]"Known Constant"*/
 return 1;
}

The for loop has hard coded literal as the loop boundary, which is a violation of AUTOSAR C++14
Rule A5-1-1. By annotating the block with the syntax /*polyspace begin...*/ {...}/
polyspace-end.../, the violation in the line for(int i = 0; i<10;++i){ appears as a
justified defect in the results list.

30 Hide Known or Acceptable Results Using Code Annotations

30-8

The annotated block contains a call to the function foo(). The annotations do not apply to the body
of this function. For instance, the violation in the return statement of foo() appears as an
unreviewed defect.

Code Annotation Warnings
If you enter a code annotation incorrectly or the annotation no longer applies, the analysis log
contains a warning:

Warning: These Polyspace annotations do not apply to the current code

The warning can mean one of the following:

• The issue is no longer detected because of code fixes or changes in analysis configuration.

For instance, an annotation such as:

/* polyspace RTE:IDP [No action planned:Low] */

Might no longer apply because the Illegally dereferenced pointer check (annotated as IDP),
which was previously red or orange, is now green.

• The annotation syntax is incorrect.

An annotation beginning with polyspace followed by a word and then a : (colon) such as:

// polyspace Family :

is considered as a Polyspace annotation justifying a result. If the word Family following
polyspace is not a type of Polyspace result such as DEFECT or RTE, the analysis considers the
annotation as invalid and shows the warning. For instance, this annotation triggers the warning:

// polyspace TODO: Fix in March dev cycle

since TODO is not a type of Polyspace result. To avoid these warnings, use another separator, for
instance, instead of a colon. For the full list of result types, see “Code Annotation Syntax” on page
30-2.

Ignoring Code Annotations
In some cases, you might want to run a clean analysis as if the results have not been previously
reviewed. For instance, you might want to perform a worst-case analysis where you see all previously
justified results.

You can use the option -ignore-code-annotations to run such an analysis with no history. The
analysis ignores the code annotations and shows all annotated results without any review information
taken from the annotations.

See also -ignore-code-annotations.

See Also
-xml-annotations-description | -ignore-code-annotations

 Annotate Code and Hide Known or Acceptable Results

30-9

More About
• “Define Custom Annotation Format” on page 30-30
• “Short Names of Bug Finder Defect Groups and Defect Checkers” on page 30-11
• “Short Names of Code Complexity Metrics” on page 30-24

30 Hide Known or Acceptable Results Using Code Annotations

30-10

Short Names of Bug Finder Defect Groups and Defect Checkers
To justify defects through code annotations, use the checker command-line names, or short names,
listed in “Bug Finder Defect Checkers Short Names” on page 30-11.

You can also enable the detection of a specific defect by using its checker short name as argument of
the -checkers option. Instead of listing individual defects, specify groups of defects by the group
name, for instance, numerical, data_flow, and so on.

See Find defects (-checkers) and “Bug Finder Defect Groups” on page 18-43.

Bug Finder Defect Groups Short Names

Defect Group Command-Line Parameter
“C++ Exception Defects” cpp_exceptions
“Concurrency Defects” concurrency
“Cryptography Defects” cryptography
“Data Flow Defects” data_flow
“Dynamic Memory Defects” dynamic_memory
“Good Practice Defects” good_practice
“Numerical Defects” numerical
“Object Oriented Defects” object_oriented
“Performance Defects” performance
“Programming Defects” programming
“Resource Management Defects” resource_management
“Static Memory Defects” static_memory
“Security Defects” security
“Tainted Data Defects” tainted_data

Bug Finder Defect Checkers Short Names

Defect Command-line Name
*this not returned in copy assignment operator RETURN_NOT_REF_TO_THIS
Abnormal termination of exit handler EXIT_ABNORMAL_HANDLER
Absorption of float operand FLOAT_ABSORPTION
Accessing object with temporary lifetime TEMP_OBJECT_ACCESS
Alignment changed after memory reallocation ALIGNMENT_CHANGE
Alternating input and output from a stream without
flush or positioning call

IO_INTERLEAVING

Ambiguous declaration syntax MOST_VEXING_PARSE
A move operation may throw MOVE_OPERATION_MAY_THROW

 Short Names of Bug Finder Defect Groups and Defect Checkers

30-11

Defect Command-line Name
Arithmetic operation with NULL pointer NULL_PTR_ARITH
Array access out of bounds OUT_BOUND_ARRAY
Array access with tainted index TAINTED_ARRAY_INDEX
Assertion ASSERT
Asynchronously cancellable thread ASYNCHRONOUSLY_CANCELLAB

LE_THREAD
Atomic load and store sequence not atomic ATOMIC_VAR_SEQUENCE_NOT_

ATOMIC
Atomic variable accessed twice in an expression ATOMIC_VAR_ACCESS_TWICE
Automatic or thread local variable escaping from a
thread

LOCAL_ADDR_ESCAPE_THREAD

Bad file access mode or status BAD_FILE_ACCESS_MODE_STA
TUS

Bad order of dropping privileges BAD_PRIVILEGE_DROP_ORDER
Base class assignment operator not called MISSING_BASE_ASSIGN_OP_C

ALL
Base class destructor not virtual DTOR_NOT_VIRTUAL
Bitwise and arithmetic operation on the same data BITWISE_ARITH_MIX
Bitwise operation on negative value BITWISE_NEG
Blocking operation while holding lock BLOCKING_WHILE_LOCKED
Buffer overflow from incorrect string format
specifier

STR_FORMAT_BUFFER_OVERFL
OW

Bytewise operations on nontrivial class object MEMOP_ON_NONTRIVIAL_OBJ
C++ reference to const-qualified type with
subsequent modification

WRITE_REFERENCE_TO_CONST
_TYPE

C++ reference type qualified with const or volatile CV_QUALIFIED_REFERENCE_T
YPE

Call through non-prototyped function pointer UNPROTOTYPED_FUNC_CALL
Call to memset with unintended value MEMSET_INVALID_VALUE
Character value absorbed into EOF CHAR_EOF_CONFUSED
Closing a previously closed resource DOUBLE_RESOURCE_CLOSE
Code deactivated by constant false condition DEACTIVATED_CODE
Command executed from externally controlled path TAINTED_PATH_CMD
Constant block cipher initialization vector CRYPTO_CIPHER_CONSTANT_I

V
Constant cipher key CRYPTO_CIPHER_CONSTANT_K

EY
Const parameter values may cause unnecessary data
copies

CONST_PARAMETER_VALUE

30 Hide Known or Acceptable Results Using Code Annotations

30-12

Defect Command-line Name
Const return values may cause unnecessary data
copies

CONST_RETURN_VALUE

Const rvalue reference parameter may cause
unnecessary data copies

CONST_RVALUE_REFERENCE_P
ARAMETER

Const std::move input may cause a more expensive
object copy

EXPENSIVE_STD_MOVE_CONST
_OBJECT

Context initialized incorrectly for cryptographic
operation

CRYPTO_PKEY_INCORRECT_IN
IT

Context initialized incorrectly for digest
operation

CRYPTO_MD_BAD_FUNCTION

Conversion or deletion of incomplete class pointer INCOMPLETE_CLASS_PTR
Copy constructor not called in initialization list MISSING_COPY_CTOR_CALL
Copy of overlapping memory OVERLAPPING_COPY
Copy operation modifying source operand COPY_MODIFYING_SOURCE
Critical data member is not private CRITICAL_DATA_MEMBER_DEC

LARED_PUBLIC
C string from string::c_str() compared to pointer STD_STRING_C_STR_COMPARE

D_TO_POINTER
Data race DATA_RACE
Data race on adjacent bit fields DATA_RACE_BIT_FIELDS
Data race through standard library function call DATA_RACE_STD_LIB
Dead code DEAD_CODE
Deadlock DEADLOCK
Deallocation of previously deallocated pointer DOUBLE_DEALLOCATION
Declaration mismatch DECL_MISMATCH
Declaration of catch for generic exception CATCH_FOR_GENERIC_EXCEPT

ION
Declaration of throw for generic exception THROW_FOR_GENERIC_EXCEPT

ION
Delete of void pointer DELETE_OF_VOID_PTR
Destination buffer overflow in string manipulation STRLIB_BUFFER_OVERFLOW
Destination buffer underflow in string manipulation STRLIB_BUFFER_UNDERFLOW
Destruction of locked mutex DESTROY_LOCKED
Deterministic random output from constant seed RAND_SEED_CONSTANT
Double lock DOUBLE_LOCK
Double unlock DOUBLE_UNLOCK
Duplicated code DUPLICATED_CODE
Empty destructors may cause unnecessary data copies EMPTY_DESTRUCTOR_DEFINED

 Short Names of Bug Finder Defect Groups and Defect Checkers

30-13

Defect Command-line Name
Environment pointer invalidated by previous
operation

INVALID_ENV_POINTER

Errno not checked ERRNO_NOT_CHECKED
Errno not reset MISSING_ERRNO_RESET
Exception caught by value EXCP_CAUGHT_BY_VALUE
Exception handler hidden by previous handler EXCP_HANDLER_HIDDEN
Execution of a binary from a relative path can be
controlled by an external actor

RELATIVE_PATH_CMD

Execution of externally controlled command TAINTED_EXTERNAL_CMD
Expensive allocation in loop EXPENSIVE_ALLOC_IN_LOOP
Expensive constant std::string construction EXPENSIVE_CONSTANT_STD_S

TRING
Expensive copy in a range-based for loop iteration EXPENSIVE_RANGE_BASED_FO

R_LOOP_ITERATION
Expensive dynamic cast EXPENSIVE_DYNAMIC_CAST
Expensive local variable copy EXPENSIVE_LOCAL_VARIABLE
Expensive logical operation EXPENSIVE_LOGICAL_OPERAT

ION
Expensive pass by value EXPENSIVE_PASS_BY_VALUE
Expensive post-increment operation EXPENSIVE_POST_INCREMENT
Expensive return by value EXPENSIVE_RETURN_BY_VALU

E
Expensive return caused by unnecessary std::move EXPENSIVE_RETURN_STD_MOV

E
Expensive return of a const object EXPENSIVE_RETURN_CONST_O

BJECT
Expensive use of a standard algorithm when a more
efficient method exists

EXPENSIVE_USE_OF_STD_ALG
ORITHM

Expensive use of container's count method EXPENSIVE_CONTAINER_COUN
T

Expensive use of container's insertion method EXPENSIVE_CONTAINER_INSE
RTION

Expensive use of container's size method EXPENSIVE_CONTAINER_EMPT
INESS_CHECK

Expensive use of map's bracket operator to insert
or assign a value

EXPENSIVE_MAP_INSERT_OR_
ASSIGN

Expensive use of non-member std::string operator+()
instead of a simple append

EXPENSIVE_STD_STRING_APP
END

Expensive use of std::string methods instead of
more efficient overload

EXPENSIVE_USE_OF_STD_STR
ING_METHODS

30 Hide Known or Acceptable Results Using Code Annotations

30-14

Defect Command-line Name
Expensive use of std::string with empty string
literal

UNNECESSARY_EMPTY_STRING
_LITERAL

Expensive use of string functions from the C
standard library

EXPENSIVE_USE_OF_C_STRIN
G_API

Expensive use of substr() to shorten a std::string EXPENSIVE_STD_STRING_RES
IZE

File access between time of check and use (TOCTOU) TOCTOU
File descriptor exposure to child process FILE_EXPOSURE_TO_CHILD
File does not compile file_does_not_compile
File manipulation after chroot() without chdir("/") CHROOT_MISUSE
Float conversion overflow FLOAT_CONV_OVFL
Float division by zero FLOAT_ZERO_DIV
Floating point comparison with equality operators BAD_FLOAT_OP
Float overflow FLOAT_OVFL
Format string specifiers and arguments mismatch STRING_FORMAT
Function called from signal handler not
asynchronous-safe

SIG_HANDLER_ASYNC_UNSAFE

Function called from signal handler not
asynchronous-safe (strict)

SIG_HANDLER_ASYNC_UNSAFE
_STRICT

Function pointer assigned with absolute address FUNC_PTR_ABSOLUTE_ADDR
Function that can spuriously fail not wrapped in
loop

SPURIOUS_FAILURE_NOT_WRA
PPED_IN_LOOP

Function that can spuriously wake up not wrapped in
loop

SPURIOUS_WAKEUP_NOT_WRAP
PED_IN_LOOP

Hard-coded buffer size HARD_CODED_BUFFER_SIZE
Hard-coded loop boundary HARD_CODED_LOOP_BOUNDARY
Hard-coded object size used to manipulate memory HARD_CODED_MEM_SIZE
Hard-coded sensitive data HARD_CODED_SENSITIVE_DAT

A
Host change using externally controlled elements TAINTED_HOSTID
Improper array initialization IMPROPER_ARRAY_INIT
Improper erase-remove idiom STD_REMOVE_WITHOUT_ERASE
Inappropriate I/O operation on device files INAPPROPRIATE_IO_ON_DEVI

CE
Incompatible padding for RSA algorithm operation CRYPTO_RSA_BAD_PADDING
Incompatible types prevent overriding VIRTUAL_FUNC_HIDING
Inconsistent cipher operations CRYPTO_CIPHER_BAD_FUNCTI

ON
Incorrect data type passed to va_arg VA_ARG_INCORRECT_TYPE

 Short Names of Bug Finder Defect Groups and Defect Checkers

30-15

Defect Command-line Name
Incorrect key for cryptographic algorithm CRYPTO_PKEY_INCORRECT_KE

Y
Incorrectly indented statement INCORRECT_INDENTATION
Incorrect order of network connection operations BAD_NETWORK_CONNECT_ORDE

R
Incorrect pointer scaling BAD_PTR_SCALING
Incorrect syntax of flexible array member size FLEXIBLE_ARRAY_MEMBER_IN

CORRECT_SIZE
Incorrect type data passed to va_start VA_START_INCORRECT_TYPE
Incorrect use of offsetof in C++ OFFSETOF_MISUSE
Incorrect use of va_start VA_START_MISUSE
Incorrect value forwarding INCORRECT_VALUE_FORWARDI

NG
Inefficient string length computation INEFFICIENT_BASIC_STRING

_LENGTH
Inefficient use of for loop PREFER_RANGE_BASED_FOR_L

OOPS
Inefficient use of sprintf inefficient_sprintf
Infinite loop INFINITE_LOOP
Information leak via structure padding PADDING_INFO_LEAK
Inline constraint not respected INLINE_CONSTRAINT_NOT_RE

SPECTED
Integer constant overflow INT_CONSTANT_OVFL
Integer conversion overflow INT_CONV_OVFL
Integer division by zero INT_ZERO_DIV
Integer overflow INT_OVFL
Integer precision exceeded INT_PRECISION_EXCEEDED
Invalid assumptions about memory organization INVALID_MEMORY_ASSUMPTIO

N
Invalid deletion of pointer BAD_DELETE
Invalid file position INVALID_FILE_POS
Invalid free of pointer BAD_FREE
Invalid iterator usage INVALID_ITERATOR_USAGE
Invalid scientific notation format INVALID_NOTATION_ON_E_CO

NSTANT
Invalid use of == operator BAD_EQUAL_EQUAL_USE
Invalid use of = operator BAD_EQUAL_USE
Invalid use of standard library floating point
routine

FLOAT_STD_LIB

30 Hide Known or Acceptable Results Using Code Annotations

30-16

Defect Command-line Name
Invalid use of standard library integer routine INT_STD_LIB
Invalid use of standard library memory routine MEM_STD_LIB
Invalid use of standard library routine OTHER_STD_LIB
Invalid use of standard library string routine STR_STD_LIB
Invalid va_list argument INVALID_VA_LIST_ARG
Join or detach of a joined or detached thread DOUBLE_JOIN_OR_DETACH
Lambda used as typeid operand LAMBDA_TYPE_MISUSE
LDAP injection LDAP_INJECTION
Library loaded from externally controlled path TAINTED_PATH_LIB
Line with more than one statement MORE_THAN_ONE_STATEMENT
Load of library from a relative path can be
controlled by an external actor

RELATIVE_PATH_LIB

Loop bounded with tainted value TAINTED_LOOP_BOUNDARY
Macro terminated with a semicolon SEMICOLON_TERMINATED_MAC

RO
Macro with multiple statements MULTI_STMT_MACRO
Member not initialized in constructor NON_INIT_MEMBER
Memory allocation with tainted size TAINTED_MEMORY_ALLOC_SIZ

E
Memory comparison of float-point values MEMCMP_FLOAT
Memory comparison of padding data MEMCMP_PADDING_DATA
Memory comparison of strings MEMCMP_STRINGS
Memory leak MEM_LEAK
Method not const METHOD_NOT_CONST
Mismatch between data length and size DATA_LENGTH_MISMATCH
Mismatched alloc/dealloc functions on Windows WIN_MISMATCH_DEALLOC
Missing blinding for RSA algorithm CRYPTO_RSA_NO_BLINDING
Missing block cipher initialization vector CRYPTO_CIPHER_NO_IV
Missing break of switch case MISSING_SWITCH_BREAK
Missing byte reordering when transferring data MISSING_BYTESWAP
Missing call to container's reserve method MISSING_CONTAINER_RESERV

E
Missing case for switch condition MISSING_SWITCH_CASE
Missing certification authority list CRYPTO_SSL_NO_CA
Missing cipher algorithm CRYPTO_CIPHER_NO_ALGORIT

HM
Missing cipher data to process CRYPTO_CIPHER_NO_DATA
Missing cipher final step CRYPTO_CIPHER_NO_FINAL

 Short Names of Bug Finder Defect Groups and Defect Checkers

30-17

Defect Command-line Name
Missing cipher key CRYPTO_CIPHER_NO_KEY
Missing constexpr specifier MISSING_CONSTEXPR
Missing data for encryption, decryption or signing
operation

CRYPTO_PKEY_NO_DATA

Missing explicit keyword MISSING_EXPLICIT_KEYWORD
Missing final step after hashing update operation CRYPTO_MD_NO_FINAL
Missing hash algorithm CRYPTO_MD_NO_ALGORITHM
Missing lock BAD_UNLOCK
Missing null in string array MISSING_NULL_CHAR
Missing or double initialization of thread
attribute

BAD_THREAD_ATTRIBUTE

Missing overload of allocation or deallocation
function

MISSING_OVERLOAD_NEW_DEL
ETE_PAIR

Missing padding for RSA algorithm CRYPTO_RSA_NO_PADDING
Missing parameters for key generation CRYPTO_PKEY_NO_PARAMS
Missing peer key CRYPTO_PKEY_NO_PEER
Missing private key CRYPTO_PKEY_NO_PRIVATE_K

EY
Missing private key for X.509 certificate CRYPTO_SSL_NO_PRIVATE_KE

Y
Missing public key CRYPTO_PKEY_NO_PUBLIC_KE

Y
Missing reset of a freed pointer MISSING_FREED_PTR_RESET
Missing return statement MISSING_RETURN
Missing salt for hashing operation CRYPTO_MD_NO_SALT
Missing unlock BAD_LOCK
Missing virtual inheritance MISSING_VIRTUAL_INHERITA

NCE
Missing X.509 certificate CRYPTO_SSL_NO_CERTIFICAT

E
Misuse of a FILE object FILE_OBJECT_MISUSE
Misuse of errno ERRNO_MISUSE
Misuse of errno in a signal handler SIG_HANDLER_ERRNO_MISUSE
Misuse of narrow or wide character string NARROW_WIDE_STR_MISUSE
Misuse of readlink() READLINK_MISUSE
Misuse of return value from nonreentrant standard
function

NON_REENTRANT_STD_RETURN

Misuse of sign-extended character value CHARACTER_MISUSE

30 Hide Known or Acceptable Results Using Code Annotations

30-18

Defect Command-line Name
Misuse of structure with flexible array member FLEXIBLE_ARRAY_MEMBER_ST

RUCT_MISUSE
Modification of internal buffer returned from
nonreentrant standard function

WRITE_INTERNAL_BUFFER_RE
TURNED_FROM_STD_FUNC

Move operation on const object MOVE_CONST_OBJECT
Move operation uses copy MOVE_OPERATION_USES_COPY
Multiple mutexes used with same condition variable MULTI_MUTEX_WITH_ONE_CON

D_VAR
Multiple threads waiting on same condition variable SIGNALED_COND_VAR_NOT_UN

IQUE
No data added into context CRYPTO_MD_NO_DATA
Noexcept function exits with exception NOEXCEPT_FUNCTION_THROWS
Non-compliance with AUTOSAR specification autosar_lib_non_complian

ce
Non-initialized pointer NON_INIT_PTR
Non-initialized variable NON_INIT_VAR
Nonsecure hash algorithm CRYPTO_MD_WEAK_HASH
Nonsecure parameters for key generation CRYPTO_PKEY_WEAK_PARAMS
Nonsecure RSA public exponent CRYPTO_RSA_LOW_EXPONENT
Nonsecure SSL/TLS protocol CRYPTO_SSL_WEAK_PROTOCOL
Null pointer NULL_PTR
Object slicing OBJECT_SLICING
Opening previously opened resource DOUBLE_RESOURCE_OPEN
Operator new not overloaded for possibly
overaligned class

MISSING_OVERLOAD_NEW_FOR
_ALIGNED_OBJ

Overlapping assignment OVERLAPPING_ASSIGN
Partially accessed array PARTIALLY_ACCESSED_ARRAY
Partial override of overloaded virtual functions PARTIAL_OVERRIDE
Partially duplicated code ALMOST_DUPLICATED_CODE
Pointer access out of bounds OUT_BOUND_PTR
Pointer dereference with tainted offset TAINTED_PTR_OFFSET
Pointer or reference to stack variable leaving
scope

LOCAL_ADDR_ESCAPE

Pointer to non-initialized value converted to const
pointer

NON_INIT_PTR_CONV

Possible copy-paste error COPY_PASTE_ERROR
Possible invalid operation on boolean operand INVALID_OPERATION_ON_BOO

LEAN
Possible misuse of sizeof SIZEOF_MISUSE

 Short Names of Bug Finder Defect Groups and Defect Checkers

30-19

Defect Command-line Name
Possibly inappropriate data type for switch
expression

INAPPROPRIATE_TYPE_IN_SW
ITCH

Possibly unintended evaluation of expression
because of operator precedence rules

OPERATOR_PRECEDENCE

Precision loss in integer to float conversion INT_TO_FLOAT_PRECISION_L
OSS

Predefined macro used as an object MACRO_USED_AS_OBJECT
Predictable block cipher initialization vector CRYPTO_CIPHER_PREDICTABL

E_IV
Predictable cipher key CRYPTO_CIPHER_PREDICTABL

E_KEY
Predictable random output from predictable seed RAND_SEED_PREDICTABLE
Preprocessor directive in macro argument PRE_DIRECTIVE_MACRO_ARG
Privilege drop not verified MISSING_PRIVILEGE_DROP_C

HECK
Public static field is not const PUBLIC_STATIC_FIELD_NOT_

CONST
Qualifier removed in conversion QUALIFIER_MISMATCH
Redundant expression in sizeof operand SIZEOF_USELESS_OP
Reference to un-named temporary LOCAL_REF_TO_UNNAMED_TEM

PORARY
Resource leak RESOURCE_LEAK
Returned value of a sensitive function not checked RETURN_NOT_CHECKED
Return from computational exception signal handler SIG_HANDLER_COMP_EXCP_RE

TURN
Return of non const handle to encapsulated data
member

BREAKING_DATA_ENCAPSULAT
ION

Self assignment not tested in operator MISSING_SELF_ASSIGN_TEST
Semicolon on same line as if, for or while
statement

SEMICOLON_CTRL_STMT_SAME
_LINE

Sensitive data printed out SENSITIVE_DATA_PRINT
Sensitive heap memory not cleared before release SENSITIVE_HEAP_NOT_CLEAR

ED
Server certificate common name not checked CRYPTO_SSL_HOSTNAME_NOT_

CHECKED
Shared data access within signal handler SIG_HANDLER_SHARED_OBJEC

T
Shift of a negative value SHIFT_NEG
Shift operation overflow SHIFT_OVFL
Side effect in arguments to unsafe macro SIDE_EFFECT_IN_UNSAFE_MA

CRO_ARG

30 Hide Known or Acceptable Results Using Code Annotations

30-20

Defect Command-line Name
Side effect of expression ignored SIDE_EFFECT_IGNORED
Signal call from within signal handler SIG_HANDLER_CALLING_SIGN

AL
Signal call in multithreaded program SIGNAL_USE_IN_MULTITHREA

DED_PROGRAM
Sign change integer conversion overflow SIGN_CHANGE
SQL injection SQL_INJECTION
Standard function call with incorrect arguments STD_FUNC_ARG_MISMATCH
Static uncalled function UNCALLED_FUNC
std::endl may cause an unnecessary flush STD_ENDL_USE
std::move called on an unmovable type STD_MOVE_UNMOVABLE_TYPE
std::string_view initialized with dangling pointer DANGLING_STRING_VIEW
Stream argument with possibly unintended side
effects

STREAM_WITH_SIDE_EFFECT

Subtraction or comparison between pointers to
different arrays

PTR_TO_DIFF_ARRAY

Tainted division operand TAINTED_INT_DIVISION
Tainted modulo operand TAINTED_INT_MOD
Tainted NULL or non-null-terminated string TAINTED_STRING
Tainted sign change conversion TAINTED_SIGN_CHANGE
Tainted size of variable length array TAINTED_VLA_SIZE
Tainted string format TAINTED_STRING_FORMAT
Thread-specific memory leak THREAD_MEM_LEAK
Throw argument raises unexpected exception THROW_ARGUMENT_EXPRESSIO

N_THROWS
TLS/SSL connection method not set CRYPTO_SSL_NO_ROLE
TLS/SSL connection method set incorrectly CRYPTO_SSL_BAD_ROLE
Too many va_arg calls for current argument list TOO_MANY_VA_ARG_CALLS
Typedef mismatch TYPEDEF_MISMATCH
Umask used with chmod-style arguments BAD_UMASK
Uncaught exception UNCAUGHT_EXCEPTION
Uncaught exception UNCAUGHT_EXCEPTION
Uncertain memory cleaning UNCERTAIN_MEMORY_CLEANIN

G
Uncleared sensitive data in stack SENSITIVE_STACK_NOT_CLEA

RED
Universal character name from token concatenation PRE_UCNAME_JOIN_TOKENS
Unmodified variable not const-qualified UNMODIFIED_VAR_NOT_CONST

 Short Names of Bug Finder Defect Groups and Defect Checkers

30-21

Defect Command-line Name
Unnamed namespace in header file UNNAMED_NAMESPACE_IN_HEA

DER
Unnecessary construction before reassignment UNNECESSARY_CONSTRUCTION

_BEFORE_ASSIGNMENT
Unnecessary implementation of a special member
function

UNNECESSARY_IMPL_OF_SPEC
IAL_MEMBER_FUNCTION

Unnecessary padding UNNECESSARY_STRUCT_PADDI
NG

Unnecessary use of std::string::c_str() or
equivalent string methods

EXPENSIVE_C_STR_STD_STRI
NG_CONSTRUCTION

Unprotected dynamic memory allocation UNPROTECTED_MEMORY_ALLOC
ATION

Unreachable code UNREACHABLE
Unreliable cast of function pointer FUNC_CAST
Unreliable cast of pointer PTR_CAST
Unsafe call to a system function UNSAFE_SYSTEM_CALL
Unsafe conversion between pointer and integer BAD_INT_PTR_CAST
Unsafe conversion from string to numerical value UNSAFE_STR_TO_NUMERIC
Unsafe standard encryption function UNSAFE_STD_CRYPT
Unsafe standard function UNSAFE_STD_FUNC
Unsigned integer constant overflow UINT_CONSTANT_OVFL
Unsigned integer conversion overflow UINT_CONV_OVFL
Unsigned integer overflow UINT_OVFL
Unused parameter UNUSED_PARAMETER
Useless if USELESS_IF
Useless Include USELESS_INCLUDE
Useless preprocessor conditional directive USELESS_PREPROC_CONDITIO

N
Use of a forbidden C/C++ keyword FORBIDDEN_KEYWORD
Use of a forbidden function FORBIDDEN_FUNC
Use of a forbidden macro FORBIDDEN_MACRO
Use of automatic variable as putenv-family function
argument

PUTENV_AUTO_VAR

Use of dangerous standard function DANGEROUS_STD_FUNC
Use of externally controlled environment variable TAINTED_ENV_VARIABLE
Use of indeterminate string INDETERMINATE_STRING
Use of memset with size argument zero MEMSET_INVALID_SIZE
Use of new or make_unique instead of more efficient
make_shared

MISSING_MAKE_SHARED

30 Hide Known or Acceptable Results Using Code Annotations

30-22

Defect Command-line Name
Use of non-secure temporary file NON_SECURE_TEMP_FILE
Use of obsolete standard function OBSOLETE_STD_FUNC
Use of path manipulation function without maximum
sized buffer checking

PATH_BUFFER_OVERFLOW

Use of plain char type for numerical value BAD_PLAIN_CHAR_USE
Use of previously closed resource CLOSED_RESOURCE_USE
Use of previously freed pointer FREED_PTR
Use of setjmp/longjmp SETJMP_LONGJMP_USE
Use of signal to kill thread THREAD_KILLED_WITH_SIGNA

L
Use of tainted pointer TAINTED_PTR
Use of tainted pointer TAINTED_PTR
Use of undefined thread ID UNDEFINED_THREAD_ID
Variable length array with nonpositive size NON_POSITIVE_VLA_SIZE
Variable shadowing VAR_SHADOWING
Vulnerable path manipulation PATH_TRAVERSAL
Vulnerable permission assignments DANGEROUS_PERMISSIONS
Vulnerable pseudo-random number generator VULNERABLE_PRNG
Weak cipher algorithm CRYPTO_CIPHER_WEAK_CIPHE

R
Weak cipher mode CRYPTO_CIPHER_WEAK_MODE
Weak padding for RSA algorithm CRYPTO_RSA_WEAK_PADDING
Write without a further read USELESS_WRITE
Writing to const qualified object CONSTANT_OBJECT_WRITE
Writing to read-only resource READ_ONLY_RESOURCE_WRITE
Wrong allocated object size for cast OBJECT_SIZE_MISMATCH
Wrong type used in sizeof PTR_SIZEOF_MISMATCH
X.509 peer certificate not checked CRYPTO_SSL_CERT_NOT_CHEC

KED

See Also

More About
• “Annotate Code and Hide Known or Acceptable Results” on page 30-2
• “Choose Specific Bug Finder Defect Checkers” on page 18-2

 Short Names of Bug Finder Defect Groups and Defect Checkers

30-23

Short Names of Code Complexity Metrics
When annotating your code to justify metrics or creating custom software quality objectives, you use
short names of code complexity metrics instead of the full names. The following table lists the short
names for code complexity metrics.

Note that you can only annotate your code for function level code complexity metrics only.

Project Metrics
Code Metric Acronym
Number of Direct Recursions AP_CG_DIRECT_CYCLE
Number of Header Files INCLUDES
Number of Files FILES
Number of Recursions AP_CG_CYCLE
Program Maximum Stack Usage PROG_MAX_STACK
Program Minimum Stack Usage PROG_MIN_STACK

File Metrics
Code Metric Acronym
Comment Density COMF
Estimated Function Coupling FCO
Number of Lines TOTAL_LINES
Number of Lines Without Comment LINES_WITHOUT_CMT

Function Metrics
Code Metric Acronym
Cyclomatic Complexity VG
Higher Estimate of Size of Local
Variables

LOCAL_VARS_MAX

Language Scope VOCF
Lower Estimate of Size of Local
Variables

LOCAL_VARS_MIN

Minimum Stack Usage MIN_STACK
Maximum Stack Usage MAX_STACK
Number of Call Levels LEVEL
Number of Call Occurrences NCALLS
Number of Called Functions CALLS
Number of Calling Functions CALLING

30 Hide Known or Acceptable Results Using Code Annotations

30-24

Code Metric Acronym
Number of Executable Lines FXLN
Number of Function Parameters PARAM
Number of Goto Statements GOTO
Number of Instructions STMT
Number of Lines Within Body FLIN
Number of Local Non-Static Variables LOCAL_VARS
Number of Local Static Variables LOCAL_STATIC_VARS
Number of Paths PATH
Number of Return Statements RETURN

See Also

More About
• “Annotate Code and Hide Known or Acceptable Results” on page 30-2

 Short Names of Code Complexity Metrics

30-25

Annotate Code for Known or Acceptable Results (Not
Recommended)

Note Starting R2017b, Polyspace uses a simpler annotation format. See “Annotate Code and Hide
Known or Acceptable Results” on page 30-2.

If Polyspace finds defects in your code that you cannot or will not fix, you can add annotations to your
code. These annotations are code comments that indicate known or acceptable defects or coding rule
violations. By using these annotations, you can:

• Avoid rereviewing defects or coding rule violations from previous analyses.
• Preserve review comments and classifications.

Note Source code annotations do not apply to code comments. You cannot annotate these rules:

• MISRA C:2004 Rules 2.2 and 2.3
• MISRA C:2012 Rules 3.1 and 3.2
• MISRA-C++ Rule 2-7-1
• JSF++ Rules 127 and 133

Add Annotations from the Polyspace Interface
This method shows you how to convert review comments and classifications in the Polyspace
interface into code annotations.

1 On the Results List or Result Details pane, assign a Severity, Status, and Comment to a
result.

a Click a result.
b From the Severity and Status dropdown lists, select an option.
c In the Comment field, enter a comment or keyword that helps you easily recognize the

result.
2 On the Results List pane, right-click the commented result and select Add Pre-Justification to

Clipboard. The software copies the severity, status, and comment to the clipboard.
3 Right-click the result again and select Open Editor. The software opens the source file to the

location of the defect.
4 Paste the contents of your clipboard on the line immediately before the line containing the defect

or coding rule violation.

You can see your review comments as a code comment in the Polyspace annotation syntax, which
Polyspace uses to repopulate review comments on your next analysis.

5 Save your source file and rerun the analysis.

On the Results List pane, the software populates the Severity, Status, and Comment columns
for the defect or rule violation that you annotated. These fields are read only because they are

30 Hide Known or Acceptable Results Using Code Annotations

30-26

populated from your code annotation. If you use a specific keyword or status for your
annotations, you can filter your results to hide or show your annotated results. For more
information on filtering, see “Filter and Group Results in Polyspace Desktop User Interface” on
page 23-2.

Add Annotations Manually
This method shows you how to enter comments directly into your source files by using the Polyspace
code annotation syntax. The syntax is not case-sensitive and applies to the first uncommented line of
C/C++ code following the annotation.

1 Open your source file in an editor and locate the line or section of code that you want to
annotate.

2 Add one of the following annotations:

• For a single line of code, add the following text directly before the line of code that you want
to annotate.

/* polyspace<Type:Kind1[,Kind2] : [Severity] : [Status] > [Notes] */
• For a section of code, use the following syntax.

/* polyspace:begin<Type:Kind1[,Kind2] : [Severity] : [Status] > [Notes] */

... Code section ...

/* polyspace:end<Type:Kind1[,Kind2] : [Severity] : [Status] > */

If a macro expands to multiple lines, use the syntax for code sections even though the macro
itself covers one line. The single-line syntax applies only to results that appear in the first line
of the expanded macro.

3 Replace the words Type, Kind1, [Kind2], [Severity], [Status], and [Additional text]
with allowed values, indicated in the following table. The text with square brackets [] is optional
and you can delete it. See “Syntax Examples” on page 30-28.

Word Allowed Values
Type The type of results:

• Defect (Polyspace Bug Finder)
• RTE, for run-time checks (Polyspace Code Prover)
• VARIABLE, for global variables (Polyspace Code Prover)
• CODE-METRIC, for code complexity metrics.
• MISRA-C, for MISRA C:2004
• MISRA-AC-AGC
• MISRA-C3, for MISRA C:2012
• MISRA-CPP
• JSF
• Custom, for custom coding rule violations.

 Annotate Code for Known or Acceptable Results (Not Recommended)

30-27

Word Allowed Values
Kind1,[Kind2],... For defects, run-time checks and code metrics, use the short names of checkers.

See:

• “Short Names of Bug Finder Defect Groups and Defect Checkers” on page
30-11

• “Short Names of Code Prover Run-Time Checks” (Polyspace Code Prover)

For coding rule violations, specify the rule number or numbers.

For global variables, the only allowed value is ALL.

If you want the comment to apply to all possible defects or coding rules, specify
ALL.

Severity Text that indicates how critical you consider the defect. Enter one of the
following:

• Unset
• High
• Medium
• Low

This text populates the Severity column on the Results List pane.
Status Text that indicates how you intend to correct the error in your code. Enter one of

the following or any other text:

• Unreviewed
• To investigate
• To fix
• Justified
• No action planned
• Not a defect
• Other

This text populates the Status column on the Results List pane. The status is
also used in Polyspace Access to determine whether a result is justified. To
justify a result, use Justified, No action planned or Not a defect.

Notes Additional comments, such as a keyword or an explanation for the status and
severity.

Syntax Examples

• A single defect:
/* polyspace<Defect:HARD_CODED_BUFFER_SIZE:Medium:To investigate> Known issue */
int table[100];

• A single run-time check:

/* polyspace<RTE: ZDV : High : To Fix > Denominator cannot be zero */
y=1/x;

30 Hide Known or Acceptable Results Using Code Annotations

30-28

• A MISRA C:2012 rule violation:

/* polyspace<MISRA-C3: 13.1 : Low : Justified> Known issue */
int arr[2] = {x++,y};

• Unused global variable:

/* polyspace<VARIABLE: ALL : Low : Justified> Variable to use later*/
int var_unused;

• Multiple defects:
polyspace<Defect:USELESS_WRITE,DEAD_CODE:Low:No Action Planned> OK issue

• Multiple JSF rule violations:

polyspace<JSF:9,13:Low:Justified> Known issue

 Annotate Code for Known or Acceptable Results (Not Recommended)

30-29

Define Custom Annotation Format
This example shows how to create and edit an XML file to define an annotation format and map it to
the Polyspace annotation syntax. Once you create and edit the XML file, pass the file to Polyspace by
using option -xml-annotations-description.

To define multiple custom annotation formats, see “Define Multiple Custom Annotation Syntaxes” on
page 30-36.

To get started, copy the following code to a text editor and save it on your machine as
annotations_description.xml.

30 Hide Known or Acceptable Results Using Code Annotations

30-30

<?xml version="1.0" encoding="UTF-8"?>

<Annotations xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="annotations_xml_schema.xsd"
 Group="example XML">

 <Expressions Search_For_Keywords="myKeyword"
 Separator_Result_Name="," >
 <!-- Define annotation format in this
 section by adding <Expression/> elements -->

 <Expression Mode="SAME_LINE"
 Regex="myKeyword\s+(\w+(\s*,\s*\w+)*)"
 Rule_Identifier_Position="1"
 />

 <Expression Mode="GOTO_INCREMENT"
 Regex="myKeyword\s+(\+\d+\s)(\w+(\s*,\s*\w+)*)"
 Increment_Position="1"
 Rule_Identifier_Position="2"
 />

 <Expression Mode="BEGIN"
 Regex="myKeyword\s*(\w+(\s*,\s*\w+)*)\s*Block_on"
 Rule_Identifier_Position="1"
 Case_Insensitive="true"
 />

 <Expression Mode="END"
 Regex="myKeyword\s*(\w+(\s*,\s*\w+)*)\s*Block_off"
 Rule_Identifier_Position="1"
 />
 <Expression Mode="END_ALL"
 Regex="myKeyword\sBlock_off_all"
 />

 <Expression Mode="SAME_LINE"

Regex="myKeywords\s+(\w+(\s*,\s*\w+)*)
(\s*\[(\w+\s*)*([:]\s*(\w+\s*)+)*\])*(\s*-*\s*)*([^-]*)(\s*-*)*"
Rule_Identifier_Position="1"
Status_Position="4"
Severity_Position="6"
Comment_Position="8"
 />
<! -- Put the regular expression on a single line instead of two line
when you copy it to a text editor -->

 <!-- SAME_LINE example with more complex regular expression.
 Matches the following annotations:
 //myKeywords 50 [my_status:my_severity] -Additional comment-
 //myKeywords 50 [my_status]
 //myKeywords 50 [:my_severity]
 //myKeywords 50 -Additional comment-
 -->

 </Expressions>

 <Mapping>
 <!-- Map your annotation syntax to the Polyspace annotation
 syntax by adding <Result_Name_Mapping /> elements in this section -->

<Result_Name_Mapping Rule_Identifier="100" Family="DEFECT"
 Result_Name="INT_ZERO_DIV"/>

<Result_Name_Mapping Rule_Identifier="50" Family="MISRA-C3" Result_Name="8.4"/>
<Result_Name_Mapping Rule_Identifier="51" Family="MISRA-C3" Result_Name="8.7"/>
<Result_Name_Mapping Rule_Identifier="ALL_MISRA" Family="MISRA-C3" Result_Name="*"/>
 </Mapping>
</Annotations>

The XML file consists of two parts:

• <Expressions>...</Expressions> where you define the format of your annotation syntax.

 Define Custom Annotation Format

30-31

• <Mapping>...</Mapping> where you map your syntax to the Polyspace annotation syntax.

After you edit this file, Polyspace can interpret your custom code annotation when you invoke the
option -xml-annotations-description.

Define Annotation Syntax Format
To define an annotation syntax in Polyspace, your syntax must follow a pattern that you can represent
with a regular expression. See “Regular Expressions”. It is recommended that you include a keyword
in the pattern of your annotation syntax to help identify it. In this example, the keyword is
myKeyword. Set the attribute Search_For_Keywords equal to this keyword.

Once you know the pattern of your annotation, you can define it in the XML by adding an
<Expression/> element and specifying at least the attributes Mode, Regex, and
Rule_Identifier_Position. For instance, the first <Expression/> element in
annotations_description.xml defines an annotation with these attributes:

• Mode="SAME_LINE". The annotation applies to code on the same line.
• Regex="myKeyword\s+(\w+(\s*,\s*\w+)*)". Polyspace uses the regular expression to

search for a string that begins with myKeyword, followed by a space \s+. Polyspace then searches
for a capturing group (\w+(\s*,\s*\w+)*) that includes an alphanumeric rule identifier \w+
and, optionally, additional comma-separated rule identifiers (\s*,\s*\w+)*.

• Rule_Identifier_Position="1". The integer value of this attribute corresponds to the
number of opening parentheses preceding the relevant capturing group in the regular expression.
In myKeyword\s+(\w+(\s*,\s*\w+)*), one opening parenthesis precedes the capturing group
of the rule identifier (\w+(\s*,\s*\w+)*). If you want to match rule identifiers captured by
(\s*,\s*\w+), then you set Rule_Identifier_Position="2" because two opening
parentheses precede this capturing group.

The list of attributes and their values are listed in this table. The example column refers to the format
defined in annotations_description.xml.

Attribute Use Value Example
Mode Required SAME_LINE Applies only on the same line as the

annotation.

code; //myKeyword 100

GOTO_INCREME
NT

Applies on the same line as the annotation
and the following n lines:

3. code; // myKeyword +3 ALL_MISRA
4. /*comments */
5.
6. code;
7. code;

The preceding annotation applies to lines
3–6 only.

30 Hide Known or Acceptable Results Using Code Annotations

30-32

Attribute Use Value Example
BEGIN Applies to the same line and all following

lines until a corresponding expression
with attribute Mode="END" or
"END_ALL", or until the end of the file.

 //myKeyword 50, 51 Block_on
 Code block 1;
 ...

END Stops the application of a rule identifier
declared by a corresponding expression
with attribute Mode="BEGIN".

 //myKeyword 50, 51 Block_on
 Code block 1;
 ...
 More code;
 //myKeyword 50 Block_off

Only rule identifier 50 is turned off. Rule
identifier 51 still applies.

END_ALL Stops all rule identifiers declared by an
expression with attribute Mode="BEGIN".

 //myKeyword 50, 51 Block_on
 Code block 1;
 ...
 More code;
 //myKeyword Block_off_all

Rule identifiers 50 and 51 are turned off.
Regex Required Regular

expression
search string

See “Regular Expressions”.
Regex="myKeyword\s+(\w+(\s*,\s*
\w+)*)" matches these expressions:

// myKeyword 50, 51
/* myKeyword ALL_MISRA, 100 */

 Define Custom Annotation Format

30-33

Attribute Use Value Example
Rule_Identifier
_Position

Required, except
when you set
Mode="END_ALL"

Integer The integer value of this attribute
corresponds to the number of opening
parentheses in the regular expression
before the relevant search expression.

<Expression Mode="GOTO_INCREMENT"
Regex="myKeyword\s+(\+\d+\s)
(\w+(\s*,\s*\w+)*)"
Increment_Position="1"
Rule_Identifier_Position="2"/>

Note Enter the regex expression on a
single line when you edit your XML file.

The search expression for the rule
identifier \w+(\s*,\s*\w+)* is after the
second opening parenthesis of the regular
expression.

Increment_Posit
ion

Required only
when you set
Mode="GOTO_INC
REMENT"

Integer The integer value of this attribute
corresponds to the number of opening
parentheses in the regular expression
before the relevant search expression.

<Expression Mode="GOTO_INCREMENT"
Regex="myKeyword\s+(\+\d+\s)
(\w+(\s*,\s*\w+)*)"
Increment_Position="1"
Rule_Identifier_Position="2"/>

Note Enter the regex expression on a
single line when you edit your XML file.

The search expression for the increment \
+\d+\s is after the first opening
parenthesis of the regular expression.

Status_Position Optional Integer See Increment_Position example.
When you use this attribute, the entry in
your annotation is displayed in the Status
column on the Results List pane of the
user interface.

Severity_Positi
on

Optional Integer See Increment_Position example.
When you use this attribute, the entry in
your annotation is displayed in the
Severity column on the Results List pane
of the user interface.

30 Hide Known or Acceptable Results Using Code Annotations

30-34

Attribute Use Value Example
Comment_Positio
n

Optional Integer See Increment_Position example.
When you use this attribute, the entry in
your annotation is displayed in the
Comment column on the Results List
pane of the user interface. Your comment
is appended to the string Justified by
annotation in source:

Case_Insensitiv
e

Optional True or false When you set this attribute to "true", the
regular expression is case insensitive,
otherwise it is case sensitive. If you do not
declare this attribute in your expression,
the regular expression is case sensitive.
For Case_Insensitive="true", these
annotations are equivalent:

//MYKEYWORD ALL_MISRA BLOCK_ON

//mykeyword all_misra block_on

Map Your Annotation to the Polyspace Annotation Syntax
After you define your annotation format, you can map the rule identifiers you are using to their
corresponding Polyspace annotation syntax. You can do this mapping by adding an
<Result_Name_Mapping/> element and specifying attributes Rule_Identifier, Family, and
Result_Name. For instance, if rule identifier 50 corresponds to MISRA C: 2012 rule 8.4, map it to the
Polyspace syntax MISRA-C3:8.4 by using this element:
<Result_Name_Mapping Rule_Identifier="50" Family="MISRA-C3" Result_Name="8.4"/>

The list of attributes and their values are listed in this table. The example column refers to the format
defined in annotations_description.xml.

Attribute Use Value Example
Rule_Identifier Required User defined. Each

value must be unique.
See the mapping
section of
annotations_descri
ption.xml

Family Required Corresponds to
Polyspace results family.
For a list of allowed
values, see allowed
values on page 30-2.

See the mapping
section of
annotations_descri
ption.xml

Result_Name Required Corresponds to
Polyspace result names.
For a list of allowed
values, see allowed
values on page 30-2.

See the mapping
section of
annotations_descri
ption.xml

 Define Custom Annotation Format

30-35

Define Multiple Custom Annotation Syntaxes
To define more than one annotation syntax, in your XML file, specify a comma separated list of
keywords associated with each syntax for the Search_For_Keywords attribute.

For example, if you use custom annotations that follow these patterns to annotate violations of MISRA
C: 2012 rules:

int func(int p) //customSyntax M123 $ customSyntax M124
{
 int i;
 int j = 1;

 i = 1024 / (j - p);
 return i;
}

int func2(void){ //otherCustomSyntax 50
 int x=func(2);
 return x;
}

Enter the following in the XML file where you define the custom annotation syntax.
<?xml version="1.0" encoding="UTF-8"?>

<Annotations xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="annotations_xml_schema.xsd"
 Group="multipleCustomSyntax">
 <!-- Enter comma separated list of keywords -->
 <Expressions Search_For_Keywords="customSyntax,otherCustomSyntax"
 Separator_Result_Name="$" >

 <!-- This section defines the annotation syntax format -->
 <Expression Mode="SAME_LINE"
 Regex="customSyntax\s(\w+(\s*,\s*\w+)*)"
 Rule_Identifier_Position="1"
 />
 <Expression Mode="SAME_LINE"
 Regex="otherCustomSyntax\s(\w+(\s*,\s*\w+)*)"
 Rule_Identifier_Position="1"
 />
 </Expressions>
 <!-- This section maps the user annotation to the Polyspace
 annotation syntax -->
 <Mapping>
 <!-- Mapping for customSyntax rules -->
 <Result_Name_Mapping Rule_Identifier="M123" Family="MISRA-C3" Result_Name="8.7"/>
 <Result_Name_Mapping Rule_Identifier="M124" Family="MISRA-C3" Result_Name="D4.6"/>
 <!-- Mapping for otherCustomSyntax rules -->
 <Result_Name_Mapping Rule_Identifier="50" Family="MISRA-C3" Result_Name="8.4"/>
 </Mapping>
</Annotations>

When you use multiple custom annotations, each rule identifier must be unique. For instance, in the
preceding example, you cannot reuse rule identifier M123 with otherCustomSyntax.

See Also
-xml-annotations-description

More About
• “Annotation Description Full XML Template” on page 30-38
• “Annotate Code and Hide Known or Acceptable Results” on page 30-2

30 Hide Known or Acceptable Results Using Code Annotations

30-36

• “Fix Errors Applying Custom Annotation Format for Polyspace Results” on page 32-63

 Define Custom Annotation Format

30-37

Annotation Description Full XML Template
This table lists all the elements, attributes, and values of the XML that you can use to define an
annotation format and map it to the Polyspace annotation syntax. For an example of how to edit an
XML to define annotation syntax, see “Define Custom Annotation Format” on page 30-30.

Element Attribute Use Value
Annotations Group Required User defined string. For

example, "Custom
Annotations"

Expressions Search_For_Keyword
s

Required User defined string.
This string is a keyword
you include in the
pattern of your
annotation syntax to
help identify it. For
example, "myKeyword".
To use multiple custom
annotations, enter a
comma separated list of
keyword. See “Define
Multiple Custom
Annotation Syntaxes”
on page 30-36.

Separator_Result_N
ame

Required User defined string.
This string is a
separator when you list
multiple Polyspace
result names in the
same annotation. For
example ","

Separator_Family_A
nd_Result_Name

Optional User defined string.
This string is a
separator when you list
multiple Polyspace
results families in the
same annotation. For
example, " "

Separator_Family Optional User defined string.
This string is a
separator when you list
a Polyspace results
family and results name
in the same annotation.
For example, ":"

Expression Mode Required SAME_LINE
GOTO_INCREMENT
BEGIN

30 Hide Known or Acceptable Results Using Code Annotations

30-38

Element Attribute Use Value
END
END_ALL
NEXT_CODE_LINE

The annotation applies
to the next line of code.
Comments and blank
lines are ignored.
GOTO_LABEL
LABEL
XML_START
XML_CONTENT

The annotation for this
expression must be on a
single line.
XML_END

Regex Required Regular expression
search string that
matches the pattern of
your annotation.

Rule_Identifier_Po
sition

Required, except when
you set
Mode="END_ALL" or
"LABEL"

Integer. The integer
value of this attribute
corresponds to the
number of opening
parentheses in the
regular expression
before the relevant
search expression.

Increment_Position Required only when you
set
Mode="GOTO_INCREME
NT"

Integer. The integer
value of this attribute
corresponds to the
number of opening
parentheses in the
regular expression
before the relevant
search expression.

Status_Position Optional Integer. The integer
value of this attribute
corresponds to the
number of opening
parentheses in the
regular expression
before the relevant
search expression.

 Annotation Description Full XML Template

30-39

Element Attribute Use Value
Severity_Position Optional Integer. The integer

value of this attribute
corresponds to the
number of opening
parentheses in the
regular expression
before the relevant
search expression.

Comment_Position Optional Integer. The integer
value of this attribute
corresponds to the
number of opening
parentheses in the
regular expression
before the relevant
search expression.

Label_Position Required only when you
set
Mode="GOTO_LABEL"
or "LABEL"

Integer. The integer
value of this attribute
corresponds to the
number of opening
parentheses in the
regular expression
before the relevant
search expression.

Case_Insensitive Optional True or false. When you
do not declare this
attribute, the default
value is false.

Is_Pragma Optional True or false. When you
do not declare this
attribute, the default
value is false.

Set this attribute to true
if you want to declare
your annotation using a
pragma instead of a
comment.

Applies_Also_On_Sa
me_Line

Optional True or false. When you
do not declare this
attribute, the default
value is true.

Use this attribute to
enable annotations with
the old Polyspace syntax
to apply on the same
line of code.

30 Hide Known or Acceptable Results Using Code Annotations

30-40

Element Attribute Use Value
Mapping None None None
Result_Name_Mappin
g

Rule_Identifier Required User defined
Family Required Corresponds to

Polyspace results family.
For a list of allowed
values, see allowed
values on page 30-2.

Result_Name Required Corresponds to
Polyspace result names.
For a list of allowed
values, see allowed
values on page 30-2.

Example
This example code covers some of the less commonly used attributes for defining annotations in XML.

 Annotation Description Full XML Template

30-41

<?xml version="1.0" encoding="UTF-8"?>

<Annotations xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="annotations_xml_schema.xsd"
 Group="XML Template">

 <Expressions Separator_Result_Name=","
 Search_For_Keywords="myKeyword">

 <Expression Mode="GOTO_LABEL"
 Regex="(\A|\W)myKeyword\s+S\s+(\d+(\s*,\s*\d+)*)\s+([a-zA-Z_-]\w+)"
 Rule_Identifier_Position="2"
 Label_Position="4"

 />

 <Expression Mode="LABEL"
 Regex="(\A|\W)myKeyword\s+L:(\w+)"
 Label_Position="2"

 />
 <!-- Annotation applies starting current line until
 next declaration of label word "myLabel"
 Example:

 code; // myKeyword S 100 myLabel
 ...
 more code;
 // myKeyword L myLabel
 -->

 <Expression Mode="BEGIN"
 Regex="#\s*pragma\s+myKeyword_MESSAGES_ON\s+(\w+)"
 Rule_Identifier_Position="1"
 Is_Pragma="true"
 />
 <!-- Annotation declared with pragma instead of comment
 Example:#pragma myKeyword_MESSAGES_ON 100 -->

 <!-- Comment declaration with XML format-->

 <!-- XML_START must be declared before XML_CONTENT -->
 <Expression Mode="XML_START"
 Regex="<\s*myKeyword_COMMENT\s*>"

 />
 <!-- Example: <myKeyword_COMMENT> -->

 <Expression Mode="XML_CONTENT"
 Regex="<\s*(\d*)\s*>(((?![*]/)(?!<).)*)</\s*(\d*)\s*>"
 Rule_Identifier_Position="1"
 Comment_Position="2"

 />
 <!-- Example: <100>This is my comment</100>
 XML_CONTENT must be declare on a single line.

 <100>This is my comment
 </100>
 is incorrect.
 -->

 <Expression Mode="XML_END"
 Regex="</\s*myKeyword_COMMENT\s*>"

 />
 <!-- Example: </myKeyword_COMMENT> -->
 </Expressions>

 <Mapping>

 <Result_Name_Mapping Rule_Identifier="100" Family="MISRA-C" Result_Name="4.1"/>
 </Mapping>
</Annotations>

30 Hide Known or Acceptable Results Using Code Annotations

30-42

See Also
-xml-annotations-description

More About
• “Annotate Code and Hide Known or Acceptable Results” on page 30-2

 Annotation Description Full XML Template

30-43

Advanced Review Workflows

31

Evaluate Polyspace Bug Finder Results Against Bug Finder
Quality Objectives

Instead of evaluating all results of a Bug Finder analysis, you can first define a set of criteria that the
analyzed project must meet and compare the Bug Finder results against those criteria. The Bug
Finder Quality Objectives or BF-QOs are a set of thresholds against which you can compare your Bug
Finder analysis results. You can develop a review process based on the Bug Finder Quality Objectives.
In your review process, you consider only those results that cause your project to fail a certain BF-QO
level.

The Bug Finder Quality Objectives are adapted from Software Quality Objectives in Code Prover. See
“Evaluate Polyspace Code Prover Results Against Software Quality Objectives” (Polyspace Code
Prover).

You can use a predefined BF-QO level or define your own. To customize BF-QO levels, see “Customize
Software Quality Objectives” on page 25-16.

Following are the predefined quality thresholds specified by each BF-QO.

BF-QO Level 1

Metric Threshold Value
Comment density of a file 20
Number of paths through a function 80
Number of goto statements 0
Cyclomatic complexity 10
Number of calling functions 5
Number of calls 7
Number of parameters per function 5
Number of instructions per function 50
Number of call levels in a function 4
Number of return statements in a function 1
Language scope, an indicator of the cost of maintaining or changing
functions. Calculated as follows:
(N1+N2) / (n1+n2)

• n1 — Number of different operators
• N1 — Total number of operators
• n2 — Number of different operands
• N2 — Total number of operands

4

Number of recursions 0
Number of direct recursions 0

31 Advanced Review Workflows

31-2

Metric Threshold Value
Number of unjustified violations of the following MISRA C:2004 rules:

• 5.2
• 8.11, 8.12
• 11.2, 11.3
• 12.12
• 13.3, 13.4, 13.5
• 14.4, 14.7
• 16.1, 16.2, 16.7
• 17.3, 17.4, 17.5, 17.6
• 18.4
• 20.4

0

Number of unjustified violations of the following MISRA C:2012 rules:

• 8.8, 8.11, and 8.13
• 11.1, 11.2, 11.4, 11.5, 11.6, and 11.7
• 14.1 and 14.2
• 15.1, 15.2, 15.3, and 15.5
• 17.1 and 17.2
• 18.3, 18.4, 18.5, and 18.6
• 19.2
• 21.3

0

Number of unjustified violations of the following MISRA C++ rules:

• 2-10-2
• 3-1-3, 3-3-2, 3-9-3
• 5-0-15, 5-0-18, 5-0-19, 5-2-8, 5-2-9
• 6-2-2, 6-5-1, 6-5-2, 6-5-3, 6-5-4, 6-6-1, 6-6-2, 6-6-4, 6-6-5
• 7-5-1, 7-5-2, 7-5-4
• 8-4-1
• 9-5-1
• 10-1-2, 10-1-3, 10-3-1, 10-3-2, 10-3-3
• 15-0-3, 15-1-3, 15-3-3, 15-3-5, 15-3-6, 15-3-7, 15-4-1, 15-5-1, 15-5-2
• 18-4-1

0

BF-QO Level 2 and 3

In addition to all the requirements of BF-QO Level 1, these levels includes the following
thresholds:

 Evaluate Polyspace Bug Finder Results Against Bug Finder Quality Objectives

31-3

Metric Threshold Value
Number of high-impact defects. See also “Classification of Defects by
Impact” on page 18-49.

0

BF-QO Level 4

In addition to all the requirements of BF-QO Level 2 and 3, this level includes the following
thresholds:

Metric Threshold Value
Number of medium-impact defects. See also “Classification of Defects by
Impact” on page 18-49.

0

BF-QO Level 5

In addition to all the requirements of BF-QO Level 4, this level includes the following
thresholds:

Metric Threshold Value
Number of unjustified violations of the following MISRA C:2004 rules:

• 6.3
• 8.7
• 9.2, 9.3
• 10.3, 10.5
• 11.1, 11.5
• 12.1, 12.2, 12.5, 12.6, 12.9, 12.10
• 13.1, 13.2, 13.6
• 14.8, 14.10
• 15.3
• 16.3, 16.8, 16.9
• 19.4, 19.9, 19.10, 19.11, 19.12
• 20.3

0

Number of unjustified violations of the following MISRA C:2012 rules:

• 11.8
• 12.1 and 12.3
• 13.2 and 13.4
• 14.4
• 15.6 and 15.7
• 16.4 and 16.5
• 17.4
• 20.4, 20.6, 20.7, 20.9, and 20.11

0

31 Advanced Review Workflows

31-4

Metric Threshold Value
Number of unjustified violations of the following MISRA C++ rules:

• 3-4-1, 3-9-2
• 4-5-1
• 5-0-1, 5-0-2, 5-0-7, 5-0-8, 5-0-9, 5-0-10, 5-0-13, 5-2-1, 5-2-2, 5-2-7,

5-2-11, 5-3-3, 5-2-5, 5-2-6, 5-3-2, 5-18-1
• 6-2-1, 6-3-1, 6-4-2, 6-4-6, 6-5-3
• 8-4-3, 8-4-4, 8-5-2, 8-5-3
• 11-0-1
• 12-1-1, 12-8-2
• 16-0-5, 16-0-6, 16-0-7, 16-2-2, 16-3-1

0

BF-QO Level 6

In addition to all the requirements of BF-QO Level 5, this level includes the following
thresholds:

Metric Threshold Value
Number of low-impact defects. See also “Classification of Defects by
Impact” on page 18-49.

0

BF-QO Exhaustive

In addition to all the requirements of BF-QO Level 6, this level includes the following thresholds.
The thresholds for coding rule violations apply only if you check for coding rule violations.

Metric Threshold Value
Number of unjustified MISRA C and MISRA C++ coding rule violations 0
Number of unjustified defects 0

Comparing Analysis Results Against Quality Objectives
You can compare your analysis results against SQOs either in the Polyspace Access web interface or
the Polyspace user interface.

• In the Polyspace Access web interface, you can first determine whether your project fails to attain
a certain Quality Objective threshold by looking at the Quality Objectives card on the Project
Overview dashboard.

 Evaluate Polyspace Bug Finder Results Against Bug Finder Quality Objectives

31-5

The card shows the percentage of results that you have already fixed or justified in order to attain
the threshold. Click the number of remaining findings to open those findings in the Results List.
For a more detailed view of the quality of your code against all quality objectives thresholds, open
the Quality Objectives dashboard. For more information, see the “Quality Objectives Dashboard
in Polyspace Access” on page 25-14.

• In the Polyspace user interface, you can use the menu in the Results List toolbar to display only
those results that you must fix or justify to attain a certain Software Quality Objective.

To activate the SQO options in this menu, select Tools > Preferences. On the Review Scope tab,
select Include Quality Objectives Scope.

See Also

Related Examples
• “Filter and Sort Results in Polyspace Access Web Interface” on page 27-8
• “Address Results in Polyspace Access Through Bug Fixes or Justifications” on page 26-2

31 Advanced Review Workflows

31-6

Justify Coding Rule Violations Using Code Prover Checks
Coding rules are good practices that you observe for safe and secure code. Using the Polyspace
coding rule checkers, you find instances in your code that violate a coding rule standard such as
MISRA. If you run Code Prover, you also see results of checks that find run-time errors or prove their
absence. In some cases, the two kinds of results can be used together for efficient review. For
instance, you can use a green Code Prover check as rationale for not fixing a coding rule violation
(justification).

If you run MISRA checking in Code Prover, some of the checkers use Code Prover static analysis
under the hood to find MISRA violations. The MISRA checker in Code Prover is more rigorous
compared to Bug Finder because Code Prover keeps precise track of the data and control flow in your
code. For instance:

• MISRA C:2012 Rule 9.1 (Polyspace Code Prover): The rule states that the value of an object
with automatic storage duration shall not be read before it has been set. Code Prover uses the
results of a Non-initialized local variable (Polyspace Code Prover) check to determine
the rule violations.

• MISRA C:2004 Rule 13.7: The rule states that the Boolean operations whose results are invariant
shall not be permitted. Code Prover uses the results of an Unreachable code (Polyspace Code
Prover) check to identify conditions that are always true or false.

In some other cases, the MISRA checkers do not suppress rule violations even though corresponding
green checks indicate that the violations have no consequence. You have the choice to do one of
these:

• Strictly conform to the standard and fix the rule violations.
• Manually justify the rule violations using the green checks as rationale.

Set a status such as No action planned to the result and enter the green check as rationale in
the result comments. You can later filter justified results using that status.

The following sections show examples of situations where you can justify MISRA violations using
green Code Prover checks.

Rules About Data Type Conversions
In some cases, implicit data type conversions are okay if the conversion does not cause an overflow.

In the following example, the line temp = var1 - var2; violates MISRA C:2012 Rule 10.3
(Polyspace Code Prover). The rule states that the value of an expression shall not be assigned to an
object of a different essential type category. Here, the difference between two int variables is
assigned to a char variable. You can justify this particular rule violation by using the results of a
Code Prover Overflow (Polyspace Code Prover) check.

 Justify Coding Rule Violations Using Code Prover Checks

31-7

int func (int var1, int var2) {
 char temp;
 temp = var1 - var2;
 if (temp > 0)
 return -1;
 else
 return 1;
}

double read_meter1(void);
double read_meter2(void);

int main(char arg, char* argv[]) {
 int meter1 = (read_meter1()) * 10;
 int meter2 = (read_meter2()) * 999;
 int tol = 10;
 if((meter1 - meter2)> -tol && (meter1 - meter2) < tol)
 func(meter1, meter2);
 return 0;
}

Consider the rationale behind this rule. The use of implicit conversions between types can lead to
unintended results, including possible loss of value, sign, or precision. For a conversion from int to
char, a loss of sign or precision cannot happen. The only issue is a potential loss of value if the
difference between the two int variables overflows.

Run Code Prover on this code. On the Source pane, click the = in temp = var1 - var2;. You see
the expected violation of MISRA C:2012 Rule 10.3, but also a green Overflow check.

The green check indicates that the conversion from int to char does not overflow.

31 Advanced Review Workflows

31-8

You can use the green overflow check as rationale to justify the rule violation.

Rules About Pointer Arithmetic
Pointer arithmetic on nonarray pointers are okay if the pointers stay within the allowed buffer.

In the following example, the operation ptr++ violates MISRA C:2004 Rule 17.4. The rule states that
array indexing shall be the only allowed form of pointer arithmetic. Here, a pointer that is not an
array is incremented.

#define NUM_RECORDS 3
#define NUM_CHARACTERS 6

void readchar(char);

int main(int argc, char* argv[]) {
 char dbase[NUM_RECORDS][NUM_CHARACTERS] = { "r5cvx", "a2x5c", "g4x3c"};
 char *ptr = &dbase[0][0];
 for (int index = 0; index < NUM_RECORDS * NUM_CHARACTERS; index++) {
 readchar(*ptr);
 ptr++;
 }
 return 0;
}

Consider the rationale behind this rule. After an increment, a pointer can go outside the bounds of an
allowed buffer (such as an array) or even point to an arbitrary location. Pointer arithmetic is fine as
long as the pointer points within an allowed buffer. You can justify this particular rule violation by
using the results of a Code Prover Illegally dereferenced pointer (Polyspace Code Prover)
check.

Run Code Prover on this code. On the Source pane, click the ++ in ptr++. You see the expected
violation of MISRA C:2004 Rule 17.4.

 Justify Coding Rule Violations Using Code Prover Checks

31-9

Click the * on the operation readchar(*ptr). You see a green Illegally dereferenced pointer
check. The green check indicates that the pointer points within allowed bounds when dereferenced.

You can use the green check to justify the rule violation.

31 Advanced Review Workflows

31-10

See Also

Related Examples
• “Address Results in Polyspace User Interface Through Bug Fixes or Justifications” on page 22-2

 Justify Coding Rule Violations Using Code Prover Checks

31-11

Polyspace Results in Lines Containing Macros
Macros in C/C++ can improve readability and maintainability of code. A macro is a named fragment
of code defined with the #define directive, for instance:

#define MAXSIZE 64

The macro name acts as a shorthand for the fragment of code. During preprocessing, each instance of
a macro is replaced with its definition. For instance, in the above example, each time you use
MAXSIZE, it is replaced with 64 during preprocessing.

Polyspace provides several conveniences for reviewing results in lines containing macros.

Macros in Source Lines Can Be Expanded in Place
If a source code line contains a macro, the Source pane displays the line with an icon on the left.
You can click the icon to expand the macro, that is, see the macro definition, and click again to
collapse the macro. See also:

• Bug Finder:

• “Source Code in Polyspace Desktop User Interface” on page 21-17
• “Source Code in Polyspace Access Web Interface” on page 25-21

• Code Prover:

• “Source Code in Polyspace Desktop User Interface” (Polyspace Code Prover)
• “Source Code in Polyspace Access Web Interface” (Polyspace Code Prover)

If a macro expansion contains multiple Code Prover run-time checks, the line with the macro
collapsed has the same color as the worst run-time check. See also “Code Prover Result and
Source Code Colors” (Polyspace Code Prover).

Results in Function-Like Macros Shown Only Once
A function-like macro is a macro that takes parameters, for instance:

#define max(x,y) x>y?x:y

If a function-like macro causes a defect or coding standard violation, the result is displayed on the
root cause of the issue: the macro parameter or the macro definition.

For instance:

• In this example, the definition of macro LEFTOVER() contains a lowercase l and violates MISRA
C:2012 Rule 7.3. This result is shown on the macro definition.

#define LEFTOVER(size) 10000ul - size /* Noncompliant */
#define REMAINDER(size) 10000UL - size /* Compliant */

void func(int arrSize, int arrCopySize) {
 int n = LEFTOVER(arrSize);
 int nCopy = LEFTOVER(arrCopySize);
 int m = REMAINDER(arrSize);
}

31 Advanced Review Workflows

31-12

The event list below the result message shows the instances where the macro is used. You can
click on an Expansion of macro event to navigate to the macro usage in the source code.

• In this example, the definition of macro COPY_ELEMENT() results in an ambiguous evaluation
order and violates MISRA C:2012 Rule 13.2 only when the parameter i++ is passed to it. This
result is shown on the macro expansion, specifically on the parameter in the expansion.

int a[10], b[10];
#define COPY_ELEMENT(index) (a[(index)]=b[(index)])

void main () {
 int i=0, k=0;

 COPY_ELEMENT (k); /* Compliant */
 COPY_ELEMENT (i++); /* Noncompliant */
}

This way of showing results in function-like macros enables you to easily fix them:

• For issues caused by the macro definition, you can implement the fix once. Tools that report on the
macro expansion can show multiple violations for one root cause.

In the preceding example, you can change the lowercase l in LEFTOVER() to fix the issue. The
REMAINDER() macro shows this fix.

• For issues caused by the macro parameters, you can also implement the fix once.

In the preceding example, you can compute i++ in a separate step, and then pass i to the
COPY_ELEMENT() macro to fix the issue.

 Polyspace Results in Lines Containing Macros

31-13

Migrate Results from Polyspace Metrics to Polyspace Access
If you use Polyspace Metrics to store results and monitor the quality of your source code, you can
transfer those results to Polyspace Access.

The Polyspace Access DASHBOARD perspective offers a web interface with navigation between
projects and categories of results. From the Project Overview dashboard, view aggregated statistics
for all your projects or drill down to view results details by category or file. For each family of
findings, open an additional dashboard to see details. After you narrow down the set of findings that
you want to address, open them in the REVIEW perspective to start reviewing individual results.

Note The REVIEW perspective is only available for analysis results generated with a Polyspace
product version R2019a or later. To review R2018b or earlier results that you migrated to Polyspace
Access, see “Open or Export Results from Polyspace Access” on page 28-2.

You can also review results from Polyspace Access by opening them in the Polyspace desktop
interface. You do not need to download a local copy of Polyspace Access results to view those results
in the desktop interface. The edits that you make to the results are saved directly in Polyspace Access
and enable you to perform collaborative reviews.

31 Advanced Review Workflows

31-14

Requirements for Migration
The transfer of results from the Metrics repository to the Polyspace Access database requires the
polyspace-access binary. This binary is available under the polyspaceroot/polyspace/bin
folder with a Polyspace installation. polyspaceroot is the Polyspace product installation folder, for
instance C:\Program Files\Polyspace Server\2019a.

For syntax and examples, see polyspace-access.

 Migrate Results from Polyspace Metrics to Polyspace Access

31-15

Migration of Results
To migrate results from Polyspace Metrics to Polyspace Access, follow these steps. You must be
logged in to your Metrics server to complete this operation.

1 Identify the Metrics results repository location. The Polyspace Metrics results are stored in the
results-repository folder at that location.

To view the path to this location, from the desktop interface, go to Tools > Metrics Server
Settings. Or, at the command line, run the command psqueue-check-config.

By default, results are stored under C:\Users\username\AppData\Roaming
\Polyspace_RLDatas\results-repository on Windows and /home/
username/.polyspace/results-repository on Linux. username is your computer login
user name.

2 Generate migration scripts.

Once you identify the folder of the repository from which you want to transfer results, define a
migration strategy. You can choose to transfer all your projects or you can narrow down the
scope of the transfer to a specific set of projects.

Specify a set of projects with the options listed in this table.

Option Description
-max-project-runs
int

Number of most recent analysis runs you want to migrate for each
project. For instance, to migrate only the last two analysis runs of
a project, specify 2.

-project-date-
after YYYY[-MM[-
DD]]

Only migrate results that were uploaded to Polyspace Metrics on
or after the specified date.

-product
productName

Product used to analyze and produce project findings, specified as
bug-finder, code-prover, or polyspace-ada.

-analysis-mode
mode

Analysis mode used to generate project findings, specified as
integration or unit-by-unit.

For example, to transfer only Polyspace Bug Finder analysis results that you uploaded to
Polyspace Metrics on or after June 2017, use this command:

polyspace-access -generate-migration-commands ^
C:\Users\username\AppData\Roaming\Polyspace_RLDatas\results-repository ^
-output-folder-path C:\Polyspace_Workspace\Migrate^
-project-date-after 2017-06^
-product bug-finder

The command outputs a migration script file for each project stored in C:\Users\username
\AppData\Roaming\Polyspace_RLDatas\results-repository that matches the specified
product and date. The migration scripts are stored under C:\Polyspace_Workspace
\Migrate.

Before you continue, you can optionally open the migration scripts in a text editor and modify the
-project or -parent-project parameters. The parameters correspond to the name of the
project and the folder under which it is stored in Polyspace Access, respectively.

31 Advanced Review Workflows

31-16

3 Migrate the projects.

After you generate the migration scripts, to transfer all the selected projects use those scripts
with this migration command :

polyspace-access -host hostName -port port ^
-migrate -option-file-path ^
C:\Polyspace_Workspace\Migrate

The command looks for migration scripts under C:\Polyspace_Workspace\Migrate and
uploads the results to the Polyspace Access instance that you specify with hostName. Enter your
Polyspace Access user name and password at the prompt.

hostName and port correspond to the host name and port number you specify in the URL of the
Polyspace Access interface, for example https://hostName:port/metrics/index.html. If
you are unsure about which host name and port number to use, contact your Polyspace Access
administrator. Depending on your configuration, you might also need to specify the -protocol
option in the migration command.

During the execution of a migration script, the command generates a temporary STARTED file.
After each successful execution of a migration script, the command deletes the STARTED file and
generates a corresponding DONE file in the same folder as the script. For example, the command
generates foo.started during the execution of foo.cmd, and then foo.done once foo.cmd is
done. Do not delete these DONE files until you have completed your migration from Metrics to
Access.

Depending on the amount of data that you are transferring and on your network configuration,
the migration might take a long time. You can interrupt the transfer, and then continue from
where you left off at a later time. To stop the transfer, press CTRL+C. To restart the transfer:

a Go to the folder where you store the migration scripts and open the STARTED file in a text
editor. The file might be in a subfolder of the migration scripts folder.

b Follow the instructions in the file, then reuse the same migration command that you used
when you started the migration. The command skips projects that uploaded successfully.

If a project migration fails, go to the migration script folder. See the FAILED file for more
information.

Differences in SQO Between Polyspace Metrics and Polyspace Access
After you migrate your projects from Polyspace Metrics to Polyspace Access, you might notice
differences when you examine your code quality against “Evaluate Polyspace Code Prover Results
Against Software Quality Objectives” (Polyspace Code Prover).

The difference is due to the way Polyspace Metrics and Polyspace Access calculate the thresholds for
the quality objectives. Polyspace Metrics looks at individual files to determine whether your code
achieves a given SQO threshold. For instance, if file foo.c does not achieve threshold SQO2, then the
whole project does not achieve that threshold.

Polyspace Access looks at the whole project to determine whether your source code meets a given
SQO threshold. Even if file foo.c does not achieve the threshold, the whole project can still meet the
specified quality objective threshold.

 Migrate Results from Polyspace Metrics to Polyspace Access

31-17

See Also

More About
• “Register Polyspace Desktop User Interface”
• “Upload Results to Polyspace Access” on page 2-25

31 Advanced Review Workflows

31-18

Troubleshooting

19

Troubleshooting in Polyspace Bug
Finder

• “Fix License Error –4,0 When Running Polyspace” on page 32-3
• “View Error Information When Analysis Stops” on page 32-4
• “Contact Technical Support About Issues with Running Polyspace” on page 32-6
• “Resolve Error: No Compilation Unit Detected in Your Build” on page 32-9
• “Create Polyspace Projects from Build Systems That Use Unsupported Compilers” on page 32-11
• “Fix Slow Build Process When Polyspace Traces Build” on page 32-17
• “Check if Polyspace Supports Build Scripts” on page 32-18
• “Troubleshoot Project Creation from MinGW Build” on page 32-19
• “Troubleshoot Project Creation from Visual Studio Build” on page 32-20
• “Fix Error: Polyspace Cannot Find Server” on page 32-21
• “Fix Error: Job Manager Cannot Write to Database” on page 32-22
• “Fix Polyspace Compilation Errors About Undefined Identifiers” on page 32-23
• “Fix Polyspace Compilation Errors About Unknown Function Prototype” on page 32-26
• “Fix Polyspace Compilation Errors Related to #error Directive” on page 32-27
• “Fix Polyspace Compilation Errors About Large Objects” on page 32-28
• “Fix Polyspace Compilation Errors Related to Generic Compiler” on page 32-30
• “Fix Polyspace Compilation Errors Related to GNU Compiler” on page 32-31
• “Fix Polyspace Compilation Errors Related to Visual Compilers” on page 32-32
• “Fix Polyspace Compilation Errors Related to Keil or IAR Compiler” on page 32-34
• “Fix Polyspace Compilation Errors Related to Diab Compiler” on page 32-35
• “Fix Polyspace Compilation Errors Related to Green Hills Compiler” on page 32-37
• “Fix Polyspace Compilation Errors Related to TASKING Compiler” on page 32-39
• “Fix Polyspace Compilation Errors Related to Texas Instruments Compilers” on page 32-41
• “Fix Errors from Use of Polyspace Header Files” on page 32-42
• “Fix Polyspace Compilation Errors About Namespace std Without Prefix” on page 32-44
• “Fix Polyspace Compilation Warnings Related to Assertion or Memory Allocation Functions”

on page 32-45
• “Fix Polyspace Compilation Errors About In-Class Initialization (C++)” on page 32-46
• “Update Eclipse Java Version for Polyspace Plug-in” on page 32-47
• “Fix MATLAB Crashes Referring to Polyspace in matlabroot” on page 32-48
• “Diagnose Why Coding Standard Violations Do Not Appear as Expected” on page 32-49
• “Check Why a Bug Finder Defect Does Not Appear as Expected” on page 32-52
• “Fix Insufficient Memory Errors During Polyspace Report Generation” on page 32-55

32

• “Fix Errors or Slow Polyspace Runs from Disk Defragmentation and Anti-virus Software”
on page 32-58

• “Fix SQLite I/O Errors on Running Polyspace” on page 32-60
• “Fix Polyspace Errors Related to Temporary Files” on page 32-61
• “Fix Errors Applying Custom Annotation Format for Polyspace Results” on page 32-63
• “Fix Issues When when Integrating Polyspace with MATLAB and Simulink” on page 32-65
• “Check Why Polyspace Functions are Unavailable in MATLAB” on page 32-67
• “Troubleshoot Java Incompatibility in Polyspace Plugin for Eclipse” on page 32-68

32 Troubleshooting in Polyspace Bug Finder

32-2

Fix License Error –4,0 When Running Polyspace

Issue
When you try to run Polyspace, you get this error message:

License Error -4,0

Possible Cause: Another Polyspace Instance Running
You can open multiple instances of Polyspace, but you can only run one code analysis at a time.

If you try to run Polyspace processes from multiple windows, you will get a License Error –4,0
error.

Solution

Only run one analysis at a time, including any command-line or plugin analyses.

Possible Cause: Prior Polyspace Run in Simulink or MATLAB Coder
If you run Polyspace on generated code in the Simulink user interface or in the MATLAB Coder app,
you can get a license error if you try to run a subsequent analysis in the Polyspace user interface. You
get the error even if the previous run is over.

Solution

Run the subsequent analysis using the method that you used before, that is, in the Simulink user
interface or MATLAB Coder app.

If you want to run the analysis in the Polyspace user interface, close Simulink or MATLAB Coder and
then rerun the analysis.

 Fix License Error –4,0 When Running Polyspace

32-3

View Error Information When Analysis Stops
If the analysis stops, you can view error information on the screen, either in the user interface or at
the command-line terminal. Alternatively, you can view error information in a log file generated
during analysis. Based on the error information, you can either fix your source code, add missing files
or change analysis options to get past the error.

View Error Information in User Interface
1 View the errors on the Output Summary tab.

The messages on this tab appear with the following icons.

Icon Meaning
Error that blocks analysis.

For instance, the analysis cannot find a variable declaration or
definition and therefore cannot determine the variable type.
Warning about an issue that does not block analysis by itself, but
could be related to a blocking error.

For instance, the analysis cannot find an include file that is
#include-d in your code. The issue does not block the analysis by
itself, but if the include file contains the definition of a variable that
you use in your source code, you can face an error later.
Additional information about the analysis.

2 To diagnose and fix each error, you can do the following:

• To see further details about the error, select the error message. The details appear in a Detail
window below the Output Summary tab.

• To open the source code at the line containing the error, double-click the message.

Tip To search the error messages for a specific term, on the Search pane, enter your search term.
From the drop down list on this pane, select Output Summary or Run Log. If the Search pane is
not open by default, select Windows > Show/Hide View > Search.

View Error Information in Log File
You can view errors directly in the log file. The log file is in your results folder. To open the log file:

1 Right-click the result folder name on the Project Browser pane. From the context menu, select
Open Folder with File Manager.

32 Troubleshooting in Polyspace Bug Finder

32-4

2 Open the log file, Polyspace_R20##n_ProjectName_date-time.log
3 To view the errors, scroll through the log file, starting at the end and working backward.

The following example shows sample log file information. The error has occurred because a
variable var used in the code is not defined earlier.

C:\missing_include.c, line 4: error: identifier "var" is undefined
| var = func();
| ^

1 error detected in the compilation of "missing_include.c".
C:\missing_include.c: warning: Failed compilation.
Global compilation phase...

See Also
Stop analysis if a file does not compile (-stop-if-compile-error) | File does
not compile

 View Error Information When Analysis Stops

32-5

Contact Technical Support About Issues with Running
Polyspace

To contact MathWorks Technical Support, use this page. You need a MathWorks Account login and
password. For faster turnaround with an issue in Polyspace, besides the required system information,
provide appropriate code that reproduces the issue or the verification log file.

Provide System Information
When you enter a support request, provide the following system information:

• Hardware configuration
• Operating system
• Polyspace and MATLAB license numbers
• Specific version numbers for Polyspace products
• Installed Bug Report patches

To obtain your configuration information, do one of the following:

• In the Polyspace user interface, select Help > About.
• At the command line, navigate to your Polyspace installation folder, for instance C:\Program

Files\Polyspace\R2023a (Windows) or /usr/local/Polyspace/R2023a (UNIX), and run
the command that corresponds to your product and platform:

Product Command
Polyspace Bug Finder

Polyspace Code Prover

• UNIX

polyspace/bin/polyspace-bug-finder -ver
• Windows

polyspace\bin\polyspace-bug-finder.exe -ver

Polyspace Bug Finder
Server

Polyspace Code Prover
Server

• UNIX

polyspace/bin/polyspace-bug-finder-server -ver
• Windows

polyspace\bin\polyspace-bug-finder-server.exe -ver

If you configure Polyspace to offload the analysis from a client machine to a server machine, to
obtain the system configuration of the server machine from the client machine, add options -
batch -scheduler MJSName@host to the command. For example:

polyspace/bin/polyspace-bug-finder -ver -batch -scheduler MJSName@host

Here, MJSName is the name of the MATLAB Job Scheduler on the head node of the MATLAB
Parallel Server cluster and host is the host name of the server machine that hosts the head node
of this cluster.

32 Troubleshooting in Polyspace Bug Finder

32-6

https://www.mathworks.com/support/contact_us.html?s_tid=doc2cs

Provide Information About the Issue
Depending on the issue, provide appropriate artifacts to help Technical Support understand and
reproduce the issue.

Compilation Errors

If you face compilation issues with your project, see “Troubleshoot Compilation Errors”. If you are
still having issues, contact technical support with the following information:

• The analysis log.

The analysis log is a text file generated in your results folder and titled
Polyspace_version_project_date_time.log. It contains the error message, the options
used for the analysis and other relevant information.

• The source files related to the compilation error or the complete results folder if possible.

If you cannot provide the source files:

• Try to provide a screenshot of the source code section that causes the compilation issue.
• Try to reproduce the issue with a different code. Provide that code to technical support.

Polyspace as You Code writes the contents of compilation error messages to a log file. The log is
generated in your results folder and titled polyspace_err.log. Provide this log to technical
support if you encounter a compilation issue with Polyspace as You Code.

Errors in Project Creation from Build Systems

If you face errors in creating a project from your build system, see “Troubleshoot Project Creation”.

If you are still having issues, contact technical support with debug information. To provide the debug
information:

1 Run polyspace-configure at the command line with the option -easy-debug. For instance:

polyspace-configure options -easy-debug pathToFolder buildCommand

Here:

• options is the list of polyspace-configure options that you typically use.
• buildCommand is the build command that you use, for instance, make.
• pathToFolder is the folder where you want to store debug information, for instance,

C:\Temp\BuildLogs. After a polyspace-configure run, the path provided contains a
zipped file ending with pscfg-output.zip. The zipped file contains debug information only
and does not contain source files traced in the build.

Make sure that you do not use the option -verbose or -silent after -easy-debug. These
options reduce or modify the information logged and might make debugging difficult.

2 Send this zipped file ending with pscfg-output.zip to MathWorks Technical Support for
further debugging.

You can also create the zipped file with debug information during every polyspace-configure run
by creating an environment variable PS_CONFIGURE_OPTIONS and setting its value to:

 Contact Technical Support About Issues with Running Polyspace

32-7

-easy-debug pathToFolder

where pathToFolder is the folder where you want to store debug information.

Verification Result

If you are having trouble understanding a result, see “Complete List of Polyspace Bug Finder
Results”.

If you are still having trouble understanding the result, contact technical support with the following
information:

• The analysis log.

The analysis log is a text file generated in your results folder and titled
Polyspace_version_project_date_time.log. It contains the options used for the analysis
and other relevant information.

• The source files related to the result or the complete results folder if possible.

If you cannot provide the source files:

• Try to provide a screenshot of the relevant source code from the Source pane on the Polyspace
user interface.

• Try to reproduce the problem with a different code. Provide that code to technical support.

Provide Polyspace Analysis Statistics File (Optional)
Depending on your issue, you might be asked to provide the .stats.zip file. The file is located in
your results folder and contains statistics about your analysis, such as options used, time taken by the
different phases of the analysis, and the memory consumed by the different processes that ran during
the analysis. The file contains no identifying information about your code.

See Also

Related Examples
• “Contact Technical Support About Polyspace Access Issues” on page 33-5

32 Troubleshooting in Polyspace Bug Finder

32-8

Resolve Error: No Compilation Unit Detected in Your Build

Issue
You can automatically create a Polyspace project or options file by running polyspace-configure
on your build command at the command line or in the Polyspace user interface. polyspace-
configure executes your build command, tracks the processes executed, extracts the compiler
command invocations from the tracked processes, and determines source files to add to a Polyspace
project. If your compiler command does not execute during the build or cannot be found, you might
see this error:

No compilation unit detected in your build.

The error indicates that polyspace-configure could not find source files to add to a Polyspace
project or options file.

Possible Solutions
Check for Incremental Build

Most build systems perform an incremental build by default. The build commands rebuild only the
sources that changed since the last rebuild. For instance, if you build your sources by using make or
its equivalent, the command rebuilds only those targets in the makefile that are out-of-date. If you run
polyspace-configure on a build command and none of your sources have changed since the last
rebuild, your compiler is not invoked and you see the preceding error. Even if some of the sources
have changed, your compiler might rebuild only those sources, leaving your Polyspace project
incomplete.

To avoid the error, when running polyspace-configure, perform a full or clean build of your
sources. For instance, when building by using make, you can use the flag -B or --always-make to
rebuild all targets in the makefile.

Check for Compiler Caching

Using a compiler cache is equivalent to performing an incremental build. Compiler caches speed up
compilation by caching results of previous compilations. If the same compilation is repeated, the
cached results are used instead of a fresh compilation. In this case, polyspace-configure cannot
detect a compilation because the actual compiler commands are not invoked.

To work around the error, disable any compiler cache that you might be using just before running
polyspace-configure on your build command. You can reenable the caching immediately after
running polyspace-configure. For instance, if you use Ccache, you can disable the caching on the
current shell by entering:

export CCACHE_DISABLE=1

Check for Antivirus Software

The polyspace-configure command works by tracking the processes executed by your build
command. Certain antivirus software can block this tracking. polyspace-configure keeps a known
list of antivirus software that block tracking and shows a warning if any of the software is detected.
You might be using an antivirus software outside this known list and not see the warning but see a
later error instead.

 Resolve Error: No Compilation Unit Detected in Your Build

32-9

To avoid the issue, temporarily disable your antivirus software when running polyspace-
configure. Some antivirus software allow you to specify a list of processes that must not be
blocked. You might be able to work around the issue by specifying Polyspace processes in your
allowlist. For details, see “Fix Errors or Slow Polyspace Runs from Disk Defragmentation and Anti-
virus Software” on page 32-58.

Check for Unsupported Compilers

The polyspace-configure command supports the same compilers as Polyspace. Check if your
compiler is supported in Compiler (-compiler). For each supported compiler, polyspace-
configure can recognize a known set of compiler invocation commands. If your compiler is not
supported or is supported but uses an invocation command outside this known set, polyspace-
configure fails to recognize the compiler invocation and produces the preceding error.

If your compiler is supported but uses a nonstandard invocation command, or is closely related to a
supported compiler, you might be able to extend support to your compiler command. See “Create
Polyspace Projects from Build Systems That Use Unsupported Compilers” on page 32-11. In all other
cases, contact MathWorks Technical Support. See “Contact Technical Support About Issues with
Running Polyspace” on page 32-6.

Check for Source Exclusions

You can use the option -include-sources or -exclude-sources with the polyspace-
configure command to include or exclude certain sources from the generated Polyspace project or
options file. If you use these options, make sure to check their arguments and ensure that you have
not accidentally excluded more source files than you intend.

See also “Select Files for Polyspace Analysis Using Pattern Matching” on page 4-11.

See Also
polyspace-configure

Related Examples
• “Requirements for Project Creation from Build Systems” on page 13-24
• “Create Polyspace Projects from Build Systems That Use Unsupported Compilers” on page 32-

11

32 Troubleshooting in Polyspace Bug Finder

32-10

Create Polyspace Projects from Build Systems That Use
Unsupported Compilers

Issue
Your compiler is not supported for automatic project creation from build commands.

Cause
For automatic project creation from your build system, your compiler configuration must be available
to Polyspace. Polyspace provides a compiler configuration file only for certain compilers.

For information on which compilers are supported, see “Requirements for Project Creation from Build
Systems” on page 13-24.

Solution
To enable automatic project creation for an unsupported compiler, you can write your own compiler
configuration file.

1 Copy one of the existing configuration files from polyspaceroot\polyspace\configure
\compiler_configuration\. Select the configuration that most closely corresponds to your
compiler using the mapping between the configuration files and compiler names on page 32-15.

2 Save the file as my_compiler.xml. my_compiler can be a name that helps you identify the file.

To edit the file, save it outside the installation folder. After you have finished editing, you must
copy the file back to polyspaceroot\polyspace\configure\compiler_configuration\.

3 Edit the contents of the file to represent your compiler. Replace the entries between the XML
elements with appropriate content.

4 After saving the edited XML file to polyspaceroot\polyspace\configure
\compiler_configuration\, create a project automatically using your build command.

If you see errors, for instance, compilation errors, contact MathWorks Technical Support. After
tracing your build command, the software compiles certain files using the compiler specifications
detected from your configuration file and build command. Compilation errors might indicate
issues in the configuration file.

Tip To quickly see if your compiler configuration file works, run the automatic project setup on a
sample build that does not take much time to complete. After you have set up a project with your
compiler configuration file, you can use this file for larger builds.

Elements of Compiler Configuration File

The following table lists the XML elements in the compiler configuration file file with a description of
what the content within the element represents.

 Create Polyspace Projects from Build Systems That Use Unsupported Compilers

32-11

XML Element Content Description Content Example
for GNU C
Compiler

<compiler_names><name> ...

</name><compiler_names>

Name of the compiler executable.
This executable transforms
your .c files into object files. You
can add several binary names,
each in a separate <name>...</
name> element. The software
checks for each of the provided
names and uses the compiler
name for which it finds a match.

You must not specify the linker
binary inside the <name>...</
name> elements.

If the name that you specify is
present in an existing compiler
configuration file, an error occurs.
To avoid the error, use the
additional option -compiler-
config my_compiler.xml when
tracing the build so that the
software explicitly uses your
compiler configuration file.

• gcc
• gpp

<include_options><opt> ...

</opt></include_options>

The option that you use with your
compiler to specify include folders.

To specify options where the
argument immediately follows the
option, use an isPrefix attribute
for opt and set it to true.

-I

<system_include_options>

<opt> ... </opt>

</system_include_options>

The option that you use with your
compiler to specify system
headers.

To specify options where the
argument immediately follows the
option, use an isPrefix attribute
for opt and set it to true.

-isystem

<preinclude_options><opt> ...

</opt></preinclude_options>

The option that you use with your
compiler to force inclusion of a file
in the compiled object.

To specify options where the
argument immediately follows the
option, use an isPrefix attribute
for opt and set it to true.

-include

32 Troubleshooting in Polyspace Bug Finder

32-12

XML Element Content Description Content Example
for GNU C
Compiler

<define_options><opt> ...

</opt></define_options>

The option that you use with your
compiler to predefine a macro.

To specify options where the
argument immediately follows the
option, use an isPrefix attribute
for opt and set it to true.

-D

<undefine_options><opt> ...

</opt></undefine_options>

The option that you use with your
compiler to undo any previous
definition of a macro.

To specify options where the
argument immediately follows the
option, use an isPrefix attribute
for opt and set it to true.

-U

<semantic_options><opt> ...

</opt></semantic_options>

The options that you use to modify
the compiler behavior. These
options specify the language
settings to which the code must
conform.

You can use the isPrefix
attribute to specify multiple
options that have the same prefix
and the numArgs attribute to
specify options with multiple
arguments. For instance:

• Instead of

<opt>-m32</opt>
<opt>-m64</opt>

You can write <opt
isPrefix="true">-m</
opt>.

• Instead of

<opt>-std=c90</opt>
<opt>-std=c99</opt>

You can write <opt
numArgs="1">-std</opt>. If
your makefile uses -std c90
instead of -std=c90, this
notation also supports that
usage.

• -ansi
• -std =C90
• -std =c++11
• -fun signed

-char

 Create Polyspace Projects from Build Systems That Use Unsupported Compilers

32-13

XML Element Content Description Content Example
for GNU C
Compiler

<compiler> ... </compiler> The Polyspace compiler option
that corresponds to or closely
matches your compiler. The
content of this element directly
translates to the option Compiler
in your Polyspace project or
options file.

For the complete list of compilers
available, see Compiler (-
compiler).

gnu4.7

<preprocess_options_list>

<opt> ... </opt>

</preprocess_options_list>

The options that specify how your
compiler generates a
preprocessed file.

You can use the macro $
(OUTPUT_FILE) if your compiler
does not allow sending the
preprocessed file to the standard
output. Instead it defines the
preprocessed file internally.

-E

For an example of
the $
(OUTPUT_FILE)
macro, see the
existing compiler
configuration file
cl2000.xml.

<preprocessed_output_file> ... </
preprocessed_output_file>

The name of file where the
preprocessed output is stored.

You can use the following macros
when the name of the
preprocessed output file is
adapted from the source file:

• $(SOURCE_FILE): Source file
name

• $(SOURCE_FILE_EXT):
Source file extension

• $(SOURCE_FILE_NO_EXT):
Source file name without
extension

For instance, use $
(SOURCE_FILE_NO_EXT).pre
when the preprocessor file name
has the same name as the source
file, but with extension .pre.

For an example of
this element, see
the existing
compiler
configuration file
xc8.xml.

<src_extensions><ext> ...

</ext></src_extensions>

The file extensions for source files. • c
• cpp
• c++

32 Troubleshooting in Polyspace Bug Finder

32-14

XML Element Content Description Content Example
for GNU C
Compiler

<obj_extensions><ext> ...

</ext></obj_extensions>

The file extensions for object files.

<precompiled_header_extensions> ...

</precompiled_header_extensions>

The file extensions for
precompiled headers (if available).

<polyspace_extra_options_list>
 <opt> ... </opt>
 <opt> ... </opt>
</polyspace_extra_options_list>

Additional options that are used
for the subsequent analysis.

For instance, to avoid compilation
errors in the subsequent analysis
due to non-ANSI extension
keywords, enter -D
keyword=value, for example:

<polyspace_extra_options_list>
 <opt>-D MACRO1</opt>
 <opt>-D MACRO2=VALUE</opt>
</polyspace_extra_options_list>

For more information, see
Preprocessor definitions
(-D).

Mapping Between Existing Configuration Files and Compiler Names

Select the configuration file in polyspaceroot\polyspace\configure
\compiler_configuration\ that most closely resembles the configuration of your compiler. Use
the following table to map compilers to their configuration files.

Compiler Name Vendor XML File
ARM ARM Keil armcc.xml

armclang.xml
Visual C++ Microsoft cl.xml
Clang Not applicable clang.xml
CodeWarrior NXP cw_ppc.xml

cw_s12z.xml
cx6808 Cosmic cx6808.xml

cosmic.xml
Diab Wind River diab.xml
gcc Not applicable gcc.xml
Green Hills Green Hills Software ghs_arm.xml

ghs_arm64.xml
ghs_i386.xml

 Create Polyspace Projects from Build Systems That Use Unsupported Compilers

32-15

Compiler Name Vendor XML File
ghs_ppc.xml
ghs_rh850.xml
ghs_tricore.xml

IAR Embedded Workbench IAR iar.xml
iar-arm.xml
iar-avr.xml
iar-msp430.xml
iar-rh850.xml
iar-riscv.xml
iar-rl78.xml

Renesas Renesas renesas-rh850.xml
renesas-rl78.xml
renesas-rx.xml
renesas-sh.xml

TASKING® Altium tasking.xml
tasking-166.xml
tasking-850.xml
tasking-arm.xml

Tiny C Not applicable tcc.xml
TM320 and its derivatives Texas Instruments ti_arm.xml

ti_c28x.xml
ti_c6000.xml
ti_msp430.xml

xc8 (PIC) Microchip microchip.xml

32 Troubleshooting in Polyspace Bug Finder

32-16

Fix Slow Build Process When Polyspace Traces Build

Issue
In some cases, your build process can run slower when Polyspace traces the build.

Cause
Polyspace caches information in files stored in the system temporary folder, such as C:\Users
\User_Name\AppData\Local\Temp, in Windows. Your build can take a long time to perform read/
write operations to this folder. Therefore, the overall build process is slow.

Solution
You can work around the slow build process by changing the location where Polyspace stores cache
information. For instance, you can use a cache path local to the drive from which you run build
tracing. To create and use a local folder ps_cache for storing cache information, use the advanced
option -cache-path ./ps_cache.

• If you trace your build from the Polyspace user interface, enter this flag in the field Add
advanced configure options.

• If you trace your build from the DOS/ UNIX or MATLAB command line, use this flag with the
polyspace-configure command.

For more information, see polyspace-configure.

 Fix Slow Build Process When Polyspace Traces Build

32-17

Check if Polyspace Supports Build Scripts

Issue
This topic is relevant only if you are creating a Polyspace project in Windows from your build scripts.

When Polyspace traces your build script in a Windows console application other than cmd.exe, the
command fails. However, the build command by itself executes to completion.

For instance, your build script executes to completion from the Cygwin shell. However, when
Polyspace traces the build, the build script throws an error.

Possible Cause
When you launch a Windows console application, your environment variables are appropriately set.
Alternate console applications such as the Cygwin shell can set your environment differently from
cmd.exe.

Polyspace attempts to trace your build script with the assumption that the script runs to completion
in cmd.exe. Therefore, even if your script runs to completion in the alternate console application,
when Polyspace traces the build, the script can fail.

Solution
Make sure that your build script executes to completion in the cmd.exe interface. If the build
executes successfully, create a wrapper .bat file around your script and trace this file.

For instance, before you trace a build command that executes to completion in the Cygwin shell,
launch the Cygwin shell from cmd.exe and then run your build script. For example, if you use a
script build.sh to build your code, enter the following command at the DOS command line:

cmd.exe /C "C:\cygwin64\bin\bash.exe" --login -c build.sh

If the steps do not execute to completion, Polyspace cannot trace your build.

If the steps complete successfully, trace the build command after launching it from cmd.exe. For
instance, on the command-line, do the following to create a Polyspace options file.

1 Enter your build commands in a .bat file.

rem @echo off
cmd.exe /C "C:\cygwin64\bin\bash.exe" --login -c build.sh

Name the file, for instance, launching.bat.
2 Trace the build commands in the .bat file and create a Polyspace options file.

"C:\Program Files\MATLAB\R2023a\polyspace\bin\polyspace-configure.exe"
 -output-options-file myOptions.txt launching.bat

You can now run polyspace-bug-finder or polyspace-bug-finder-server on the options file.

32 Troubleshooting in Polyspace Bug Finder

32-18

Troubleshoot Project Creation from MinGW Build

Issue
You create a project from a MinGW build, but get an error when running an analysis on the project.
The error message comes from using one of these keywords: __declspec, __cdecl, __fastcall,
__thiscall or __stdcall.

Cause
When you create a project from a MinGW build, the project uses a GNU compiler. Polyspace does not
recognize these keywords for the GNU compilers.

Solution
Replace these keywords with equivalent keywords just for the purposes of analysis.

Before analysis, for the option Preprocessor definitions (-D), enter:

• __declspec(x)=__attribute__((x))
• __cdecl=__attribute__((__cdecl__))
• __fastcall=__attribute__((__fastcall__))
• __thiscall=__attribute__((__thiscall__))
• __stdcall=__attribute__((__stdcall__))

If you are running Polyspace on the command line in a UNIX shell, add double quotes around the -D
option. For instance, use:

"-D __cdecl=__attribute__((__cdecl__))"

 Troubleshoot Project Creation from MinGW Build

32-19

Troubleshoot Project Creation from Visual Studio Build
You can run the polyspace-configure command to create a Polyspace project or options file from
a Visual Studio build. The command monitors the processes executed during the build and extracts
information required for the project or options file

You can trace your Visual Studio build in one of the following ways:

• Build your Visual Studio project completely at the command line with msbuild while tracing this
build with polyspace-configure.

In this workflow, you run polyspace-configure on an msbuild command with a Visual Studio
project (.vcxproj) file. For instance, in a Visual Studio 2019 developer prompt, enter the
following:

polyspace-configure msbuild TestProject.vcxproj /t:Rebuild
• Build your Visual Studio project in the Visual Studio IDE while tracing this build with polyspace-

configure.

Run polyspace-configure on the devenv.exe executable to open the Visual Studio IDE, build
your project or solution within the IDE, and then close the IDE.

See “Create Polyspace Projects from Visual Studio Build” on page 2-9.

If running polyspace-configure on the msbuild command does not work properly, do the
following:

1 Stop the msbuild process.
2 Set the environment variable MSBUILDDISABLENODEREUSE to 1.
3 Restart polyspace-configure on msbuild, this time using the /nodereuse:false option.

For instance:

polyspace-configure msbuild TestProject.vcxproj /t:Rebuild /nodereuse:false

See Also
polyspace-configure

32 Troubleshooting in Polyspace Bug Finder

32-20

Fix Error: Polyspace Cannot Find Server

Message
Error: Cannot instantiate Polyspace cluster
| Check the -scheduler option validity or your default cluster profile
| Could not contact an MJS lookup service using the host computer_name.
 The hostname, computer_name, could not be resolved.

Possible Cause
Polyspace uses information provided in the preferences of a Polyspace desktop product to locate the
server. If this information is incorrect, the software cannot locate the server.

Solution
Open the user interface of the Polyspace desktop product. Check if the server information provided is
correct.

1 Select Tools > Preferences.
2 Select the Server Configuration tab. Check your server information.

For instance, the entry in Job scheduler host name must match the host name of the computer
that forms the head node of the MATLAB Parallel Server cluster. For more information, see
“Install Products for Submitting Polyspace Analysis from Desktops to Remote Server”.

 Fix Error: Polyspace Cannot Find Server

32-21

Fix Error: Job Manager Cannot Write to Database

Message
Unable to write data to the job manager database

Possible Cause
If the computer that forms the head node of the MATLAB Parallel Server cluster cannot send data to
the client computer, you see this error. The most likely reasons for the remote computer being unable
to connect to the client computer are:

• Firewalls do not allow traffic from the MATLAB Job Scheduler to the client.
• The MATLAB Job Scheduler cannot resolve the short hostname of the client computer.

Workaround
Add localhost IP to configuration.

1 In the user interface of the Polyspace desktop products, select Tools > Preferences.
2 On the Server Configuration tab, in the Localhost IP address field, enter the IP address of

your local computer.

To retrieve your IP address:

• Windows

1 Open Control Panel > Network and Sharing Center.
2 Select your active network.
3 In the Status window, click Details. Your IP address is listed under IPv4 address.

• Linux — Run the ifconfig command and find the inet addr corresponding to your network
connection.

• Mac — Open System Preferences > Network.

See Also

Related Examples
• “Install Products for Submitting Polyspace Analysis from Desktops to Remote Server”
• “Connection Problems Between the Client and MATLAB Job Scheduler” (Parallel Computing

Toolbox)

32 Troubleshooting in Polyspace Bug Finder

32-22

Fix Polyspace Compilation Errors About Undefined Identifiers

Issue
Polyspace verification fails during the compilation phase with a message about undefined identifiers.

The message indicates that Polyspace cannot find a variable definition. Therefore, it cannot identify
the variable type.

Possible Cause: Missing Files
The source code you provided does not contain the variable definition. For instance, the variable is
defined in an include file that Polyspace cannot find.

If you #include-d the include file in your source code but did not add it to your Polyspace project,
you see a previous warning:

Warning: could not find include file "my_include.h"

Solution

If the variable definition occurs in an include file, add the folder that contains the include file.

• In the user interface of the Polyspace desktop products, add the folder to your project.

For more information, see “Add Source Files for Analysis in Polyspace Desktop User Interface” on
page 2-2.

• At the command line, use the flag -I with the polyspace-bug-finder command.

For more information, see -I.

Possible Cause: Unrecognized Keyword
The variable represents a keyword that your compiler recognizes but is not part of the ANSI C
standard. Therefore, Polyspace does not recognize it.

For instance, some compilers interpret __SP as a reference to the stack pointer.

Solution

If the variable represents a keyword that Polyspace does not recognize, replace or remove the
keyword from your source code or preprocessed code.

If you remove or replace the keyword from the preprocessed code, you can avoid the compilation
error while keeping your source code intact. You can do one of the following:

• Replace or remove each individual unknown keyword using an analysis option. Replace the
compiler-specific keyword with an equivalent keyword from the ANSI C Standard.

For information on the analysis option, see Preprocessor definitions (-D).
• Declare the unknown keywords in a separate header file using #define directives. Specify that

header file using an analysis option.

 Fix Polyspace Compilation Errors About Undefined Identifiers

32-23

For information on the analysis option, see Include (-include). For a sample header file, see
“Gather Compilation Options Efficiently” on page 13-32.

Possible Cause: Declaration Embedded in #ifdef Statements
The variable is declared in a branch of an #ifdef macro_name preprocessor directive. For instance,
the declaration of a variable max_power occurs as follows:

#ifdef _WIN32
 #define max_power 31
#endif

Your compilation toolchain might consider the macro macro_name as implicitly defined and execute
the #ifdef branch. However, the Polyspace compilation might not consider the macro as defined.
Therefore, the #ifdef branch is not executed and the variable max_power is not declared.

Solution

To work around the compilation error, do one of the following:

• Use Target & Compiler options to directly specify your compiler. For instance, to emulate a
Visual C++ compiler, set the Compiler to visual12.0. See “Target and Compiler”.

• Define the macro explicitly using the option Preprocessor definitions (-D).

Note If you create a Polyspace by tracing your build commands, most Target & Compiler options
are automatically set.

Possible Cause: Project Created from Non-Debug Build
This can be a possible cause only if the undefined identifier occurs in an assert statement (or an
equivalent Visual C++ macro such as ASSERT or VERIFY).

Typically, you come across this error in the following way. You create a Polyspace project from a build
system in non-debug mode. When you run an analysis on the project, you face a compilation error
from an undefined identifier in an assert statement. You find that the identifier my_identifier is
defined in a #ifndef NDEBUG statement, for instance as follows:

#ifndef NDEBUG
int my_identifier;
#endif

The C standard states that when the NDEBUG macro is defined, all assert statements must be
disabled.

Most IDEs define the NDEBUG macro in their build systems. When you build your source code in your
IDE in non-debug mode, code in a #ifndef NDEBUG statement is removed during preprocessing. For
instance, in the preceding example, my_identifier is not defined. If my_identifier occurs only
in assert statements, it is not used either, because NDEBUG disables assert statements. You do not
have compilation errors from undefined identifiers and your build system executes successfully.

Polyspace does not disable assert statements even if NDEBUG macro is defined because the software
uses assert statements internally to enhance verification.

32 Troubleshooting in Polyspace Bug Finder

32-24

When you create a Polyspace project from your build system, if your build system defines the NDEBUG
macro, it is also defined for your Polyspace project. Polyspace removes code in a #ifndef NDEBUG
statement during preprocessing, but does not disable assert statements. If assert statements in
your code rely on the code in a #ifndef NDEBUG statement, compilation errors can occur.

In the preceding example:

• The definition of my_identifier is removed during preprocessing.
• assert statements are not disabled. When my_identifier is used in an assert statement, you

get an error because of undefined identifier my_identifier.

Solution

To work around this issue, create a Polyspace project from your build system in debug mode. When
you execute your build system in debug mode, NDEBUG is not defined. When you create a Polyspace
project from this build, NDEBUG is not defined for your Polyspace project.

Depending on your project settings, use the option that enables building in debug mode. For instance,
if your build system is gcc-based, you can define the DEBUG macro and undefine NDEBUG:

gcc -DDEBUG=1 -UNDEBUG *.c

Alternatively, you can disable the assert statements in your preprocessed code using the option
Preprocessor definitions (-D). However, Polyspace will not be able to emulate the assert
statements.

 Fix Polyspace Compilation Errors About Undefined Identifiers

32-25

Fix Polyspace Compilation Errors About Unknown Function
Prototype

Issue
During the compilation phase, the software displays a warning or error message about unknown
function prototype.

the prototype for function 'myfunc' is unknown

The message indicates that Polyspace cannot find a function prototype. Therefore, it cannot identify
the data types of the function argument and return value, and has to infer them from the calls to the
function.

To determine the data types for such functions, Polyspace follows the C99 Standard (ISO/IEC
9899:1999, Chapter 6.5.2.2: Function calls).

• The return type is assumed to be int.
• The number and type of arguments are determined by the first call to the function. For instance, if

the function takes one double argument in the first call, for subsequent calls, the software
assumes that it takes one double argument. If you pass an int argument in a subsequent call, a
conversion from int to double takes place.

During the linking phase, if a mismatch occurs between the number or type of arguments or the
return type in different compilation units, the analysis follows an internal algorithm to resolve this
mismatch and determine a common prototype.

Cause
The source code you provided does not contain the function prototype. For instance, the function is
declared in an include file that Polyspace cannot find.

If you #include-d the include file in your source code but did not add it to your Polyspace project,
you see a previous warning:

Warning: could not find include file "my_include.h"

Solution
Search for the function declaration in your source repository.

If you find the function declaration in an include file, add the folder that contains the include file.

• In the user interface of the Polyspace desktop products, add the folder to your project.

For more information, see “Add Source Files for Analysis in Polyspace Desktop User Interface” on
page 2-2.

• At the command line, use the flag -I with the polyspace-bug-finder command.

For more information, see -I.

32 Troubleshooting in Polyspace Bug Finder

32-26

Fix Polyspace Compilation Errors Related to #error Directive

Issue
The analysis stops with a message containing a #error directive. For instance, the following
message appears: #error directive: !Unsupported platform; stopping!.

Cause
You typically use the #error directive in your code to trigger a fatal error in case certain macros are
not defined. Your compiler implicitly defines the macros, therefore the error is not triggered when
you compile your code. However, the default Polyspace compilation does not consider the macros as
defined, therefore, the error occurs.

For instance, in the following example, the #error directive is reached only if the macros
__BORLANDC__, __VISUALC32__ or __GNUC__ are not defined. If you use a GNU C compiler, for
instance, the compiler considers the macro __GNUC__ as defined and the error does not occur.
However, if you use the default Polyspace compilation, it does not consider the macros as defined.

#if defined(__BORLANDC__) || defined(__VISUALC32__)
#define MYINT int
#elif defined(__GNUC__)
#define MYINT long
#else
#error !Unsupported platform; stopping!
#endif

Solution
For successful compilation, do one of the following:

• Specify a compiler such as visual12.0 or gnu4.9. Specifying a compiler defines some of the
compilation flags for the analysis.

For more information, see Compiler (-compiler).
• If the available compiler options do not match your compiler, explicitly define one of the

compilation flags __BORLANDC__, __VISUALC32__, or __GNUC__.

For more information, see Preprocessor definitions (-D).

 Fix Polyspace Compilation Errors Related to #error Directive

32-27

Fix Polyspace Compilation Errors About Large Objects

Issue
The analysis stops during compilation with a message indicating that an object is too large.

Cause
The error happens when the software detects an object such as an array, union, structure, or class,
that is too big for the pointer size of the selected target.

For instance, you get the message, Limitation: struct or union is too large in the
following example. You specify a pointer size of 16 bits. The maximum object size allocated to a
pointer, and therefore the maximum allowed size for an object, can be 216-1 bytes. However, you
declare a structure as follows:

• struct S
{
 char tab[65536];
}s;

• struct S
{
 char tab[65534];
 int val;
}s;

Solution
1 Check the pointer size that you specified through your target processor type. For more

information, see Target processor type (-target).

For instance, in the following, the pointer size for a custom target My_target is 16 bits.

32 Troubleshooting in Polyspace Bug Finder

32-28

2 Change your code or specify a different pointer size.

For instance, you can:

• Declare an array of smaller size in the structure.

If you are using a predefined target processor type, the pointer size is likely to be the same as
the pointer size on your target architecture. Therefore, your declaration might cause errors
on your target architecture.

• Change the pointer size of the target processor type that you specified, if possible.

Otherwise, specify another target processor type with larger pointer size or define your own
target processor type. For more information on defining your own processor type, see
Generic target options.

Note Polyspace imposes an internal limit of 128 MB on the size of data structures. Even if
your target processor type specification allows data structures of larger size, this internal
limit constrains the data structure sizes.

 Fix Polyspace Compilation Errors About Large Objects

32-29

Fix Polyspace Compilation Errors Related to Generic Compiler
If you use a generic compiler, you can encounter this issue. For more information, see Compiler (-
compiler).

Issue
The analysis stops with an error message related to a non-ANSI C keyword, for instance, data or
attributes such as __attribute__((weak)).

Depending on the location of the keyword, the error message can vary. For instance, this line causes
the error message: expected a ";".

data int tab[10];

Cause
The generic Polyspace compiler supports only ANSI C keywords. If you use a language extension, the
generic compiler does not recognize it and treats the keyword as a regular identifier.

Solution
Specify your compiler by using the option Compiler (-compiler).

If your compiler is not directly supported or is not based on a supported compiler, you can use the
generic compiler. To work around the compilation errors:

• If the keyword is related to memory modelling, remove it from the preprocessed code. For
instance, to remove the data keyword, enter data= for the option Preprocessor definitions
(-D).

• If the keyword is related to an attribute, remove attributes from the preprocessed code. Enter
__attribute__(x)= for the option Preprocessor definitions (-D).

If your code has this line:

void __attribute__ ((weak)) func(void);

And you remove attributes, the analysis reads the line as:

void func(void);

When you use these workarounds, your source code is not altered.

32 Troubleshooting in Polyspace Bug Finder

32-30

Fix Polyspace Compilation Errors Related to GNU Compiler
If you choose gnu for the option Compiler (-compiler), you can encounter this issue.

Issue
The Polyspace analysis stops with a compilation error.

Cause
You are using certain advanced compiler-specific extensions that Polyspace does not support. See
“Limitations”.

Solution
For easier portability of your code, avoid using the extensions.

If you want to use the extensions and still analyze your code, wrap the unsupported extensions in a
preprocessor directive. For instance:

#ifdef POLYSPACE
 // Supported syntax
#else
 // Unsupported syntax
#endif

For regular compilation, do not define the macro POLYSPACE. For Polyspace analysis, enter
POLYSPACE for the option Preprocessor definitions (-D).

If the compilation error is related to assembly language code, use the option -asm-begin -asm-
end.

 Fix Polyspace Compilation Errors Related to GNU Compiler

32-31

Fix Polyspace Compilation Errors Related to Visual Compilers
The following messages appear if the compiler is based on a Visual compiler. For more information,
see Compiler (-compiler).

Import Folder
When a Visual application uses #import directives, the Visual C++ compiler generates a header file
with extension .tlh that contains some definitions. To avoid compilation errors during Polyspace
analysis, you must specify the folder containing those files.

Original code:

#include "stdafx.h"
#include <comdef.h>
#import <MsXml.tlb>
MSXML::_xml_error e ;
MSXML::DOMDocument* doc ;
int _tmain(int argc, _TCHAR* argv[])
{
 return 0;
}

Error message:

"../sources/ImportDir.cpp", line 7: catastrophic error: could not
open source file "./MsXml.tlh"
 #import <MsXml.tlb>

The Visual C++ compiler generates these files in its “build-in” folder (usually Debug or Release). In
order to provide those files:

• Build your Visual C++ application.
• Specify your build folder for the Polyspace analysis.

pragma Pack
Using a different value with the compile flag (#pragma pack) can lead to a linking error message.

Original code:

test1.cpp type.h test2.cpp
#pragma pack(4)

#include "type.h"

struct A
{
 char c ;
 int i ;
} ;

#pragma pack(2)

#include "type.h"

Error message:
Pre-linking C++ sources ...
"../sources/type.h", line 2: error: declaration of class "A" had
a different meaning during compilation of "test1.cpp"
(class types do not match)
 struct A

32 Troubleshooting in Polyspace Bug Finder

32-32

 ^
 detected during compilation of secondary translation unit
"test2.cpp"

To continue the analysis, use the option Ignore pragma pack directives (-ignore-pragma-
pack).

C++/CLI
Polyspace does not support Microsoft C++/CLI, a set of language extensions for .NET programming.

You can get errors such as:

error: name must be a namespace name
| using namespace System;

Or:

error: expected a declaration
| public ref class Form1 : public System::Windows::Forms::Form

 Fix Polyspace Compilation Errors Related to Visual Compilers

32-33

Fix Polyspace Compilation Errors Related to Keil or IAR
Compiler

If you use the compiler, Keil or IAR, you can encounter this issue. For more information, see
Compiler (-compiler).

Missing Identifiers
Issue

The analysis stops with the error message, expected an identifier, as if an identifier is missing.
However, in your source code, you can see the identifier.

Cause

If you select Keil or IAR as your compiler, the software removes certain keywords during
preprocessing. If you use these keywords as identifiers such as variable names, a compilation error
occurs.

For a list of keywords that are removed, see “Supported Keil or IAR Language Extensions” on page
13-27.

Solution

Specify that Polyspace must not remove the keywords during preprocessing. Define the macros
__PST_KEIL_NO_KEYWORDS__ or __PST_IAR_NO_KEYWORDS__.

For more information, see Preprocessor definitions (-D).

32 Troubleshooting in Polyspace Bug Finder

32-34

Fix Polyspace Compilation Errors Related to Diab Compiler
If you choose diab for the option Compiler (-compiler), you can encounter this issue.

Issue
During Polyspace analysis, you see an error related to a keyword specific to the Diab compiler. For
instance, you see an error related to the restrict keyword.

Cause
You typically use a compiler flag to enable the keyword. The Polyspace analysis does not enable these
keywords by default. You have to make Polyspace aware of your compiler flags.

The Polyspace analysis does not enable these keywords by default to prevent compilation errors.
Another user might not enable the keyword and instead use the keyword name as a regular identifier.
If Polyspace treats the identifier as a keyword, a compilation error will occur.

Solution
Use the command-line option -compiler-parameter in your Polyspace analysis as follows. You use
this command-line option to make Polyspace aware of your compiler flags. In the user interface of the
Polyspace desktop products, you can enter the command-line option in the field Other. You can enter
the option multiple times.

The argument of -compiler-parameter depends on the keyword that causes the error. Once you
enable the keyword, do not use the keyword name as a regular identifier. For instance, once you
enable the keyword pixel, do not use pixel as a variable name. The statement int pixel = 1
causes a compilation error.

• restrict keyword:

You typically use the compiler flag -Xlibc-new or -Xc-new. For your Polyspace analysis, use

-compiler-parameter -Xc-new

The following code will not compile with Polyspace unless you specify the compiler flag.

int sscanf(const char *restrict, const char *restrict, ...);
• PowerPC AltiVec vector extensions such as the vector type qualifier:

You typically use the compiler flag -tPPCALLAV:. For your Polyspace analysis, use

-compiler-parameter -tPPCALLAV:

The following code will not compile with Polyspace unless you specify the compiler flag.

vector unsigned char vbyte;
vector bool vbool;
vector pixel vpx;

int main(int argc, char** argv)
{

 Fix Polyspace Compilation Errors Related to Diab Compiler

32-35

 return 0;
}

• Extended keywords such as pascal, inline, packed, interrupt, extended, __X, __Y,
vector, pixel, bool and others:

You typically use the compiler flag -Xkeywords=. For your Polyspace analysis, use

-compiler-parameter -Xkeywords=0xFFFFFFFF

The following code will not compile with Polyspace unless you specify the above option:

packed(4) struct s2_t {
 char b;
 int i;
} s2;

packed(4,2) struct s3_t {
 char b;
} s3;

int pascal foo = 4;

int main(int argc, char** argv) {
 foo++;
 return 0;
}

Note that the Polyspace option only allows the code to be compiled. The analysis does not fully
support the semantics behind the packed keyword.

32 Troubleshooting in Polyspace Bug Finder

32-36

Fix Polyspace Compilation Errors Related to Green Hills
Compiler

If you choose greenhills for the option Compiler (-compiler), you encounter this issue.

Issue
During Polyspace analysis, you see an error related to vector data types specific to Green Hills target
rh850. For instance, you see an error related to identifier __ev64_u16__.

Cause
When compiling code using the Green Hills compiler with target rh850, to enable single instruction
multiple data (SIMD) vector instructions, you specify two flags:

• -rh850_simd: You enable intrinsic functions that support SIMD vector instructions. The functions
are defined in your compiler header files. These data types are available:

• __ev64_u16__
• __ev64_s16__
• __ev64_u32__
• __ev64_s32__
• __ev64_u64__
• __ev64_s64__
• __ev64_opaque__
• __ev128_opaque__

• -rh850_fpsimd: You enable intrinsic functions that support floating-point SIMD vector
instructions. The functions are defined in your compiler header files. These data types are
available:

• __ev128_f32__
• __ev256_f32__

The Polyspace analysis does not enable SIMD support by default. You must identify your compiler
flags to Polyspace.

Solution
In your Polyspace analysis, use the command-line option -compiler-parameter. In the user
interface, you can enter the command-line option in the Other field, under the Advanced Settings
in the Configuration pane.

• -rh850_simd: For your Polyspace analysis, use

-compiler-parameter -rh850_simd

• -rh850_fpsimd: For your Polyspace analysis, use

-compiler-parameter -rh850_fpsimd

 Fix Polyspace Compilation Errors Related to Green Hills Compiler

32-37

Note

• __ev128_opaque__ is 16 bytes aligned in Polyspace.
• __ev256_f32__ is 32 bytes aligned in Polyspace.

32 Troubleshooting in Polyspace Bug Finder

32-38

Fix Polyspace Compilation Errors Related to TASKING Compiler
If you choose tasking for the option Compiler (-compiler), you can encounter this issue.

Issue
During Polyspace analysis, you see an error related to a Special Function Register data type.

Cause
When compiling with the TASKING compiler, you typically use the following compiler flags to specify
where Special Function Register (SFR) data types are declared:

• --cpu=xxx: The compiler implicitly #includes the file sfr/regxxx.sfr in your source files.
Once #include-ed, you can use Special Function Registers (SFR-s) declared in that .sfr file.

• --alternative-sfr-file: The compiler uses an alternative SFR file instead of the regular SFR
file. You can use Special Function Registers (SFR-s) declared in that alternative SFR file.

If you specify the TASKING compiler for your Polyspace analysis, the analysis makes the following
assumptions about these compiler flags:

• --cpu=xxx: The analysis chooses a specific value of xxx. If you use a different value with your
TASKING compiler, you can encounter an error during Polyspace analysis.

The xxx value that the Polyspace analysis uses depends on your choice of Target processor
type (-target):

• tricore: tc1793b
• c166: xc167ci
• rh850: r7f701603
• arm: ARMv7M

• --alternative-sfr-file: The analysis assumes that you do not use an alternative SFR file. If
you use one, you can encounter an error.

Solution
Use the command-line option -compiler-parameter in your Polyspace analysis as follows. You use
this command-line option to make Polyspace aware of your compiler flags. In the user interface, you
can enter the command-line option in the field Other. You can enter the option multiple times.

• --cpu=xxx: For your Polyspace analysis, use

-compiler-parameter --cpu=xxx

Here, xxx is the value that you use when compiling with your compiler.
• --alternative-sfr-file: For your Polyspace analysis, use

-compiler-parameter --alternative-sfr-file

If you still encounter an error because Polyspace is not able to locate your .asfr file, explicitly
#include your .asfr file in the preprocessed code using the option Include (-include).

 Fix Polyspace Compilation Errors Related to TASKING Compiler

32-39

Typically, the path to the file is Tasking_C166_INSTALL_DIR\include\sfr
\regCPUNAME.asfr. For instance, if your TASKING compiler is installed in C:\Program Files
\Tasking\C166-VX_v4.0r1\ and you use the CPU-related flag -Cxc2287m_104f or --
cpu=xc2287m_104f, the path is C:\Program Files\Tasking\C166-VX_v4.0r1\include
\sfr\regxc2287m.asfr.

You can also encounter the same issue with alternative sfr files when you trace your build
command. For more information, see “Requirements for Project Creation from Build Systems” on
page 13-24.

32 Troubleshooting in Polyspace Bug Finder

32-40

Fix Polyspace Compilation Errors Related to Texas Instruments
Compilers

Issue
The Texas Instruments compilers impose a nonstandard requirement on folder sequences in the
include file search path, which is not directly supported by the Polyspace project creation mechanism
from build systems (using the polyspace-configure command).

As a result, if you create a Polyspace project from a build that uses a Texas Instruments compiler,
after starting an analysis on the project, you might see the warning:

warning: could not find include file "stddef.h"
| #include_next <stddef.h>
|

Possible Solutions
The Texas Instruments compilers impose a certain order of include folders in the include file search
path. In particular, the compilers require the implicitly specified libcxx subfolder of the compiler
include folder to precede explicit subfolders in the include file search path. When you create a
Polyspace project or options file by tracing a build command, the project or options file contains an
include folder sequence where the implicitly included libcxx subfolder comes after explicit
subfolders. As a result, include_next lines in files in the libcxx subfolder, which only use later
include folders in the search path for include file lookup, fail to find the included files.

To work around the problem:

1 In your Polyspace project or options file, locate the -I options that point to libcxx subfolders.
They will appear in lines starting with -options-for-sources, for instance:
-options-for-sources sourcefile.c;-I some_explicitly_included_folder;-I
compiler_include_folder\libcxx;

2 For each such -options-for-sources line, switch the order of the -I-s so that the libcxx
subfolder appears first, for instance:
-options-for-sources sourcefile.c;-I compiler_include_folder\libcxx;-I
some_explicitly_included_folder;

See Also
polyspace-configure | Texas Instruments Compiler (-compiler ti) | -options-for-
sources | -I

 Fix Polyspace Compilation Errors Related to Texas Instruments Compilers

32-41

Fix Errors from Use of Polyspace Header Files
Issue
When analyzing your C/C++ source code with Polyspace, if you do not provide the paths to your
compiler headers, Polyspace uses its own version of the headers for the analysis.

In some cases, you might see compilation errors from these Polyspace headers. The error messages
typically refer to one of the subfolders of polyspaceroot\polyspace\verifier\cxx\include.
Here, polyspaceroot is the Polyspace installation folder, for instance, C:\Program Files
\Polyspace\R2023a. Typically, the error message is related to a standard library function.

For instance, you might see an error on std::is_empty when analyzing this C++14 code:

#include <type_traits>

struct S final { };

bool f(void) {
 return std::is_empty<S>::value;
}

The error message states:

Error: a "final" class type cannot be used as a base class

And points to the path polyspaceroot\polyspace\verifier\cxx\include\include-libcxx
\type_traits. This error happens because the implementation of std::is_empty in Polyspace
header files in some cases do not allow their instantiations to use final classes.

Possible Solutions
Specify the folders containing your compiler header files for the Polyspace analysis.

If you create a Polyspace project or options file from your build command using polyspace-
configure, the compiler header paths are automatically added to this project or options file.
Otherwise, you have to explicitly add these paths:

• In the user interface, add the folders to your project.

For more information, see “Add Source Files for Analysis in Polyspace Desktop User Interface” on
page 2-2.

• At the command line, use the flag -I with the polyspace-bug-finder or polyspace-bug-
finder-server command.

For more information, see -I.

For compilation with GNU C on UNIX-based platforms, use /usr/include. On embedded compilers,
the header files are typically in a subfolder of the compiler installation folder. Examples of include
folders are given for some compilers.

• Wind River Diab: For instance, /apps/WindRiver/Diab/5.9.4/diab/5.9.4.8/include/.
• IAR Embedded Workbench: For instance, C:\Program Files\IAR Systems\Embedded

Workbench 7.5\arm\inc.

32 Troubleshooting in Polyspace Bug Finder

32-42

• Microsoft Visual Studio: For instance, C:\Program Files\Microsoft Visual Studio
14.0\VC\include.

Consult your compiler documentation for the path to your compiler header files. Alternatively, see
“Provide Standard Library Headers for Polyspace Analysis” on page 13-20.

See Also

Related Examples
• “Provide Standard Library Headers for Polyspace Analysis” on page 13-20

 Fix Errors from Use of Polyspace Header Files

32-43

Fix Polyspace Compilation Errors About Namespace std
Without Prefix

Issue
The Polyspace analysis stops with an error message such as:

error: the global scope has no "modfl"

The line highlighted in the error uses a function from the standard library without the std:: prefix.

Cause
Some compilers allow using members of the standard library namespace without explicitly specifying
the std:: prefix. For such compilers, your code can contain lines like this:

using ::mblen;

where mblen is a member of the C++ standard library. Polyspace compilation considers the members
as part of the global namespace and shows an error.

Solution
It is a good practice to qualify members of the standard library with the std:: prefix. For instance,
to use the mblen function in the preceding example, rewrite the line as:

using std::mblen;

To continue to retain the current code and work around the Polyspace error, use the analysis option -
using-std. If you are running the analysis in the Polyspace user interface, enter the option in the
Other field. See Other.

32 Troubleshooting in Polyspace Bug Finder

32-44

Fix Polyspace Compilation Warnings Related to Assertion or
Memory Allocation Functions

Issue
Polyspace uses its own implementation of standard library functions for more efficient analysis. If you
redefine a standard library function and provide the function body to Polyspace, the analysis uses
your definition.

However, for certain standard library functions, Polyspace continues to use its own implementations,
even if you redefine the function and provide the function body. The functions include assert and
memory allocation functions such as malloc, calloc and alloca.

You see a warning message like the following:

Body of routine "malloc" was discarded.

Cause
These functions have special meaning for the Polyspace analysis, so you are not allowed to redefine
them. For instance:

• The Polyspace implementation of the malloc function allows the software to check if memory
allocated using malloc is freed later.

• The Polyspace implementation of assert is used internally to enhance analysis.

Solution
Unless you particularly want your own redefinitions to be used, ignore the warning. The analysis
results are based on Polyspace implementations of the standard library function, which follow the
original function specifications.

If you want your own redefinitions to be used and you are sure that your redefined function behaves
the same as the original function, rename the functions. You can rename the function only for the
purposes of analysis using the option Preprocessor definitions (-D). For instance, to rename
a function malloc to my_malloc, use malloc=my_malloc for the option argument.

 Fix Polyspace Compilation Warnings Related to Assertion or Memory Allocation Functions

32-45

Fix Polyspace Compilation Errors About In-Class Initialization
(C++)

When a data member of a class is declared static in the class definition, it is a static member of the
class. You must initialize static data members outside the class because they exist even when no
instance of the class has been created.

class Test
{
public:

 static int m_number = 0;
};

Error message:
Error: a member with an in-class initializer must be const

Corrected code:

in file Test.h in file Test.cpp
class Test
{
public:
static int m_number;
};

int Test::m_number = 0;

32 Troubleshooting in Polyspace Bug Finder

32-46

Update Eclipse Java Version for Polyspace Plug-in

In this section...
“Issue” on page 32-47
“Cause” on page 32-47
“Solution” on page 32-47

Issue
After installing the Polyspace plug-in for Eclipse, when you open the Eclipse or Eclipse-based IDE,
you see this error message:

Java 7 required, but the current java version is 1.6.
You must install Java 7 before using Polyspace plug in.

You might see this message even if you install Java 7 or higher.

Cause
Despite installing Java 7 or higher, the Eclipse or Eclipse-based IDE still uses an older version.

Solution
Make sure that the Eclipse or Eclipse-based IDE uses the compatible Java version.

1 Open the executable_name.ini file that occurs in the root of your Eclipse installation folder.

If you are running Eclipse, the file is eclipse.ini.
2 In the file, just before the line -vmargs, enter:

-vm
java_install\bin\javaw.exe

Here, java_install is the Java installation folder.

For instance, your product installation comes with the required Java version for certain
platforms. You can force the Eclipse or Eclipse-based IDE to use this version. In your .ini file,
enter the following just before the line -vmargs:

-vm
polyspaceroot\sys\java\jre\arch\jre\bin\javaw.exe

Here, polyspaceroot is your product installation folder, for instance, C:\Program Files
\Polyspace\R2019a\ and arch is win32 or win64 depending on the product platform. Note
that -vm and the path to javaw.exe must be on separate lines.

 Update Eclipse Java Version for Polyspace Plug-in

32-47

Fix MATLAB Crashes Referring to Polyspace in matlabroot

Issue
In your Polyspace installation, you can find a MATLAB executable in the polyspaceroot\bin
subfolder. The reason is that some functionalities of Polyspace use the MATLAB engine underneath.
However, the MATLAB engine shipped with Polyspace is severely reduced and cannot be used by end-
users even after license activation.

If you try to open matlab.exe from a Polyspace installation folder and try to execute MATLAB
commands, MATLAB might crash during command execution. The crash log shows that you opened
MATLAB from a Polyspace installation folder, such as C:\Program Files\Polyspace\R2023a.

Possible Solutions
Do not open MATLAB from a Polyspace installation by running an executable such as:

C:\Program Files\Polyspace\R2023a\bin\matlab.exe

Instead, open MATLAB from an actual MATLAB installation by running an executable such as:

C:\Program Files\MATLAB\R2023a\bin\matlab.exe

To see which MATLAB installation you are using, at the MATLAB command window, enter:

matlabroot

This command shows you the root of the MATLAB installation.

Note that you can run Polyspace from a MATLAB command line. But even for this usage, you must
open MATLAB from your MATLAB installation folder and run some preliminary steps to integrate
your MATLAB and Polyspace installation. See “Integrate Polyspace with MATLAB and Simulink” on
page 5-2.

See Also

Related Examples
• “Integrate Polyspace with MATLAB and Simulink” on page 5-2
• “Bug Finder Analysis with MATLAB Scripts”

32 Troubleshooting in Polyspace Bug Finder

32-48

Diagnose Why Coding Standard Violations Do Not Appear as
Expected

Issue
You expect a coding rule violation on a line of code but the Polyspace Bug Finder analysis does not
show the violation.

The default code analysis with Polyspace Bug Finder might not raise some potential defects. If an
expected defect does not appear, you might need to enable additional checkers, and specify checkers
options that are appropriate for your analysis. For instance:

void foo(int* p, int i) {
 *p = i;
}

In this code example, the function foo dereferences a pointer with an unknown origination point. You
might expect Bug Finder to flag the pointer as tainted. A default Bug Finder analysis does not look for
tainted pointers. To flag pointers that originate outside the current analysis perimeter as tainted,
enable the checker TAINTED_PTR. Then, limit your trust boundary by using the option -consider-
analysis-perimeter-as-trust-boundary.

Possible Solutions
Check If Rule Checker Is Enabled

You might have enabled a reduced subset of coding rules that exclude the expected rule.

For instance, if you check for MISRA C: 2012 rules, the analysis enables only the mandatory-
required subset by default. To check for other MISRA C: 2012 rules, specify the appropriate option.

Review the coding rules options that you use. See “Coding Standards & Code Metrics”.

Check If Source File Is Excluded from Analysis

By default, coding rule violations are suppressed from header files that are not in the same location
as the source files. Some source files might be excluded from the coding rule analysis intentionally.
See Do not generate results for (-do-not-generate-results-for). If you are analyzing
such a file, all coding rule violations in the file might be suppressed.

Check If Rule Violation Is in Macros

When a rule violation occurs in a macro definition, Polyspace shows the result only once in the macro
definition. A violation is reported on an instance of a macro only when the rule violation occurs
explicitly because of the parameters of the macro instance. If the macro definition occurs in a header
file, it might be suppressed from the results. See also “Polyspace Results in Lines Containing Macros”
on page 31-12. If you expect a coding rule violation on a macro:

• Check the macro definition for the violation.
• If the macro definition is in a header file, check if you are suppressing coding rule violations from

header files. See Do not generate results for (-do-not-generate-results-for).

On the Source pane, to see if a line contains a macro expansion, look for the icon.

 Diagnose Why Coding Standard Violations Do Not Appear as Expected

32-49

Check for Compilation Errors

If any source file in the analysis does not compile, coding rules checking remains incomplete. The
coding rules checker results:

• Might not contain full results for files that did not compile.
• Might not contain full results for the files that did compile because some rules are checked only

after compilation is complete.

Check for compilation errors. See “View Error Information When Analysis Stops” on page 32-4.

Check If Rule Checker Needs to Be Extended

Some constructs in your code might violate a coding rule in some specific contexts. A default Bug
Finder analysis might not report these potential violations to reduce false positives. Detect these
issues by extending the existing Bug Finder coding rule checkers. Modify the checker behavior by
using these options:

• -consider-analysis-perimeter-as-trust-boundary: By default, Polyspace considers only
the user inputs as tainted. By using this option, you consider any data that originates outside the
current analysis perimeter as tainted. See “Sources of Tainting in a Polyspace Analysis” on page
18-61.

• -detect-atomic-data-race: By default, Polyspace assumes that certain operations are atomic
and excludes them from data race checks. These operations might not be atomic in your
environment. Use this option to extend the data race checkers to include the assumed atomic
operations. See “Extend Data Race Checkers to Atomic Operations” on page 18-35.

For a list of options that extend or modify Bug Finder checkers, see “Modify Checker Behavior” on
page 18-3.

Check If Analysis Needs Additional Information on Code

Polyspace might require additional information about your code to detect certain coding rule
violations. For instance:

• Standard library math function checkers. By default, these checkers check for invalid use of
standard library math functions. If you use a custom math library with domain or other
constraints, a default Polyspace analysis cannot detect the violation of those constraints. If your
custom library functions have similar domains and constraints to standard library math functions,
you can extend these checkers to your custom library. See “Extend Bug Finder Checkers for
Standard Library Functions to Custom Libraries” on page 18-24.

• Concurrency checkers. By default, Polyspace Bug Finder automatically detects thread creation
and protection mechanisms if you use routines from certain libraries. See “Auto-Detection of
Thread Creation and Critical Section in Polyspace” on page 15-7. If you use a custom concurrency
library that Polyspace does not support, to detect potential defects, do either of these:

• If possible, map the custom library to a supported library See “Extend Concurrency Defect
Checkers to Unsupported Multithreading Environments” on page 18-30.

• Configure the analysis manually. See “Configuring Polyspace Multitasking Analysis Manually”
on page 15-17.

32 Troubleshooting in Polyspace Bug Finder

32-50

• Checkers that check for blocklisted keywords and functions. These checkers cannot flag the
blocklisted keywords and functions unless you specify which ones are blocklisted. See “Flag
Deprecated or Unsafe Functions, Keywords, or Macros Using Bug Finder Checkers” on page 18-
21.

For a complete list of checkers that need additional information about your code, see “Modify
Polyspace Interpretation of Code” on page 18-5.

Check If Rule Applies to Source Files

Some coding rules apply only to header files. Violations of these rules are not reported in nonheader
source files. For instance, violations of rules such as MISRA C++:2008 Rule 3-1-1 or AUTOSAR C+
+14 Rule A3-1-1 are reported only in header files.

Check If Rule Violation Is in Uncalled static Function

Violations of some coding rules are not reported on uncalled static functions. To see all detect
coding rule violations in a static function, call the function in your code.

Check If Violation Is in Unused Code

Bug Finder does not report coding rule violations on certain code constructs if they are unused. For
instance:

• Templates: Bug Finder does not report violations on uninstantiated templates.
• Macros: Bug Finder does not report violations on unused macros.
• Typedefs: Bug Finder does not report violations on unused typedefs.

To check these code constructs for coding rule violations, invoke them at least once in your code.

See Also
Do not generate results for (-do-not-generate-results-for) | -code-behavior-
specifications | -consider-analysis-perimeter-as-trust-boundary | -detect-
atomic-data-race

More About
• “Modify Default Behavior of Bug Finder Checkers” on page 18-3
• “Sources of Tainting in a Polyspace Analysis” on page 18-61
• “Auto-Detection of Thread Creation and Critical Section in Polyspace” on page 15-7
• “Flag Deprecated or Unsafe Functions, Keywords, or Macros Using Bug Finder Checkers” on

page 18-21
• “Bug Finder Analysis Assumptions”

 Diagnose Why Coding Standard Violations Do Not Appear as Expected

32-51

Check Why a Bug Finder Defect Does Not Appear as Expected

Issue
The default code analysis with Polyspace Bug Finder might not raise some potential defects. If an
expected defect does not appear, you might need to enable additional checkers, and specify checkers
options that are appropriate for your analysis. For instance:

void foo(int* p, int i) {
 *p = i;
}

In this code example, the function foo dereferences a pointer with an unknown origination point. You
might expect Bug Finder to flag the pointer as tainted. A default Bug Finder analysis does not look for
tainted pointers. To flag pointers that originate outside the current analysis perimeter as tainted,
enable the checker TAINTED_PTR. Then, limit your trust boundary by using the option -consider-
analysis-perimeter-as-trust-boundary.

Possible Solutions
Check If Defect Checker Is Enabled

The default Bug Finder analysis enables a subset of the defect checkers. See “Polyspace Bug Finder
Defects Checkers Enabled by Default” on page 18-65. To enable for other Bug Finder defects:

• Polyspace desktop user interface: Select the checkers that you want to enable in the Bug Finder
Analysis node of the Configuration pane.

• Polyspace as You Code IDE plugins: Select the checkers that you want to enable in the Checkers
Selection window. See “Setting Checkers in Polyspace as You Code”.

• Command Line Interface: Open the Checkers Selection window by using the command
polyspace-checkers-selection. Select the checkers that you want to enable, and then save
your selection in an XML file. When running a Bug Finder analysis, use this file as the input to the
command -checkers-activation-file. Instead of specifying a file, you can also enumerate
the checkers explicitly or use a predefined subset using the option Find defects (-
checkers).

When checking for specific issues, the best practice is to enable specific checkers corresponding to
the issues.

Check If Defect Checker Needs to Be Extended

Some constructs in your code might cause issues in some specific contexts. A default Bug Finder
analysis might not flag these potential defects to reduce false positives. Detect these issues by
extending the existing Bug Finder defect checkers. Modify the checker behavior by using these
options:

• -consider-analysis-perimeter-as-trust-boundary: By default, Polyspace considers only
the user inputs as tainted. By using this option, you consider any data that originates outside the
current analysis perimeter as tainted. See “Sources of Tainting in a Polyspace Analysis” on page
18-61.

• -detect-atomic-data-race: By default, Polyspace assumes that certain operations are atomic
and excludes them from data race checks. These operations might not be atomic in your

32 Troubleshooting in Polyspace Bug Finder

32-52

environment. Use this option to extend the data race checkers to include the assumed atomic
operations. See “Extend Data Race Checkers to Atomic Operations” on page 18-35.

For a complete list of options that extend or modify Bug Finder checkers, see “Modify Checker
Behavior” on page 18-3.

Check If Analysis Needs Additional Information on Code

Some checkers might require additional information about your code in order to detect certain
defects. For instance:

• Standard library math function checkers. By default, these checkers check for invalid use of
standard library math functions. If you use a custom math library with domain or other
constraints, a default Polyspace analysis cannot detect the violation of those constraints. If your
custom library functions have similar domains and constraints to standard library math functions,
you can extend these checkers to your custom library. See “Extend Bug Finder Checkers for
Standard Library Functions to Custom Libraries” on page 18-24.

• Concurrency checkers. By default, Polyspace Bug Finder automatically detects thread creation
and protection mechanisms if you use routines from certain libraries. See “Auto-Detection of
Thread Creation and Critical Section in Polyspace” on page 15-7. If you use a custom concurrency
library that Polyspace does not support, to detect potential defects, do either of these:

• If possible, map the custom library to a supported library See “Extend Concurrency Defect
Checkers to Unsupported Multithreading Environments” on page 18-30.

• Configure the analysis manually. See “Configuring Polyspace Multitasking Analysis Manually”
on page 15-17.

• Checkers that check for blocklisted keywords and functions. These checkers cannot flag the
blocklisted keywords and functions unless you specify which ones are blocklisted. See “Flag
Deprecated or Unsafe Functions, Keywords, or Macros Using Bug Finder Checkers” on page 18-
21.

For a complete list of checkers that need additional information about your code, see “Modify
Polyspace Interpretation of Code” on page 18-5.

Check Bug Finder Assumptions

To minimize results that can be perceived as false positives, Bug Finder makes certain assumptions
when running a Bug Finder analysis. For instance:

• By default, Polyspace does not raise a defect that is caused by a specific value of an unknown
input. See “Inputs in Polyspace Bug Finder”.

• Polyspace ignores the initialization value of local volatile variables. The initialization value of
global volatile objects depend on their const-ness and their Init Mode. See “Volatile Variables
in Polyspace Bug Finder”.

For a list of these assumptions, see “Bug Finder Analysis Assumptions”.

These assumptions might prevent Bug Finder from detecting some potential defects. In these cases,
run Code Prover for a more exhaustive analysis. For instance, consider this code:

int foo(void){
 volatile var=0;
 return 1/var; // Potential defect

 Check Why a Bug Finder Defect Does Not Appear as Expected

32-53

}

The statement return 1/var is a potential divide-by-zero error. Because of Bug Finder assumptions,
this defect is not detected. A Code Prover analysis flags this issue as an orange check.

Check For Uninstantiated Template

If your code has uninstantiated class template, a Polyspace Bug Finder defect might not be reported
on the class.

The objects in standard template library (STL) are class templates. If you do not see an expected
defect on an STL class, instantiate an object of the class.

See Also
-code-behavior-specifications | -consider-analysis-perimeter-as-trust-boundary |
-detect-atomic-data-race | Effective boolean types (-boolean-types)

More About
• “Modify Default Behavior of Bug Finder Checkers” on page 18-3
• “Sources of Tainting in a Polyspace Analysis” on page 18-61
• “Auto-Detection of Thread Creation and Critical Section in Polyspace” on page 15-7
• “Flag Deprecated or Unsafe Functions, Keywords, or Macros Using Bug Finder Checkers” on

page 18-21
• “Bug Finder Analysis Assumptions”

32 Troubleshooting in Polyspace Bug Finder

32-54

Fix Insufficient Memory Errors During Polyspace Report
Generation

Issue
When generating reports from Polyspace results containing a very large number of defects or coding
rule violations, you might encounter insufficient memory errors.

The error message can look like this message:

....
Exporting views...
Initializing...
Polyspace Report Generator
Generating Report

 Converting report
Opening log file: C:\Users\auser\AppData\Local\Temp\java.log.7512
Document conversion failed
.....
Java exception occurred:
java.lang.OutOfMemoryError: Java heap space

Possible Solutions
To resolve the issue, you can try increasing the available heap memory or reporting the results over
multiple reports instead of in a single report.

Increase Java Heap Size

If the error occurs during report generation, try increasing the Java heap size. The default heap size
in a 64-bit architecture is 1024 MB.

To increase the size:

1 Navigate to polyspaceroot\polyspace\bin\architecture. Where:

• polyspaceroot is the installation folder.
• architecture is your computer architecture, for instance, win32, win64, etc.

2 Change the default heap size that is specified in the file, java.opts. For example, to increase
the heap size to 2 GB, replace 1024m with 2048m.

3 If you do not have write permission for the file, copy the file to another location. After you have
made your changes, copy the file back to polyspaceroot\polyspace\bin\architecture\.

Report Polyspace Results in Multiple Reports

Instead of reporting all results from a result set (.pscp or .psbf file) in a single report, you can
generate multiple reports, each containing a smaller subset of results.

The simplest strategy can be to report results of a certain type in a single report. For instance, from a
results set containing MISRA C:2012 rule violations, you can generate two reports, one for the
mandatory and required rules, and another for the remaining rules.

 Fix Insufficient Memory Errors During Polyspace Report Generation

32-55

Apply Review Scopes and Generate Filtered Report

You can create named sets of filters called review scopes in the user interface of the Polyspace
desktop products. When generating a report, you can apply a review scope that filters the results
before storing them in the report.

To create a review scope:

1 In the Polyspace user interface, select Tools > Preferences.
2 On the Review Scope tab, select New. Enter a review scope name and a location to save.

The review scope name can be used later when filtering the results.
3 Select the checkers that you want to be included in the review scope.

You can generate a filtered report from a Polyspace results set by applying a review scope before
report generation. The report contains results of only those checkers that are included in the review
scope. Note that even though you create the review scope in the user interface, you can apply the
scope for report generation in the user interface or at the command line.

To generate a filtered report in the Polyspace user interface:

1 In the dropdown at the top of the Results List pane, instead of All results, select your new
review scope. The list of results is narrowed down to results of only those checkers that are
included in the review scope.

2 Generate a report or export results using the Reporting menu.

• To generate reports, select Run Report. In the Run Report dialog, select Only include
currently displayed results before starting report generation.

• To export results select Export > Export Currently Displayed Results.

To generate a filtered report at the command line, use the option -wysiwyg scopeName with the
command polyspace-report-generator. Here, scopeName is the review scope name that you
used when saving the scope from the Polyspace user interface. For instance:

polyspace-report-generator
 -template templateName
 -results-dir resultsFolder
 -format HTML -wysiwyg scopeName

Here:

32 Troubleshooting in Polyspace Bug Finder

32-56

• templateName is the path to a report template, such as polyspaceroot\toolbox\polyspace
\psrptgen\templates\Developer.rpt, where polyspaceroot is the Polyspace installation
folder such as C:\Program Files\Polyspace\R2023a.

• resultsFolder is the folder containing Polyspace results.

Note that the scope names are stored with your user preferences. Therefore, you cannot use the
scopes names for report generation with another Polyspace installation, for instance, from a different
release. For more information on user preferences, see “Storage of Polyspace User Interface
Customizations” on page 2-24.

Apply Column-Based Results List Filters and Generate Filtered Report

You can also filter results in the Polyspace user interface using column-based filters and create a
filtered report from the currently displayed results:

1
Click the icon on column headers of the Results List pane to see the available filters. Apply
the filters that you want.

2 Generate a report or export results using the Reporting menu.

• To generate reports, select Run Report. In the Run Report dialog, select Only include
currently displayed results before starting report generation.

• To export results select Export > Export Currently Displayed Results.

The generated report states which columns were used to filter results. For instance, if you use the
Status column to suppress all results with status Justified, the generated report contains this line:

Columns with active filters:
 Status

All results with status Justified do not appear in the report.

Your choice of column-based filters are stored in the file ui_settings.prf in the .settings
subfolder of the results folder. Therefore, if you generate a report from these results at the command
line and use the option -wysiwyg "All results" (or with a scope name as shown in previous
section), your choice of column-based filters apply to the generated report. You can even move the file
ui_settings.prf to .settings subfolders of other results folders to generate filtered reports
from those other results.

See Also
polyspace-report-generator

More About
• “Generate Reports from Polyspace Results” on page 24-2

 Fix Insufficient Memory Errors During Polyspace Report Generation

32-57

Fix Errors or Slow Polyspace Runs from Disk Defragmentation
and Anti-virus Software

Issue
In some cases, anti-virus software checks can noticeably slow down a Polyspace analysis. This
reduction occurs because the software checks the temporary files produced by the Polyspace
analysis.

You see noticeably slow analysis for a simple project or the analysis stops with an error message like
the following:
Some stats on aliases use:
 Number of alias writes: 22968
 Number of must-alias writes: 3090
 Number of alias reads: 0
 Number of invisibles: 949
Stats about alias writes:
 biggest sets of alias writes: foo1:a (733), foo2:x (728), foo1:b (728)
 procedures that write the biggest sets of aliases: foo1 (2679), foo2 (2266),
 foo3 (1288)
**** C to intermediate language translation - 17 (P_PT) took 44real, 44u + 0s (1.4gc)
exception SysErr(OS.SysErr(name="Directory not empty", syserror=notempty)) raised.
unhandled exception: SysErr: No such file or directory [noent]

--
--- ---
--- Verifier has encountered an internal error. ---
--- Please contact your technical support. ---
--- ---

Possible Cause
A disk defragmentation tool or anti-virus software is running on your machine.

After starting an analysis, check the processes running and see if an anti-virus process is causing
large amount of CPU usage (and possibly memory usage).

Solution
Try:

• Stopping the disk defragmentation tool.
• Deactivating the anti-virus software. Or, configuring exception rules for the anti-virus software to

allow Polyspace to run without a failure.

For instance, you can try the following:

• Configure the anti-virus software to allow the Polyspace executables.

For instance, in Windows, with the anti-virus software Windows Defender, you can add an
exclusion for the Polyspace installation folder C:\Program Files\Polyspace\R2019a, in
particular, the .exe files in the subfolder polyspace\bin and the .exe files starting with
polyspace in the subfolder bin\win64 (for instance, polyspace-internal-
connector.exe).

32 Troubleshooting in Polyspace Bug Finder

32-58

• Configure the anti-virus software to exclude your temporary folder, for example, C:\Temp,
from the checking process.

See “Storage of Temporary Files During Polyspace Analysis” on page 3-6.

 Fix Errors or Slow Polyspace Runs from Disk Defragmentation and Anti-virus Software

32-59

Fix SQLite I/O Errors on Running Polyspace

Issue
Polyspace uses an SQLite database for storing analysis results. SQLite databases might show
problems when shared on network file systems such as NFS (Network File System), CIFS (Common
Internet File System) or SMB (Server Message Block protocol), and the like.

If you save your analysis results on network file systems, you might see errors like this:

exception SQLError(SQLite.SQLError(code=10, disk I/O error (errcode=10 extended errcode=1034)))
raised.

The errors indicate that the database disk image is malformed and the results are possibly corrupted.

Possible Solutions
Check the folder where you save Polyspace results. For instance, if you run Polyspace at the
command line, check the argument of the option -results-dir.

If the folder is a network folder that uses file systems such as NFS, use a local folder instead.

32 Troubleshooting in Polyspace Bug Finder

32-60

Fix Polyspace Errors Related to Temporary Files
Polyspace produces some temporary files during analysis. The following issues are related to storage
of temporary files.

No Access Rights
When running verification, you get an error message that Polyspace could not create a folder for
writing temporary files. For instance, the error message can be as follows:

Unable to create folder "C:\Temp\Polyspace\foldername

Cause

Polyspace produces some temporary files during analysis. If you do not have write permissions for the
folder used to store the files, you can encounter the error.

Solution

There are two possible solutions to this error:

• Change the permissions of your temporary folder so you have full read and write privileges.

To learn how Polyspace determines the temporary folder location, see “Storage of Temporary Files
During Polyspace Analysis” on page 3-6.

• Use the option -tmp-dir-in-results-dir. Instead of the standard temporary folder, Polyspace
uses a subfolder of the results folder.

No Space Left on Device
When running verification, you get an error message that there is no space on a device.

Cause

If you do not have sufficient space on for the folder used to store the files, you can encounter the
error.

Solution

There are two possible solutions to this error:

• Change the temporary folder to a drive that has enough disk space.

To learn how Polyspace determines the temporary folder location, see “Storage of Temporary Files
During Polyspace Analysis” on page 3-6.

• Use the option -tmp-dir-in-results-dir. Instead of the standard temporary folder, Polyspace
uses a subfolder of the results folder.

Cannot Open Temporary File
When running verification, you get an error message that Polyspace could not open a temporary file.

 Fix Polyspace Errors Related to Temporary Files

32-61

Cause

You defined the path for storing temporary files by using the environment variable RTE_TMP_DIR. You
either used a relative path for the temporary folder, the folder does not exist or you do not have
access rights to the folder.

Solution

There are two possible solutions to this error:

• Instead of defining a temporary folder specific to Polyspace through RTE_TMP_DIR, use a
standard temporary folder.

To learn how Polyspace determines the temporary folder location, see “Storage of Temporary Files
During Polyspace Analysis” on page 3-6.

• If you continue to use RTE_TMP_DIR, make sure you specify an absolute path to an existing folder
and you have access rights to the folder.

32 Troubleshooting in Polyspace Bug Finder

32-62

Fix Errors Applying Custom Annotation Format for Polyspace
Results

Issue
When you use the option -xml-annotations-description to apply custom annotations to your
Polyspace results, some custom annotations are not applied and you see warnings in the console
output or the desktop interface Output Summary.

Possible Solutions
Custom Annotation Not Found in Mapping

If you define a custom annotation syntax but you do not map it to the Polyspace annotation syntax,
Polyspace detects the custom annotation but does not apply it to the analysis results. You see a
warning similar to this warning in the console output or the Polyspace desktop interface Output
Summary.
Verifying sources ...
Verifying zero_div.c (1/1)
Warning: rule :50 from exampleCustomAnnotation not found in the mapping (XML file).
 Skipping the annotation

Solution

Check the <Mapping/> section of the XML file that you pass to the -xml-annotations-
description option. If the rule listed in the warning is not mapped to a Polyspace rule, add the
appropriate entry to map the rule. For instance, to map rule 50 from the preceding warning to
Polyspace coding rule MISRA C: 2012 Rule 8.4, add this entry in the <Mapping/> section:
<Result_Name_Mapping Rule_Identifier="50" Family="MISRA-C3" Result_Name="8.4"/>

Polyspace Annotations Do Not Apply to Current Code

If you define a custom annotation syntax and you map it to the Polyspace annotation syntax,
Polyspace might not apply some custom annotations to your source code. You see a warning similar to
this warning in the console output or the Polyspace desktop interface Output Summary.
Warning: These Polyspace annotations do not apply to the current code:
| In file D:\Polyspace\Examples\zero_div.c line 7, annotation MISRA-C3:8.4 with text
"Justified by annotation in source"
| In file D:\Polyspace\Examples\zero_div.c line 20, annotation MISRA-C3:8.4 with text
"Justified by annotation in source"
| Possible reasons:
| - Issue not detected with selected configuration options.
| - Issue is fixed.
| - Annotation syntax is incorrect

Solution

Check for these possible causes:

• The issue that the annotation addresses has been fixed in the source code. Polyspace detects the
custom annotation but ignores it.

• The issue that the annotation addresses was not detected by Polyspace with the analysis options
that you specified. For example, if the custom annotation addresses a MISRA C: 2012 coding
standard violation but Polyspace did not check for violations of this coding standard because
option Check MISRA C:2012 (-misra3) is not specified.

 Fix Errors Applying Custom Annotation Format for Polyspace Results

32-63

• The issue that the annotation addresses was detected but Polyspace could not match the custom
annotation to a corresponding Polyspace annotation. This indicates a syntax error in the
<Mapping/> section of the XML file that you pass to the -xml-annotations-description
option.

See Also
-xml-annotations-description

Related Examples
• “Define Custom Annotation Format” on page 30-30

32 Troubleshooting in Polyspace Bug Finder

32-64

Fix Issues When when Integrating Polyspace with MATLAB and
Simulink

Issue
Before using Polyspace from MATLAB and Simulink, perform a one-time setup to integrate the two
products. For details, see “Integrate Polyspace with MATLAB and Simulink” on page 5-2. When
performing the integration steps, if you do not have administrator privileges in MATLAB or your
Polyspace installation is nonstandard, you might run into some issues. For instance, the
polyspacesetup() command might fail to complete.

Possible Solutions
Check if Polyspace installation is nonstandard

By default, Polyspace is installed on the path C:\Program Files\Polyspace\R2023a. When you
use this command:

polyspacesetup('install');

Polyspace assumes that the installation folder is the default folder. If you install Polyspace in a
different folder, the preceding command fails. For more information about the default installation
folder, see “Product Installation”.

To resolve this issue, specify the installation path in the polyspacesetup command. For instance, at
the command line, enter:

polyspacesetup('install', 'polyspaceFolder', Folder)

where Folder is the Polyspace installation folder.

Check if MATLAB instance has administrator privilege

Executing the command polyspacesetup requires administrator privilege. If you do not open
MATLAB by using administrator privilege, the command exits with an error.

To resolve this issue, restart MATLAB by using administrator privileges. For instance, in Windows, to
open MATLAB with administrator privilege, right-click the MATLAB executable and select Run as
administrator. In some operating systems, you might need to use an administrator account.

Check If polyspacesetup expects user Input

By default, the polyspacesetup command is interactive and expects user input during the
integration process. When performing a noninteractive integration, make sure the process is not
stuck waiting for your input. To perform a noninteractive installation, at the MATLAB command
prompt, enter:

polyspacesetup('install', 'polyspaceFolder', Folder, 'silent', true);

where Folder is the installation path.

 Fix Issues When when Integrating Polyspace with MATLAB and Simulink

32-65

Check if Polyspace version is supported

Polyspace integrates completely with MATLAB or Simulink from the same release. If your Polyspace
and MATLAB are from different releases, you might not be able to perform a complete integration.
See “Polyspace Support of MATLAB and Simulink from Different Releases” on page 6-68.

Depending on your versions of Polyspace and MATLAB, you might be able to partially integrate these
products. See “MATLAB Release Earlier Than Polyspace” on page 5-3.

See Also
polyspacesetup

More About
• “Polyspace Support of MATLAB and Simulink from Different Releases” on page 6-68
• “Bug Finder Analysis with MATLAB Scripts”
• “Bug Finder Analysis in Simulink”
• “Bug Finder Analysis in MATLAB Coder”
• “Integrate Polyspace with MATLAB and Simulink” on page 5-2

32 Troubleshooting in Polyspace Bug Finder

32-66

Check Why Polyspace Functions are Unavailable in MATLAB

Issue
To use Polyspace directly from MATLAB or Simulink, you must include the folders containing the
Polyspace functions on the MATLAB search path. If these locations are absent or deleted from the
search path, the Polyspace functions become unavailable in the MATLAB Command Window.

Possible Solution
Possible Solution: Check if you integrated Polyspace with MATLAB and Simulink

The Polyspace functions are included with a Polyspace installation and their locations are unknown to
MATLAB. After installing MATLAB and Polyspace, you cannot use these functions unless you add their
locations to the MATLAB search path.

To use the Polyspace functions from MATLAB and Simulink, add their locations to the MATLAB search
path by calling the function polyspacesetup. See “Integrate Polyspace with MATLAB and Simulink”
on page 5-2.

Possible Solution: Check if Polyspace is supported after a MATLAB update

Updating MATLAB restores the default MATLAB search path and removes any path to the Polyspace
installation that was previously added. Because the Polyspace function paths are removed, the
integration between Polyspace and MATLAB breaks after a MATLAB update. You must re-establish
the integration.

After an update, repeat the steps to integrate Polyspace and MATLAB. If you updated MATLAB to a
later release without updating Polyspace, the Polyspace support of MATLAB might be different from
before. See “Polyspace Support of MATLAB and Simulink from Different Releases” on page 6-68.

Depending on your versions of Polyspace and MATLAB, integrate these products completely or
partially. See “Integrate Polyspace with MATLAB and Simulink” on page 5-2.

See Also
polyspacesetup

More About
• “Polyspace Support of MATLAB and Simulink from Different Releases” on page 6-68
• “Bug Finder Analysis with MATLAB Scripts”
• “Bug Finder Analysis in Simulink”
• “Bug Finder Analysis in MATLAB Coder”
• “Integrate Polyspace with MATLAB and Simulink” on page 5-2

 Check Why Polyspace Functions are Unavailable in MATLAB

32-67

Troubleshoot Java Incompatibility in Polyspace Plugin for
Eclipse

Issue
Using the Polyspace desktop plugin for Eclipse and Eclipse-based IDEs require a Java version
between 7 and 15. If your Java version is outside this range, after installing the plugin, you might see
one of these error messages:

• Java 7 required, but the current java version is 1.6.
You must install Java 7 before using Polyspace plug in.

• Java version 16 is not supported by the Polyspace plugin

These messages indicate that you have an incompatible version of Java.

Possible Solutions
Check If Eclipse Uses Correct Java Installation

The Polyspace plugin for Eclipse and Eclipse-based IDEs requires a Java version between 7 and 15. If
you have installed a compatible Java version, check if your Eclipse IDE is using that Java version:

1 In the Eclipse IDE, click Help > About Eclipse IDE > Installation Details.
2 In the Installation Detail window, on the Configuration tab, locate the line java.version. This

line shows the Java version that is used by the IDE.

If the Java version is incompatible:

1 Install a Java version between 7 and 15, say, in the folder java_install. Polyspace comes with
a compatible Java version in certain platforms. You might prefer to use this version of Java.

2 Open the executable_name.ini file from the Eclipse installation folder.

For the core Eclipse IDE, the file is eclipse.ini. For other Eclipse-based IDEs, the file name
might be different.

3 In the file, before the line -vmargs, enter:

-vm
java_install\bin\javaw.exe

Here, java_install is the installation folder of the compatible Java version.

If you prefer to use the Java version Polyspace provides, then enter:

-vm
polyspaceroot\sys\java\jre\arch\jre\bin\javaw.exe

Here, polyspaceroot is your product installation folder, for instance, C:\Program Files
\Polyspace\R2019a\ and arch is win32 or win64 depending on the product platform. Note
that -vm and the path to javaw.exe must be on separate lines.

32 Troubleshooting in Polyspace Bug Finder

32-68

Switch to Polyspace as You Code

If installing a compatible version of Java is not feasible, consider switching to the Polyspace as You
Code plugin for Eclipse. You require a Polyspace Access license to install this plugin. For more
information, see “Install Polyspace as You Code Plugin in Eclipse”.

Polyspace as You Code performs a Polyspace Bug Finder analysis on the source file currently open in
your IDE. The plugin does not support checking for run-time errors and calculating stack usage by
using Polyspace Code Prover. See also:

• “Analysis Scope of Polyspace as You Code” on page 11-75.
• “Checkers Deactivated in Polyspace as You Code Analysis” on page 11-78.

See Also

More About
• “Configure Polyspace as You Code Plugin in Eclipse” on page 11-19
• “Install Polyspace Desktop Plugin for Eclipse”
• “Install Polyspace as You Code Plugin in Eclipse”
• “Checkers Deactivated in Polyspace as You Code Analysis” on page 11-78

 Troubleshoot Java Incompatibility in Polyspace Plugin for Eclipse

32-69

Troubleshooting Polyspace Access

33

Polyspace Access ETL and Web Server services do not start

Issue
You start the Polyspace Access services but after a moment, the ETL and Web Server services stop.
You might see a HTTP 403 error message in your web browser when you try to connect to Polyspace
Access.

Possible Cause: Hyper-V Network Configuration Cannot Resolve Local
Host Names
On Windows, if you installed Polyspace Access inside a virtual machine (VM), that VM is managed by
Hyper-V. Depending on your network configuration, Hyper-V might not resolve local host names. The
Polyspace Access ETL and Polyspace Access Web Server services cannot connect to the host that
you specify with these host names.

To test whether Hyper-V can resolve host name myHostname on a machine that is connected to the
Internet, at the command line, enter:

docker run --rm -it alpine ping myHostname

If Hyper-V cannot resolve the host name, you get an error message.

Solution

Stop and restart the admin-docker-agent binary without using the --hostname option.

• If you are on a trusted network or you do not want to use the HTTPS protocol:

1 At the command-line, enter:

docker stop admin

admin-docker-agent --restart-gateway
2 In the Cluster Admin web interface, click Restart Apps.

• If you want to use the HTTPS protocol, generate certificates with a subject alternative name
(SAN) that includes the IP address of the cluster operator node on which the services are running.

1 Copy this configuration file to a text editor and save it on your machine as openssl.cnf.

Configuration file

[req]
req_extensions = v3_req
distinguished_name = req_distinguished_name
prompt = no

[req_distinguished_name]
countryName = US
stateOrProvinceName = yourState
organizationName = myCompany
organizationalUnitName = myOrganization
emailAddress = user@email.com
commonName = hostName

33 Troubleshooting Polyspace Access

33-2

[v3_req]
basicConstraints = CA:FALSE
keyUsage = nonRepudiation, digitalSignature, keyEncipherment
subjectAltName = @alt_names

[alt_names]
DNS.1 = hostName
DNS.2 = fullyQualifiedDomainName
IP.1 = nodeIPAddress

hostName is the host name of the server that hosts Polyspace Access.
fullyQualifiedDomainName is the corresponding fully qualified domain name.
nodeIPAddress is the IP address of the node on which you run the admin-docker-agent
binary.

You do not need to edit the value of the other fields in the [req_distinguished_name]
section of openssl.cnf. Updating the value of these fields does not affect the configuration.

2 In the Cluster Dashboard, click Configure Nodes. The IP address listed in the Hostname
field corresponds to nodeIPAddress in the openssl.cnf file. If there is more than one node
listed, add an additional line in the [alt_names] section of openssl.cnf for each IP
address. For example:

[alt_names]
DNS.1 = hostName
DNS.2 = fullyQualifiedDomainName
IP.1 = nodeIPAddress
IP.2 = additionalNodeIPAddress

3 Generate a certificate signing request (CSR) by using your openssl.cnf configuration file.
At the command line, enter:

openssl req -new -out myReqest.csr -newkey rsa:4096 \
-keyout myKey.key -nodes -config openssl.cnf

The command outputs a private key file myKey.key and the file myRequest.csr.
4 To generate a signed certificate:

• If you use your organization's certificate authority, submit myRequest.csr to the
certificate authority. The certificate authority uses the file to generate a signed server
certificate. For instance, server_cert.cer.

• If you use self-signed certificates, at the command line, enter:

openssl x509 -req -days 365 -in myRequest.csr -signkey myKey.key \
-out self-cert.pem -extensions v3_req -extfile openssl.cnf

The command outputs self-signed certificate self-cert.pem.
5 Stop and restart the admin-docker-agent binary with this command:

Windows
PowerShell

./admin-docker-agent --restart-gateway `
--ssl-cert-file certFile1 `
--ssl-key-file keyFile `
--ssl-ca-file trustedStoreFile

Linux ./admin-docker-agent --restart-gateway \
--ssl-cert-file certFile1 \
--ssl-key-file keyFile \
--ssl-ca-file trustedStoreFile

 Polyspace Access ETL and Web Server services do not start

33-3

https://en.wikipedia.org/wiki/Certificate_authority

certFile1 is the full path of the file you obtained in step 4.keyFile is the file you generated
in step 3. trustedStoreFile is the file you generated in step 4 if you used self-signed
certificates. Otherwise, it is the trust store file you use to configure HTTPS. See “Choose
Between HTTP and HTTPS Configuration for Polyspace Access” Save your changes.

6 In the Cluster Admin web interface, click Restart Apps.

33 Troubleshooting Polyspace Access

33-4

Contact Technical Support About Polyspace Access Issues
If you need support from MathWorks for Polyspace Access issues, go to this page and create a service
request. You need a MathWorks login and password to create a service request.

Before you contact MathWorks, gather this information.

• Operating system

To see information about the operating system of the machine where you install Polyspace access,
at the command line, enter:

Windows systeminfo | findstr /C:OS
Linux uname -a

• Polyspace Access version

Log into Polyspace Access, then at the top of the window click > About Polyspace. If
Polyspace Access is not yet installed or you cannot log into Polyspace Access, at the command
line, navigate to the folder where you unzipped the Polyspace Access installation image, and
enter:

Windows type VERSION
Linux cat VERSION

• License number

Log into Polyspace Access, then at the top of the window click > About Polyspace. If
Polyspace Access is not yet installed or you cannot log into Polyspace Access, contact your license
administrator to obtain your license number.

• Polyspace Access service logs

To generate logs for the different Polyspace Access services, at the command line, enter:
docker logs -t polyspace-access-web-server-0-main >> access-web-server.log 2>&1
docker logs -t polyspace-access-etl-0-main >> access-etl.log 2>&1
docker logs -t polyspace-access-db-0-main >> access-db.log 2>&1
docker logs -t polyspace-access-download-0-main >> download-service.log 2>&1
docker logs -t issuetracker-server-0-main >> issuetracker-server.log 2>&1
docker logs -t issuetracker-ui-0-main >> issuetracker-ui.log 2>&1
docker logs -t usermanager-server-0-main >> usermanager-server.log 2>&1
docker logs -t admin >> admin.log 2>&1
docker logs -t gateway >> gateway.log 2>&1
docker logs -t usermanager-ui-0-main >> usermanager-ui.log 2>&1
docker logs -t usermanager-db-0-main >> usermanager-db.log 2>&1
docker logs -t polyspace-access >> polyspace-access.log 2>&1
docker logs -t issuetracker >> issuetracker.log 2>&1
docker logs -t usermanager>> usermanager.log 2>&1

Attach the log files to your service request. The commands to generate these logs are the same for
Windows and Linux.

Note If you run Polyspace Access version R2021b or earlier, the docker container names might be
different. To view the names of currently running containers, use command docker ps --
format '{{.Names}}'.

• Polyspace Access web interface log

 Contact Technical Support About Polyspace Access Issues

33-5

https://www.mathworks.com/support/contact_us.html?s_tid=doc2cs

To generate a log for the Polyspace Access web interface, log into Polyspace Access. In the left
pane, click SUPPORT REPORT then Get support info. Attach the generated supportreport
file to your service request.

33 Troubleshooting Polyspace Access

33-6

	Introduction
	About This User's Guide

	Configure Analysis on Desktop
	Set Up Polyspace Projects on Desktop
	Add Source Files for Analysis in Polyspace Desktop User Interface
	Polyspace Project and Source File Paths
	Add Sources from Build Command
	Add Sources Manually
	Add Source Files Based on AUTOSAR Design Specifications

	Contents of Polyspace Project and Results Folders
	File Organization
	Files in the Results Folder

	Create Polyspace Projects from Visual Studio Build
	Create Polyspace Project from Build in Visual Studio Developer Command Prompt
	Create Polyspace Project from Build in Visual Studio IDE

	Create Project in Polyspace Desktop User Interface Using Configuration Template
	Why Use Templates
	Use Predefined Template
	Create Your Own Template
	Sharing Project Templates

	Update Project in Polyspace Desktop User Interface
	Change Folder Path
	Refresh Source List
	Refresh Project Created from Build Command
	Add Source and Include Folders
	Manage Include File Sequence

	Organize Layout of Polyspace Desktop User Interface
	Create Your Own Layout
	Save and Reset Layout

	Customize Polyspace Desktop User Interface
	Possible Customizations
	Storage of Polyspace User Interface Customizations

	Upload Results to Polyspace Access
	Upload Results from Polyspace Desktop Client
	Upload Results at Command Line
	Results Upload Compatibility and Permissions

	Run Polyspace Analysis on Desktop
	Run Analysis in Polyspace Desktop User Interface
	Arrange Layout of Windows for Project Setup
	Set Product and Result Location
	Start and Monitor Analysis
	Fix Compilation Errors
	Open Results

	Storage of Temporary Files During Polyspace Analysis

	Run Polyspace Analysis with Windows or Linux Scripts
	Run Polyspace Analysis from Command Line
	Specify Sources and Analysis Options Directly
	Specify Sources and Analysis Options in Text File
	Create Options File from Build System

	Modularize Polyspace Analysis by Using Build Command
	Build Source Code
	Create One Polyspace Options File for Full Build
	Create Options File for Specific Binary in Build Command
	Create One Options File Per Binary Created in Build Command

	Select Files for Polyspace Analysis Using Pattern Matching
	When to Specify File Selection Patterns
	Supported Patterns for File Selection

	Configure Polyspace Analysis Options in User Interface and Generate Scripts
	Prerequisites
	Generate Scripts from Configuration
	Run Analysis with Generated Scripts

	Run Polyspace Analysis with MATLAB Scripts
	Integrate Polyspace with MATLAB and Simulink
	Same Release of Polyspace and MATLAB
	MATLAB Release Earlier Than Polyspace
	Check Integration Between MATLAB and Polyspace

	Get Started with Polyspace Analysis by Using MATLAB
	Prerequisites
	Run Polyspace Analysis by Using MATLAB
	Frequently Used MATLAB Functions

	Run Polyspace Analysis by Using MATLAB Scripts
	Prerequisites
	Specify Multiple Source Files
	Check for MISRA C:2012 Violations
	Check for Specific Defects or Coding Rule Violations
	Find Files That Do Not Compile
	Run Analysis on Server

	Compare Results from Different Polyspace Runs by Using MATLAB Scripts
	Review Only New Results Compared to Last Run
	Review New Results and Unreviewed Results from Last Run

	Generate MATLAB Scripts from Polyspace User Interface
	Prerequisites
	Create Scripts from Polyspace Projects

	Troubleshoot Polyspace Analysis from MATLAB
	Prerequisites
	Capture Polyspace Analysis Errors in Error Log

	Run Polyspace Analysis in Simulink
	Run Polyspace Analysis on Code Generated with Embedded Coder
	Prerequisites
	Generate and Analyze Code
	Review Analysis Results
	Annotate Blocks to Justify Issues

	Address Polyspace Results by Annotating Simulink Blocks
	Annotate Blocks Through Polyspace User Interface
	Annotate Blocks in Simulink Editor

	Changes in Polyspace Analysis Workflows in Simulink in R2019b
	Code Verification Workflow in a Nutshell
	Locate Pre-R2019b Menu Items in Simulink Toolstrip

	Run Polyspace on Code Generated by Using Previous Releases of Simulink
	Prerequisite
	Run a Cross-Release Polyspace Analysis
	Review Results

	Run Polyspace Analysis on Code Generated from Simulink Model
	Prerequisites
	Open Simulink Model for Polyspace Analysis
	Check for Run-Time Errors in Generated Code
	Review Analysis Results
	Trace and Fix Issues in the Model
	Check for Coding Rule Violations
	Annotate Blocks to Justify Results

	Fix Model Design Issues Found as Run-time Errors and Coding Rule Violations in Generated Code
	Prerequisites
	Open Model
	Detect and Fix Run-Time Errors
	Detect and Fix Coding Rule Violations

	Run Polyspace Analysis on Generated Code by Using Packaged Options Files
	Generate and Package Polyspace Options Files
	Run Polyspace Analysis by Using the Packaged Options Files

	Run Polyspace Analysis on Custom Code in Simulink Models
	Prerequisite
	Analyze Custom Code
	Review Analysis Results

	Run Polyspace Analysis on S-Function Code
	Prerequisites
	S-Function Analysis Workflow
	Compile S-Functions to Be Compatible with Polyspace
	Example S-Function Analysis

	Run Polyspace Analysis on Custom Code in C Caller Blocks and Stateflow Charts
	Prerequisites
	C/C++ Function Called Once in Model
	C/C++ Function Called Multiple Times in Model

	Run Polyspace Analysis on Custom Code in C Function Block
	Prerequisites
	Open Model for Running Polyspace Analysis on Custom Code in C Function Block
	Run Polyspace Analysis
	Identify Issues in C Code
	Fix Identified Issues

	Recommended Model Configuration Parameters for Polyspace Analysis
	Configure Polyspace Options in Simulink
	Configure Options
	Share and Reuse Configuration

	How Polyspace Analysis of Generated Code Works
	Default Polyspace Options for Code Generated with Embedded Coder
	Default Options
	Constraint Specification
	Recommended Polyspace options for Verifying Generated Code
	Hardware Mapping Between Simulink and Polyspace

	External Constraints on Polyspace Analysis of Generated Code
	Extract External Constraints from Model
	Storage Classes Supported for Constraint Extraction From Simulink Model
	Specify Custom External Constraints

	Run Polyspace Analysis on Code Generated with TargetLink
	Configure and Run Analysis
	Review Analysis Results

	Default Polyspace Options for Code Generated with TargetLink
	TargetLink Support
	Default Options
	Lookup Tables
	Data Range Specification
	Code Generation Options

	Troubleshoot Navigation from Code to Model
	Links from Code to Model Do Not Appear
	Links from Code to Model Do Not Work
	Your Model Already Uses Highlighting

	Polyspace Support of MATLAB and Simulink from Different Releases
	Complete Integration
	Cross-Release Integration
	Partial Integration
	Navigate Back to Model

	Run Polyspace Analysis in MATLAB Coder
	Run Polyspace on C/C++ Code Generated from MATLAB Code
	Prerequisites
	Run Polyspace Analysis
	Review Analysis Results
	Run Analysis for Specific Design Range

	Configure Advanced Polyspace Options in MATLAB Coder App
	Configure Options
	Share and Reuse Configuration

	Configure Analysis on Servers
	Run Polyspace Analysis on Servers
	Run Polyspace Bug Finder on Server and Upload Results to Polyspace Access Web Interface
	Prerequisites
	Check Polyspace Installation
	Run Bug Finder on Sample Files
	Sample Scripts for Bug Finder Analysis on Servers
	Specify Sources and Options in Separate Files from Launching Scripts
	Complete Workflow

	Send Email Notifications with Polyspace Bug Finder Server Results
	Creating E-mail Notifications
	Prerequisites
	Export Results for E-mail Attachments
	Assign Owners and Export Assigned Results

	Offload Polyspace Analysis from Continuous Integration Server to Another Server
	Install Products
	Configure and Start Job Scheduler Services on Head Node and Worker Node
	Offload Analysis from Client Node

	Sample Scripts for Polyspace Analysis with Jenkins
	Extending Sample Scripts to Your Development Process
	Prerequisites
	Set Up Polyspace Plugin in Jenkins
	Script to Run Bug Finder, Upload Results and Send Common Notification
	Script to Run Bug Finder, Upload Results and Send Personalized Notification

	Sample Jenkins Pipeline Scripts for Polyspace Analysis
	Prerequisites
	Run Polyspace Analysis in Stages in a Pipeline Script

	Integrate Polyspace Server Products with MATLAB
	Integrate Polyspace Server Products with MATLAB
	Check Integration Between MATLAB and Polyspace
	Run Polyspace Server Products with MATLAB Scripts

	Configure Job Submissions from Desktop to Server
	Offload Polyspace Analysis to Remote Servers from Desktop
	Send Polyspace Analysis from Desktop to Remote Servers
	Client-Server Workflow for Running Analysis
	Prerequisites
	Offload Analysis in Polyspace User Interface

	Send Polyspace Analysis from Desktop to Remote Servers Using Scripts
	Client-Server Workflow for Running Analysis
	Prerequisites
	Run Remote Analysis
	Manage Remote Analysis
	Sample Scripts for Remote Analysis

	Configure Analysis in IDEs
	Run Polyspace Analysis in IDE Plugins
	Run Polyspace Analysis on Eclipse Projects
	Configure and Run Analysis
	Review Analysis Results

	Specify Polyspace Compiler Options Through Eclipse Project
	Eclipse Refers Directly to Your Compilation Toolchain
	Eclipse Uses Your Compilation Toolchain Through Build Command

	Configure Polyspace as You Code
	Configure Polyspace as You Code Extension in Visual Studio
	General Settings
	Polyspace Properties for Project

	Configure Polyspace as You Code Extension in Visual Studio Code
	Analysis Engine
	Analysis Behavior On Save
	Analysis Setup
	Baseline
	Justification Catalog
	Other Settings
	Configure Polyspace as You Code for Remote Development

	Configure Polyspace as You Code Plugin in Eclipse
	Polyspace as You Code Node
	Analysis Node
	Baseline Node

	Generate Build Options for Polyspace as You Code Analysis in Visual Studio
	Configure Polyspace as You Code to Extract Build Configuration
	Specify Analysis Options Manually
	Import Analysis Options from Polyspace Desktop Project

	Generate Build Options for Polyspace as You Code Analysis in Visual Studio Code
	Configure Polyspace as You Code to Extract Build Configuration
	Specify Analysis Options Manually
	Import Analysis Options from Polyspace Desktop Project

	Generate Build Options for Polyspace as You Code Analysis in Eclipse
	Configure Polyspace as You Code to Extract Build Configuration
	Specify Analysis Options Manually
	Import Analysis Options from Polyspace Desktop Project

	Generate Build Options for Polyspace as You Code Analysis at the Command Line
	Use polyspace-configure to Generate Build Options File
	Specify Analysis Options Manually
	Import Analysis Options from Polyspace Desktop Project

	Baseline Polyspace as You Code Results in Visual Studio
	What Baselined Results Look Like
	Baselining Steps

	Baseline Polyspace as You Code Results in Visual Studio Code
	What Baselined Results Look Like
	Baselining Steps

	Baseline Polyspace as You Code Results in Eclipse
	What Baselined Results Look Like
	Baselining Steps

	Baseline Polyspace as You Code Results on Command Line
	What Baselined Results Look Like
	Baselining Steps
	Step 1: Identify Project to Use as Baseline
	Step 2: Download Baseline
	Step 3: Use Baseline

	Configure Checkers for Polyspace as You Code in Eclipse
	Select Checkers and Coding Rules
	Modify Checker Behavior

	Configure Checkers for Polyspace as You Code in Visual Studio
	Select Checkers and Coding Rules
	Modify Checker Behavior

	Configure Checkers for Polyspace as You Code in Visual Studio Code
	Configure Checkers in Checkers File
	Modify Checkers Behavior

	Configure Checkers for Polyspace as You Code at the Command Line
	Configure Checkers and Coding Rules Directly at the Command Line
	Configure Checkers in Checkers file
	Modify Checkers Behavior

	Analysis Scope of Polyspace as You Code
	Results Involve Current File Only
	Headers Included in Current File Not Analyzed

	Checkers Deactivated in Polyspace as You Code Analysis
	Checkers and Coding Rule Deactivated in Polyspace as You Code
	Checkers with Reduced Scope in Polyspace as You Code

	Troubleshoot Failed Analysis or Unexpected Results in Polyspace as You Code
	Issue
	Possible Solutions

	Configuration Workflows Common to All Platforms
	Configure Polyspace Analysis
	Specify Polyspace Analysis Options
	Polyspace User Interface
	Windows or Linux Scripts
	MATLAB Scripts
	Eclipse and Eclipse-based IDEs
	Simulink
	MATLAB Coder App

	Options Files for Polyspace Analysis
	What are Options Files
	Specifying Options Files
	Specifying Multiple Options Files

	Configure Target and Compiler Options
	Specify Target Environment and Compiler Behavior
	Extract Options from Build Command
	Specify Options Explicitly

	C/C++ Language Standard Used in Polyspace Analysis
	Supported Language Standards
	Default Language Standard

	C11 Language Elements Supported in Polyspace
	C++11 Language Elements Supported in Polyspace
	C++14 Language Elements Supported in Polyspace
	C++17 Language Elements Supported in Polyspace
	Provide Standard Library Headers for Polyspace Analysis
	Create Polyspace Analysis Configuration from Build Command (Makefile)
	Requirements for Project Creation from Build Systems
	Compiler Requirements
	Build Command Requirements

	Supported Keil or IAR Language Extensions
	Special Function Register Data Type
	Keywords Removed During Preprocessing

	Remove or Replace Keywords Before Compilation
	Remove Unrecognized Keywords
	Remove Unrecognized Function Attributes

	Gather Compilation Options Efficiently

	Configure Inputs and Stubbing Options
	Specify External Constraints for Polyspace Analysis
	Create Constraint Template
	Create Constraint Template from Code Prover Analysis Results
	Update Existing Template
	Specify Constraints in Code

	External Constraints for Polyspace Analysis
	Effect of External Constraints
	Constraint Specification
	Constraint Specification Limitations

	Constrain Global Variable Range for Polyspace Analysis
	User Interface (Desktop Products Only)
	Command Line

	Constrain Function Inputs for Polyspace Analysis
	User Interface (Desktop Products Only)
	Command Line

	XML File Format for Polyspace Analysis Constraints
	Syntax Description — XML Elements
	Valid Modes and Default Values

	Configure Multitasking Analysis
	Analyze Multitasking Programs in Polyspace
	Configure Analysis
	Review Analysis Results
	Differences Between Bug Finder and Code Prover

	Auto-Detection of Thread Creation and Critical Section in Polyspace
	Multitasking Routines that Polyspace Can Detect
	Example of Automatic Thread Detection
	Naming Convention for Automatically Detected Threads
	Limitations of Automatic Thread Detection

	Configuring Polyspace Multitasking Analysis Manually
	Specify Options for Multitasking Analysis
	Adapt Code for Code Prover Multitasking Analysis

	Protections for Shared Variables in Multitasking Code
	Detect Unprotected Access
	Protect Using Critical Sections
	Protect Using Temporally Exclusive Tasks
	Protect Using Priorities
	Protect By Disabling Interrupts

	Define Atomic Operations in Multitasking Code
	Nonatomic Operations
	What Polyspace Considers as Nonatomic
	Define Specific Operations as Atomic

	Define Task Priorities for Data Race Detection in Polyspace
	Emulating Task Priorities
	Examples of Task Priorities
	Further Explorations
	Effect of Task Priorities in Code Prover

	Define Critical Sections with Functions That Take Arguments
	Polyspace Assumption on Functions Defining Critical Sections
	Adapt Polyspace Analysis to Lock and Unlock Functions with Arguments

	Configure Coding Rules Checking and Code Metrics Computation
	Check for and Review Coding Standard Violations
	Configure Coding Rules Checking
	Review Coding Rule Violations
	Generate Reports

	Avoid Violations of MISRA C:2012 Rules 8.x
	Reduce Software Complexity by Using Polyspace Checkers
	Configure Thresholds for Software Complexity Checkers
	Identify and Reduce Software Complexity

	Software Quality Objective Subsets (C:2004)
	Rules in SQO-Subset1
	Rules in SQO-Subset2

	Software Quality Objective Subsets (AC AGC)
	Rules in SQO-Subset1
	Rules in SQO-Subset2

	Software Quality Objective Subsets (C:2012)
	Guidelines in SQO-Subset1
	Guidelines in SQO-Subset2

	Software Quality Objective Subsets (C++)
	SQO Subset 1 – Direct Impact on Selectivity
	SQO Subset 2 – Indirect Impact on Selectivity

	Coding Rule Subsets Checked Early in Analysis
	MISRA C:2004 and MISRA AC AGC Rules
	MISRA C:2012 Rules

	Create Custom Coding Rules
	Specify Naming Convention
	Check for Violations of Defined Custom Coding Rule

	Compute Code Complexity Metrics Using Polyspace
	Impose Limits on Metrics (Desktop Products Only)
	Impose Limits on Metrics (Server and Access products)

	HIS Code Complexity Metrics
	Project
	File
	Function

	Migrate Code Prover Workflows for Checking Coding Standards and Code Metrics to Bug Finder
	Changes in Workflow

	Polyspace Coverage of Coding Standards
	Polyspace Support for Coding Standards
	Summary of Polyspace Support
	AUTOSAR C++14
	MISRA C++:2008
	MISRA C:2012
	CERT C
	Other

	MISRA C:2004 and MISRA AC AGC Coding Rules
	Supported MISRA C:2004 and MISRA AC AGC Rules
	Troubleshooting
	List of Supported Coding Rules
	Unsupported MISRA C:2004 and MISRA AC AGC Rules

	Required or Mandatory MISRA C:2012 Rules Supported by Polyspace Bug Finder
	Mandatory Rules
	Required Rules

	Decidable MISRA C:2012 Rules Supported by Polyspace Bug Finder
	Undecidable MISRA C:2012 Rules and Directives Supported by Polyspace Bug Finder
	Undecidable Rules
	Undecidable Directives

	Polyspace Support for MISRA C: 2012 Amendments
	MISRA C:2012 Technical Corrigendum 1
	MISRA C: 2012 Amendment 1 (AMD1)
	MISRA C:2012 Amendment 2 (AMD2)

	Essential Types in MISRA C:2012 Rules 10.x
	Categories of Essential Types
	How MISRA C:2012 Uses Essential Types

	Unsupported MISRA C:2012 Guidelines
	Required and Statically Enforceable CERT C Rules Supported by Polyspace Bug Finder
	Required MISRA C++:2008 Coding Rules Supported by Polyspace Bug Finder
	Supported Rules
	Unsupported Rules

	JSF AV C++ Coding Rules
	Supported JSF C++ Coding Rules
	Unsupported JSF++ Rules

	Required AUTOSAR C++14 Coding Rules Supported by Polyspace Bug Finder
	Supported Rules
	Unsupported Rules

	Statically Enforceable AUTOSAR C++14 Rules Supported by Polyspace Bug Finder
	Automated Rules
	Partially Automated Rules

	Configure Bug Finder Checkers
	Choose Specific Bug Finder Defect Checkers
	User Interface (Desktop Products Only)
	Command Line

	Modify Default Behavior of Bug Finder Checkers
	Defect Checkers and Coding Rules Modified by Analysis Options

	Modify Bug Finder Checkers Through Code Behavior Specifications
	XML Format
	Datalog Format

	Flag Deprecated or Unsafe Functions, Keywords, or Macros Using Bug Finder Checkers
	Identify Need for Extending Checker
	Extend Checker
	Checkers That Can Be Extended

	Extend Bug Finder Checkers for Standard Library Functions to Custom Libraries
	Identify Need for Extending Checker
	Extend Checker
	Checkers That Can Be Extended
	Limitations

	Extend Bug Finder Checkers to Find Defects from Specific System Input Values
	Identify Need for Extending Checker
	Extend Checker
	Checkers That Can Be Extended

	Extend Concurrency Defect Checkers to Unsupported Multithreading Environments
	Identify Need for Extending Checker
	Extend Checker
	Checkers That Can Be Extended
	Limitations

	Extend Checkers for Initialization to Check Function Arguments Passed by Pointers
	Identify Need for Existing Checker
	Extend Checker
	Checkers That Can Be Extended

	Extend Data Race Checkers to Atomic Operations
	Identify Need for Extending Checker
	Extend Checker
	Checkers That Can Be Extended

	Prepare Checkers Configuration for Polyspace Bug Finder Analysis
	Identify Checkers to Enable
	Create Checkers Configuration Files

	Bug Finder Defect Groups
	C++ Exceptions
	Concurrency
	Cryptography
	Data flow
	Dynamic Memory
	Good Practice
	Numerical
	Object Oriented
	Performance
	Programming
	Resource Management
	Static Memory
	Security
	Tainted data

	Classification of Defects by Impact
	High Impact Defects
	Medium Impact Defects
	Low Impact Defects

	Sources of Tainting in a Polyspace Analysis
	Sources of Tainted Data
	Impact of Tainted Data Defects

	Polyspace Bug Finder Defects Checkers Enabled by Default
	Polyspace Bug Finder Defects Checkers Enabled by Default for Generated Code
	Bug Finder Results Found in Fast Analysis Mode
	Polyspace Bug Finder Defects
	MISRA C:2004 and MISRA AC AGC Rules
	MISRA C:2012 Rules
	MISRA C++ 2008 Rules

	Extend CWE Coding Standard Coverage Using Polyspace Defect Checkers
	Find CWE IDs from Polyspace Results
	Mapping Between CWE Identifiers and Polyspace Results

	Configure File Sets for Bug Finder Analysis
	Classify Project Files Into File Sets for Precise Control of Bug Finder Analysis
	Classification File Structure Based on Analysis Requirements
	Classification File Usage
	Parts of Classification File

	Configure Comment Import from Previous Results
	Import Review Information from Previous Polyspace Analysis
	Automatic Import from Last Analysis
	Import from Another Analysis Result
	Import Algorithm
	View Imported Review Information That Does Not Apply

	Import Existing MISRA C: 2004 Justifications to MISRA C: 2012 Results
	Mapping Multiple MISRA C: 2004 Annotations to the Same MISRA C: 2012 Result

	Review Results in Polyspace User Interface
	Interpret Polyspace Bug Finder Results
	Interpret Bug Finder Results in Polyspace Desktop User Interface
	Interpret Result Details Message
	Find Root Cause of Result

	Investigate the Cause of Empty Results List
	Dashboard in Polyspace Desktop User Interface
	Code Covered by Analysis
	Defect Distribution by Impact
	Defect Distribution by Category or File
	Coding Rule Violations by Rule or File
	Other Dashboard Features

	Concurrency Modeling in Polyspace Desktop User Interface
	Results List in Polyspace Desktop User Interface
	Source Code in Polyspace Desktop User Interface
	Examine Source Code
	Expand Macros
	Manage Multiple Files in Source Pane
	View Code Block

	Result Details in Polyspace Desktop User Interface
	Call Hierarchy in Polyspace Desktop User Interface
	Actions Supported on Call Hierarchy Pane
	Limitations of Call Hierarchy Display in Bug Finder

	Understanding Changes in Polyspace Results After Product Upgrade
	Changes in Polyspace Code Prover Results
	Changes in Polyspace Bug Finder Results

	Fix or Comment Polyspace Results
	Address Results in Polyspace User Interface Through Bug Fixes or Justifications
	Add Review Information to Results File
	Comment or Annotate in Code

	Manage Results
	Filter and Group Results in Polyspace Desktop User Interface
	Filter Results
	Group Results

	Generate Reports from Polyspace Results
	Generate Reports from Polyspace Results
	Generate Reports from User Interface
	Generate Reports from Command Line

	Export Polyspace Analysis Results
	Export Results to Text File
	Export Results to MATLAB Table
	Export Results to JSON Format
	View Exported Results

	Export Polyspace Analysis Results to Excel by Using MATLAB Scripts
	Report Result Summary and Details in One Worksheet
	Control Formatting of Excel Report

	Visualize Bug Finder Analysis Results in MATLAB
	Export Results to MATLAB Table
	Generate Graphs from Results and Include in Report

	Customize Existing Bug Finder Report Template
	Prerequisites
	View Components of Template
	Change Components of Template

	Generate Report Containing MISRA C:2012 Violations, Code Metrics, and Runtime Check Results
	Prerequisite
	Obtain Code Metrics and Coding Rules Results by Using Bug Finder
	Obtain Run Time Check and Stack Usage Results by Using Code Prover
	Generate a Combined Report

	Review Results on Web Browser
	Interpret Polyspace Bug Finder Results
	Interpret Bug Finder Results in Polyspace Access Web Interface
	Interpret Result Details Message
	Find Root Cause of Result

	Investigate the Cause of Empty Results List
	Dashboard in Polyspace Access Web Interface
	Code Metrics Dashboard in Polyspace Access Web Interface
	Quality Objectives Dashboard in Polyspace Access
	Monitor Code Quality Against Software Quality Objectives
	Customize Software Quality Objectives

	Results List in Polyspace Access Web Interface
	Source Code in Polyspace Access Web Interface
	Tooltips
	Examine Source Code
	Expand Macros
	View Code Block
	Navigate from Code to Model

	Result Details in Polyspace Access Web Interface
	Call Hierarchy in Polyspace Access Web Interface
	Configuration Settings in Polyspace Access Web Interface
	Review History in Polyspace Access Web Interface
	Create Bug Tracking Tool Tickets from the Polyspace Access Web Interface
	Create a Ticket
	Manage Existing Tickets

	Fix or Comment Polyspace Results on Web Browser
	Address Results in Polyspace Access Through Bug Fixes or Justifications
	Add Review Information in Result Details pane
	Comment or Annotate in Code

	Import Review Information from Existing Polyspace Access Projects
	Import Review Information from Source Project to Target Project in Polyspace Access
	View and Select Imported Reviews
	Confirm Imported Review Information
	Import Review Information at the Command-Line

	Manage Results
	Manage Permissions and View Project Trends in Polyspace Access Web Interface
	Create a Project Folder
	Manage Project Permissions
	View Project Trends

	Filter and Sort Results in Polyspace Access Web Interface
	Filter Results

	Create Custom Filter Groups in Polyspace Access Web Interface
	Manage Software Quality Objectives in Polyspace Access
	Manage SQOs in the User Interface
	Manage SQOs at the Command Line

	Add Labels to Project Runs in Polyspace Access
	Manage Labels in the User Interface
	Manage Labels at the Command Line

	Compare Results in Polyspace Access Project to Previous Runs and View Trends
	Comparison Mode in the Polyspace Access Interface
	Comparison Mode at the Command Line

	Export Results from Polyspace Access Web Server
	Open or Export Results from Polyspace Access
	Open Polyspace Access Results in a Desktop Interface
	Export Polyspace Access Results to a TSV File

	Generate Report and Variables List from Polyspace Access

	Review Results in IDEs
	Review Results in Polyspace as You Code
	Run Polyspace as You Code in Visual Studio and Review Results
	Confirm Installation of Extension
	Run Analysis on Save
	Run Analysis on Demand
	Review Results
	Justify Results Using Code Annotations
	View Help
	Configure Checkers and Other Settings

	Run Polyspace as You Code in Visual Studio Code and Review Results
	Check Installation and Start Extension
	View Extension Information in Status Bar
	Open Additional Polyspace Views
	Run Analysis
	Review Results
	View Context-Sensitive Help for Result
	Configure Checkers and Other Settings

	Run Polyspace as You Code in Eclipse and Review Results
	Check Installation and Start Plugin
	Open Polyspace as You Code Perspective
	Run Analysis
	Review Results
	Justify Results Using Code Annotations
	View Context-Sensitive Help for Result
	Configure Checkers and Other Settings

	Run Polyspace as You Code from Command Line and Export Results
	Add Install Folder to Path
	Run Analysis and See Results on Console
	Store Results in Specific Folder
	Export Results to JSON Format (SARIF Output)
	Specify Analysis Options by Using Options Files
	Create Options File by Analyzing Build

	Integrate Polyspace as You Code in IDEs and Editors Without Plugins
	Overview of Approach
	Integration Steps
	Further Exploration

	Use a Justification Catalog to Autocomplete Annotations in Polyspace as You Code plugins
	Create and Edit Justification Catalog

	Review Workflows Common to All Platforms
	Hide Known or Acceptable Results Using Code Annotations
	Annotate Code and Hide Known or Acceptable Results
	Code Annotation Syntax
	Syntax Examples
	Code Annotation Warnings
	Ignoring Code Annotations

	Short Names of Bug Finder Defect Groups and Defect Checkers
	Bug Finder Defect Groups Short Names
	Bug Finder Defect Checkers Short Names

	Short Names of Code Complexity Metrics
	Project Metrics
	File Metrics
	Function Metrics

	Annotate Code for Known or Acceptable Results (Not Recommended)
	Add Annotations from the Polyspace Interface
	Add Annotations Manually

	Define Custom Annotation Format
	Define Annotation Syntax Format
	Map Your Annotation to the Polyspace Annotation Syntax
	Define Multiple Custom Annotation Syntaxes

	Annotation Description Full XML Template
	Example

	Advanced Review Workflows
	Evaluate Polyspace Bug Finder Results Against Bug Finder Quality Objectives
	Comparing Analysis Results Against Quality Objectives

	Justify Coding Rule Violations Using Code Prover Checks
	Rules About Data Type Conversions
	Rules About Pointer Arithmetic

	Polyspace Results in Lines Containing Macros
	Macros in Source Lines Can Be Expanded in Place
	Results in Function-Like Macros Shown Only Once

	Migrate Results from Polyspace Metrics to Polyspace Access
	Requirements for Migration
	Migration of Results
	Differences in SQO Between Polyspace Metrics and Polyspace Access

	Troubleshooting
	Troubleshooting in Polyspace Bug Finder
	Fix License Error –4,0 When Running Polyspace
	Issue
	Possible Cause: Another Polyspace Instance Running
	Possible Cause: Prior Polyspace Run in Simulink or MATLAB Coder

	View Error Information When Analysis Stops
	View Error Information in User Interface
	View Error Information in Log File

	Contact Technical Support About Issues with Running Polyspace
	Provide System Information
	Provide Information About the Issue
	Provide Polyspace Analysis Statistics File (Optional)

	Resolve Error: No Compilation Unit Detected in Your Build
	Issue
	Possible Solutions

	Create Polyspace Projects from Build Systems That Use Unsupported Compilers
	Issue
	Cause
	Solution

	Fix Slow Build Process When Polyspace Traces Build
	Issue
	Cause
	Solution

	Check if Polyspace Supports Build Scripts
	Issue
	Possible Cause
	Solution

	Troubleshoot Project Creation from MinGW Build
	Issue
	Cause
	Solution

	Troubleshoot Project Creation from Visual Studio Build
	Fix Error: Polyspace Cannot Find Server
	Message
	Possible Cause
	Solution

	Fix Error: Job Manager Cannot Write to Database
	Message
	Possible Cause
	Workaround

	Fix Polyspace Compilation Errors About Undefined Identifiers
	Issue
	Possible Cause: Missing Files
	Possible Cause: Unrecognized Keyword
	Possible Cause: Declaration Embedded in #ifdef Statements
	Possible Cause: Project Created from Non-Debug Build

	Fix Polyspace Compilation Errors About Unknown Function Prototype
	Issue
	Cause
	Solution

	Fix Polyspace Compilation Errors Related to #error Directive
	Issue
	Cause
	Solution

	Fix Polyspace Compilation Errors About Large Objects
	Issue
	Cause
	Solution

	Fix Polyspace Compilation Errors Related to Generic Compiler
	Issue
	Cause
	Solution

	Fix Polyspace Compilation Errors Related to GNU Compiler
	Issue
	Cause
	Solution

	Fix Polyspace Compilation Errors Related to Visual Compilers
	Import Folder
	pragma Pack
	C++/CLI

	Fix Polyspace Compilation Errors Related to Keil or IAR Compiler
	Missing Identifiers

	Fix Polyspace Compilation Errors Related to Diab Compiler
	Issue
	Cause
	Solution

	Fix Polyspace Compilation Errors Related to Green Hills Compiler
	Issue
	Cause
	Solution

	Fix Polyspace Compilation Errors Related to TASKING Compiler
	Issue
	Cause
	Solution

	Fix Polyspace Compilation Errors Related to Texas Instruments Compilers
	Issue
	Possible Solutions

	Fix Errors from Use of Polyspace Header Files
	Issue
	Possible Solutions

	Fix Polyspace Compilation Errors About Namespace std Without Prefix
	Issue
	Cause
	Solution

	Fix Polyspace Compilation Warnings Related to Assertion or Memory Allocation Functions
	Issue
	Cause
	Solution

	Fix Polyspace Compilation Errors About In-Class Initialization (C++)
	Update Eclipse Java Version for Polyspace Plug-in
	Issue
	Cause
	Solution

	Fix MATLAB Crashes Referring to Polyspace in matlabroot
	Issue
	Possible Solutions

	Diagnose Why Coding Standard Violations Do Not Appear as Expected
	Issue
	Possible Solution

	Check Why a Bug Finder Defect Does Not Appear as Expected
	Issue
	Possible Solution

	Fix Insufficient Memory Errors During Polyspace Report Generation
	Issue
	Possible Solutions

	Fix Errors or Slow Polyspace Runs from Disk Defragmentation and Anti-virus Software
	Issue
	Possible Cause
	Solution

	Fix SQLite I/O Errors on Running Polyspace
	Issue
	Possible Solutions

	Fix Polyspace Errors Related to Temporary Files
	No Access Rights
	No Space Left on Device
	Cannot Open Temporary File

	Fix Errors Applying Custom Annotation Format for Polyspace Results
	Issue
	Possible Solutions

	Fix Issues When when Integrating Polyspace with MATLAB and Simulink
	Issue
	Possible Solutions

	Check Why Polyspace Functions are Unavailable in MATLAB
	Issue
	Possible Solution

	Troubleshoot Java Incompatibility in Polyspace Plugin for Eclipse
	Issue
	Possible Solution

	Troubleshooting Polyspace Access
	Polyspace Access ETL and Web Server services do not start
	Issue
	Possible Cause: Hyper-V Network Configuration Cannot Resolve Local Host Names

	Contact Technical Support About Polyspace Access Issues

