Polyspace® Bug Finder™
User’s Guide

R2023a o/} MathWorkse

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Polyspace® Bug Finder™ User’s Guide
© COPYRIGHT 2013-2023 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History

September 2013
March 2014
October 2014
March 2015
September 2015
October 2015
March 2016
September 2016
March 2017
September 2017
March 2018
September 2018
March 2019
September 2019
March 2020
September 2020
March 2021
September 2021

March 2022

September 2022

March 2023

Online only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only

Online Only

Online Only

Online Only

New for Version 1.0 (Release 2013b)

Revised for Version 1.1 (Release 2014a)
Revised for Version 1.2 (Release 2014b)
Revised for Version 1.3 (Release 2015a)
Revised for Version 2.0 (Release 2015b)
Rereleased for Version 1.3.1 (Release 2015aSP1)
Revised for Version 2.1 (Release 2016a)
Revised for Version 2.2 (Release 2016b)
Revised for Version 2.3 (Release 2017a)
Revised for Version 2.4 (Release 2017b)
Revised for Version 2.5 (Release 2018a)
Revised for Version 2.6 (Release 2018b)
Revised for Version 3.0 (Release 2019a)
Revised for Version 3.1 (Release 2019b)
Revised for Version 3.2 (Release 2020a)
Revised for Version 3.3 (Release 2020b)
Revised for Version 3.4 (Release 2021a)
Revised for Polyspace Bug Finder Version 3.5,
Polyspace Bug Finder Server Version 3.5, and
Polyspace Bug Finder Access Version 3.1 (Release
2021b)

Revised for Polyspace Bug Finder Version 3.6,
Polyspace Bug Finder Server Version 3.6, and
Polyspace Access Version 4.0 (Release 2022a)
Revised for Polyspace Bug Finder Version 3.7,
Polyspace Bug Finder Server Version 3.7, and
Polyspace Access Version 4.1 (Release 2022b)
Revised for Polyspace Bug Finder Version 3.8,
Polyspace Bug Finder Server Version 3.8, and
Polyspace Access Version 4.2 (Release 2023a)

Contents

Introduction

1]

About This User's Guide 1-2

Configure Analysis on Desktop

Set Up Polyspace Projects on Desktop

2|

Add Source Files for Analysis in Polyspace Desktop User Interface
.. 2-2
Polyspace Project and Source File Paths 2-2
Add Sources from Build Command 2-3
Add SourcesManually 2-5
Add Source Files Based on AUTOSAR Design Specifications 2-6

Contents of Polyspace Project and Results Folders 2-7
File Organization 2-7
Filesinthe Results Folder 2-7

Create Polyspace Projects from Visual Studio Build 2-9
Create Polyspace Project from Build in Visual Studio Developer
Command Prompt 2-9
Create Polyspace Project from Build in Visual Studio IDE 2-10
Create Project in Polyspace Desktop User Interface Using
Configuration Template 2-13
Why Use Templates, 2-13
Use Predefined Template 2-13
Create Your Own Template 2-13
Sharing Project Templates 2-15
Update Project in Polyspace Desktop User Interface 2-17
Change Folder Path 2-17
Refresh Source List 2-18
Refresh Project Created from Build Command 2-18
Add Source and Include Folders 2-18
Manage Include File Sequence 2-18

Organize Layout of Polyspace Desktop User Interface 2-20

Create YourOwn Layout i inon.. 2-20
Saveand Reset Layout i 2-21
Customize Polyspace Desktop User Interface 2-22
Possible Customizations 2-22
Storage of Polyspace User Interface Customizations 2-24
Upload Results to Polyspace Access 2-25
Upload Results from Polyspace Desktop Client 2-25
Upload Results at Command Line 2-26
Results Upload Compatibility and Permissions 2-26

Run Polyspace Analysis on Desktop

3|

Run Analysis in Polyspace Desktop User Interface
Arrange Layout of Windows for Project Setup
Set Product and Result Location
Start and Monitor Analysis
Fix Compilation Errors
Open Results e

Storage of Temporary Files During Polyspace Analysis 3-6

Run Polyspace Analysis with Windows or Linux Scripts

4

Run Polyspace Analysis from Command Line 4-2
Specify Sources and Analysis Options Directly 4-2
Specify Sources and Analysis Options in Text File 4-2
Create Options File from Build System 4-3

Modularize Polyspace Analysis by Using Build Command 4-5
Build Source Codet e 4-5
Create One Polyspace Options File for Full Build 4-7
Create Options File for Specific Binary in Build Command 4-8
Create One Options File Per Binary Created in Build Command 4-8

Select Files for Polyspace Analysis Using Pattern Matching 4-11
When to Specify File Selection Patterns 4-11
Supported Patterns for File Selection 4-12

Configure Polyspace Analysis Options in User Interface and Generate

Scripts e 4-15
Prerequisites e 4-16
Generate Scripts from Configuration 4-16
Run Analysis with Generated Scripts 4-17

Contents

Run Polyspace Analysis with MATLAB Scripts

S|

Integrate Polyspace with MATLAB and Simulink 5-2
Same Release of Polyspace and MATLAB 5-2
MATLAB Release Earlier Than Polyspace 5-3
Check Integration Between MATLAB and Polyspace 5-4

Get Started with Polyspace Analysis by Using MATLAB 5-5
Prerequisites e 5-5
Run Polyspace Analysis by Using MATLAB 5-5
Frequently Used MATLAB Functions 5-6

Run Polyspace Analysis by Using MATLAB Scripts 5-9
Prerequisites e 5-9
Specify Multiple Source Files 5-9
Check for MISRA C:2012 Violations 5-10
Check for Specific Defects or Coding Rule Violations 5-10
Find Files That Do Not Compile 5-11
Run Analysison Serveriiiiiiinnnnnn. 5-11

Compare Results from Different Polyspace Runs by Using MATLAB

Scripts e 5-13
Review Only New Results Compared to LastRun 5-13
Review New Results and Unreviewed Results from Last Run 5-14

Generate MATLAB Scripts from Polyspace User Interface 5-16
Prerequisites e 5-16
Create Scripts from Polyspace Projects 5-16

Troubleshoot Polyspace Analysis from MATIAB 5-18
Prerequisites e 5-18
Capture Polyspace Analysis Errors in Error Log 5-18

Run Polyspace Analysis in Simulink

6|

Run Polyspace Analysis on Code Generated with Embedded Coder
.. 6-2
Prerequisites 6-2
Generate and Analyze Codet 6-2
Review AnalysisResults 6-4
Annotate Blocks to Justify Issues 6-5

Address Polyspace Results by Annotating Simulink Blocks 6
Annotate Blocks Through Polyspace User Interface 6-6
Annotate Blocks in Simulink Editor 6

Changes in Polyspace Analysis Workflows in Simulink in R2019b . . 6-
Code Verification Workflow ina Nutshell
Locate Pre-R2019b Menu Items in Simulink Toolstrip

viii

Contents

Run Polyspace on Code Generated by Using Previous Releases of

Simulink
Prerequisite
Run a Cross-Release Polyspace Analysis
Review Results

Run Polyspace Analysis on Code Generated from Simulink Model

Prerequisites e

Open Simulink Model for Polyspace Analysis

Check for Run-Time Errors in Generated Code
Review AnalysisResults
Trace and Fix Issuesinthe Model
Check for Coding Rule Violationscovuuun.
Annotate Blocks to Justify Results

Fix Model Design Issues Found as Run-time Errors and Coding Rule
Violations in Generated Code
Prerequisites
OpenModel e
Detect and Fix Run-Time Errors,

Detect and Fix Coding Rule Violations

Run Polyspace Analysis on Generated Code by Using Packaged

Options Files
Generate and Package Polyspace Options Files
Run Polyspace Analysis by Using the Packaged Options Files

Run Polyspace Analysis on Custom Code in Simulink Models
Prerequisite
Analyze Custom Codet
Review AnalysisResults

Run Polyspace Analysis on S-FunctionCode
Prerequisites
S-Function Analysis Workflow
Compile S-Functions to Be Compatible with Polyspace
Example S-Function Analysis

Run Polyspace Analysis on Custom Code in C Caller Blocks and
Stateflow Charts

Prerequisites
C/C++ Function Called OnceinModel

C/C++ Function Called Multiple Times in Model

Run Polyspace Analysis on Custom Code in C Function Block

Prerequisites e e

Open Model for Running Polyspace Analysis on Custom Code in C

FunctionBlock
Run Polyspace Analysis i,

Identify IssuesinCCode,

Fix Identified ISsues

Recommended Model Configuration Parameters for Polyspace
Analysis

Configure Polyspace Options in Simulink

Configure Options
Share and Reuse Configuration

How Polyspace Analysis of Generated Code Works

Default Polyspace Options for Code Generated with Embedded Coder

Default Options
Constraint Specification

Recommended Polyspace options for Verifying Generated Code . . .
Hardware Mapping Between Simulink and Polyspace

External Constraints on Polyspace Analysis of Generated Code . . .
Extract External Constraints from Model
Storage Classes Supported for Constraint Extraction From Simulink

Model

Specify Custom External Constraints

Run Polyspace Analysis on Code Generated with TargetLink
Configure and Run Analysis

Review Analysis Results

Default Polyspace Options for Code Generated with TargetLink . . .

TargetLink Support
Default Options
Lookup Tables
Data Range Specification
Code Generation Options

Troubleshoot Navigation from Code to Model
Links from Code to Model Do Not Appear

Links from Code to Model Do Not Work
Your Model Already Uses Highlighting

Polyspace Support of MATLAB and Simulink from Different Releases

Complete Integration
Cross-Release Integration

Partial Integration

Navigate Back to Model

6-53
6-53
6-55

6-56

Run Polyspace Analysis in MATLAB Coder

7

Run Polyspace on C/C++ Code Generated from MATLAB Code
Prerequisites e

Run Polyspace Analysis
Review Analysis Results
Run Analysis for Specific Design Range

7-2
7-2
7-4
7-3

ix

Configure Advanced Polyspace Options in MATLAB Coder App 7-7
Configure Optionsot 7-7
Share and Reuse Configuration 7-8

Configure Analysis on Servers

Run Polyspace Analysis on Servers

8|

Run Polyspace Bug Finder on Server and Upload Results to

Polyspace Access Web Interface 8-2
Prerequisites e 8-2
Check Polyspace Installation 8-3
Run Bug Finder on Sample Files 8-3
Sample Scripts for Bug Finder Analysis on Servers 8-5
Specify Sources and Options in Separate Files from Launching Scripts

.. 8-5
Complete Workflow 8-6
Send Email Notifications with Polyspace Bug Finder Server Results
.. 8-8
Creating E-mail Notifications 8-8
Prerequisites 8-9
Export Results for E-mail Attachments 8-10
Assign Owners and Export Assigned Results 8-10
Offload Polyspace Analysis from Continuous Integration Server to

Another Server 8-12
Install Products 8-12
Configure and Start Job Scheduler Services on Head Node and Worker

NOGE ..t 8-14
Offload Analysis from Client Node 8-15
Sample Scripts for Polyspace Analysis with Jenkins 8-17
Extending Sample Scripts to Your Development Process 8-17
Prerequisites 8-18
Set Up Polyspace Pluginin Jenkins 8-19
Script to Run Bug Finder, Upload Results and Send Common
Notification i e 8-22
Script to Run Bug Finder, Upload Results and Send Personalized
Notification i i 8-24
Sample Jenkins Pipeline Scripts for Polyspace Analysis 8-31
Prerequisites e 8-31
Run Polyspace Analysis in Stages in a Pipeline Script 8-31
Integrate Polyspace Server Products with MATLAB 8-33
Integrate Polyspace Server Products with MATLAB 8-33
Check Integration Between MATLAB and Polyspace 8-33
Run Polyspace Server Products with MATLAB Scripts 8-34

X Contents

Configure Job Submissions from Desktop to Server

Offload Polyspace Analysis to Remote Servers from

Desktop

Send Polyspace Analysis from Desktop to Remote Servers 9-2
Client-Server Workflow for Running Analysis 9-2
Prerequisites 9-3
Offload Analysis in Polyspace User Interface 9-3

Send Polyspace Analysis from Desktop to Remote Servers Using
Scripts e
Client-Server Workflow for Running Analysis
Prerequisites e
Run Remote Analysis
Manage Remote Analysiso
Sample Scripts for Remote Analysis

Configure Analysis in IDEs

Run Polyspace Analysis in IDE Plugins

10|

Run Polyspace Analysis on Eclipse Projects 10-2
Configure and Run Analysis, 10-3
Review AnalysisResults 10-5

Specify Polyspace Compiler Options Through Eclipse Project 10-7
Eclipse Refers Directly to Your Compilation Toolchain 10-7

Eclipse Uses Your Compilation Toolchain Through Build Command
... 10-8

Configure Polyspace as You Code

11|

Configure Polyspace as You Code Extension in Visual Studio 11-2
General Settings e 11-2
Polyspace Properties for Project 11-3

Configure Polyspace as You Code Extension in Visual Studio Code

... 11-8
Analysis Engine i e 11-8

xi

xii

Contents

Analysis BehaviorOnSaveoiiiiiiinnnnn... 11-9

Analysis Setup e 11-9
Baselineoii 11-14
Justification Catalog i 11-15
OtherSettings 11-16
Configure Polyspace as You Code for Remote Development 11-17
Configure Polyspace as You Code Plugin in Eclipse 11-19
PolyspaceasYouCode Nodeiiiinn. 11-19
AnalysisNode 11-20
BaselineNode 11-25
Generate Build Options for Polyspace as You Code Analysis in Visual
Studio 11-27
Configure Polyspace as You Code to Extract Build Configuration .. 11-27
Specify Analysis Options Manually 11-29
Import Analysis Options from Polyspace Desktop Project 11-30
Generate Build Options for Polyspace as You Code Analysis in Visual
StudioCode 11-32
Configure Polyspace as You Code to Extract Build Configuration .. 11-32
Specify Analysis Options Manually 11-35
Import Analysis Options from Polyspace Desktop Project 11-35
Generate Build Options for Polyspace as You Code Analysis in Eclipse
.. 11-37
Configure Polyspace as You Code to Extract Build Configuration .. 11-37
Specify Analysis Options Manually 11-39
Import Analysis Options from Polyspace Desktop Project 11-39
Generate Build Options for Polyspace as You Code Analysis at the
Command Line 11-41
Use polyspace-configure to Generate Build Options File 11-41
Specify Analysis Options Manually 11-42
Import Analysis Options from Polyspace Desktop Project 11-43
Baseline Polyspace as You Code Results in Visual Studio 11-44
What Baselined Results Look Like 11-44
Baselining Steps 11-45
Baseline Polyspace as You Code Results in Visual Studio Code . . 11-48
What Baselined Results Look Like 11-48
Baselining Steps 11-49
Baseline Polyspace as You Code Results in Eclipse 11-53
What Baselined Results Look Like 11-53
Baselining Steps i 11-54
Baseline Polyspace as You Code Results on Command Line 11-56
What Baselined Results Look Like 11-56
Baselining Steps 11-57
Step 1: Identify Project to Use as Baseline 11-57
Step 2: Download Baseline 11-58
Step3:UseBaseline 11-58

Configure Checkers for Polyspace as You Code in Eclipse 11-60

Select Checkers and Coding Rules 11-60
Modify Checker Behavior 11-62
Configure Checkers for Polyspace as You Code in Visual Studio .. 11-63
Select Checkers and Coding Rules 11-63
Modify Checker Behavior 11-65
Configure Checkers for Polyspace as You Code in Visual Studio Code
.. 11-66
Configure Checkers in Checkers File 11-66
Modify Checkers Behavior 11-68
Configure Checkers for Polyspace as You Code at the Command Line
.. 11-70
Configure Checkers and Coding Rules Directly at the Command Line
.. 11-70
Configure Checkers in Checkersfile 11-71
Modify Checkers Behavior 11-73
Analysis Scope of Polyspace as YouCode 11-75
Results Involve Current File Only 11-75
Headers Included in Current File Not Analyzed 11-75
Checkers Deactivated in Polyspace as You Code Analysis 11-78
Checkers and Coding Rule Deactivated in Polyspace as You Code
.. 11-78
Checkers with Reduced Scope in Polyspace as You Code 11-80
Troubleshoot Failed Analysis or Unexpected Results in Polyspace as
YouCode 11-81
Issue 11-81
Possible Solutions 11-81

Configuration Workflows Common to All Platforms

Configure Polyspace Analysis

12

Specify Polyspace Analysis Options 12-2
Polyspace UserInterface, 12-2
Windows or Linux Scripts 12-2
MATLAB SCIiptS .« v oot 12-3
Eclipse and Eclipse-based IDEs 12-3
Simulink e 12-3
MATLAB COAeT APD &« oo oot e e e e e e e e e et e et e 12-3

Options Files for Polyspace Analysis 12-5
What are Options Files s 12-5

xiii

xiv

Contents

Specifying Options Files 12-5
Specifying Multiple Options Files 12-6

Configure Target and Compiler Options

13

Specify Target Environment and Compiler Behavior 13-2
Extract Options from Build Command 13-2
Specify Options Explicitly 13-3

C/C++ Language Standard Used in Polyspace Analysis 13-5
Supported Language Standards 13-5
Default Language Standard 13-5

C11 Language Elements Supported in Polyspace 13-8

C++11 Language Elements Supported in Polyspace 13-10

C++14 Language Elements Supported in Polyspace 13-13

C++17 Language Elements Supported in Polyspace 13-16

Provide Standard Library Headers for Polyspace Analysis 13-20

Create Polyspace Analysis Configuration from Build Command

Makefile) 13-22

Requirements for Project Creation from Build Systems 13-24
Compiler Requirements 13-24
Build Command Requirements 13-25

Supported Keil or IAR Language Extensions 13-27
Special Function Register Data Type 13-27
Keywords Removed During Preprocessing 13-28

Remove or Replace Keywords Before Compilation 13-29
Remove Unrecognized Keywords 13-29
Remove Unrecognized Function Attributes 13-31

Gather Compilation Options Efficiently 13-32

Configure Inputs and Stubbing Options

14|

Specify External Constraints for Polyspace Analysis 14-2
Create Constraint Template 14-2
Create Constraint Template from Code Prover Analysis Results . . . 14-3
Update Existing Template 14-4
Specify ConstraintsinCode 14-5

External Constraints for Polyspace Analysis 14-6

Effect of External Constraints 14-6
Constraint Specification 14-7
Constraint Specification Limitations 14-11
Constrain Global Variable Range for Polyspace Analysis 14-12
User Interface (Desktop ProductsOnly) 14-12
Command Line i, 14-13
Constrain Function Inputs for Polyspace Analysis 14-14
User Interface (Desktop ProductsOnly) 14-14
Command Line i 14-15
XML File Format for Polyspace Analysis Constraints 14-17
Syntax Description — XML Elements 14-17
Valid Modes and Default Values 14-21

Configure Multitasking Analysis

15|

Analyze Multitasking Programs in Polyspace 15-2
Configure Analysiso 15-3
Review AnalysisResults 15-4
Differences Between Bug Finder and Code Prover 15-5

Auto-Detection of Thread Creation and Critical Section in Polyspace

... 15-7
Multitasking Routines that Polyspace Can Detect 15-7
Example of Automatic Thread Detection 15-8
Naming Convention for Automatically Detected Threads 15-11
Limitations of Automatic Thread Detection 15-12

Configuring Polyspace Multitasking Analysis Manually 15-17
Specify Options for Multitasking Analysis 15-17
Adapt Code for Code Prover Multitasking Analysis 15-17

Protections for Shared Variables in Multitasking Code 15-21
Detect Unprotected ACCeSS it ii i 15-21
Protect Using Critical Sections 15-22
Protect Using Temporally Exclusive Tasks 15-23
Protect Using Priorities 15-23
Protect By Disabling Interrupts 15-24

Define Atomic Operations in Multitasking Code 15-25
Nonatomic Operations 15-25
What Polyspace Considers as Nonatomic 15-25
Define Specific Operations as Atomic 15-26

Define Task Priorities for Data Race Detection in Polyspace 15-28
Emulating Task Priorities 15-28
Examples of Task Priorities 15-28
Further Explorations 15-29

Effect of Task Priorities in Code Prover 15-29

Define Critical Sections with Functions That Take Arguments ... 15-31
Polyspace Assumption on Functions Defining Critical Sections . . . 15-31
Adapt Polyspace Analysis to Lock and Unlock Functions with

Arguments 15-31

Configure Coding Rules Checking and Code Metrics

Computation

Check for and Review Coding Standard Violations 16-2
Configure Coding Rules Checking 16-2
Review Coding Rule Violations 16-6
Generate Reports 16-7
Avoid Violations of MISRA C:2012 Rules 8.x 16-8
Reduce Software Complexity by Using Polyspace Checkers 16-11
Configure Thresholds for Software Complexity Checkers 16-11
Identify and Reduce Software Complexity 16-12
Software Quality Objective Subsets (C:2004) 16-15
Rules in SQO-Subsetl 16-15
Rules in SQO-Subset2 16-16
Software Quality Objective Subsets (ACAGC) 16-19
Rules in SQO-Subsetl 16-19
Rulesin SQO-Subset2 16-20
Software Quality Objective Subsets (C:2012) 16-23
Guidelines in SQO-Subsetl 16-23
Guidelines in SQO-Subset2 16-24
Software Quality Objective Subsets (C++) 16-27
SQO Subset 1 - Direct Impact on Selectivity 16-27

SQO Subset 2 - Indirect Impact on Selectivity 16-28
Coding Rule Subsets Checked Early in Analysis 16-33
MISRA C:2004 and MISRAACAGCRules 16-33
MISRA C:2012Rulesottt 16-40
Create Custom Coding Rules 16-48
Specify Naming Convention 16-48
Check for Violations of Defined Custom Coding Rule 16-50
Compute Code Complexity Metrics Using Polyspace 16-51
Impose Limits on Metrics (Desktop Products Only) 16-51
Impose Limits on Metrics (Server and Access products) 16-53

Contents

HIS Code Complexity Metrics 16-54

Project 16-54
File ..o 16-54
Function e 16-54

Migrate Code Prover Workflows for Checking Coding Standards and
Code MetricstoBug Finder 16-55
Changesin Workflow 16-55

Polyspace Coverage of Coding Standards

17|

Polyspace Support for Coding Standards 17-2
Summary of Polyspace Support 17-2
AUTOSAR CH414 e 17-2
MISRACH+:2008 e 17-4
MISRA C:2012 17-4
CERT C .ottt e e e 17-7
Other ... 17-8

MISRA C:2004 and MISRA AC AGC Coding Rules 17-9
Supported MISRA C:2004 and MISRAACAGCRules 17-9
Troubleshooting 17-9
List of Supported Coding Rules 17-9
Unsupported MISRA C:2004 and MISRA AC AGCRules 17-41

Required or Mandatory MISRA C:2012 Rules Supported by Polyspace

BugFinder 17-43
Mandatory Rules i 17-43
Required Rules 17-44

Decidable MISRA C:2012 Rules Supported by Polyspace Bug Finder

.. 17-54

Undecidable MISRA C:2012 Rules and Directives Supported by

Polyspace Bug Finder 17-64
Undecidable Rules, 17-64
Undecidable Directives 17-67

Polyspace Support for MISRA C: 2012 Amendments 17-69
MISRA C:2012 Technical Corrigendum 1 17-69
MISRA C: 2012 Amendment 1 (AMD1) 17-69
MISRA C:2012 Amendment 2 (AMD2) 17-71

Essential Types in MISRA C:2012 Rules 10.x 17-72
Categories of Essential Types 17-72
How MISRA C:2012 Uses Essential Types 17-72

Unsupported MISRA C:2012 Guidelines 17-74

Required and Statically Enforceable CERT C Rules Supported by

Polyspace Bug Finder 17-75

xvii

xviii

Contents

Required MISRA C++:2008 Coding Rules Supported by Polyspace

BugFinder 17-83
Supported Rules i . 17-83
Unsupported Rules 17-99

JSFAVC++ CodingRules 17-100
Supported JSF C++ Coding Rules 17-100
Unsupported JSF++ Rules 17-118

Required AUTOSAR C++14 Coding Rules Supported by Polyspace

BugFinder 17-125
Supported Rules e 17-125
Unsupported Rules 17-153

Statically Enforceable AUTOSAR C++14 Rules Supported by

Polyspace Bug Finder 17-156
AutomatedRules 17-156
Partially Automated Rules 17-182

Configure Bug Finder Checkers

18|

Choose Specific Bug Finder Defect Checkers 18-2
User Interface (Desktop ProductsOnly) 18-2
Command Line 18-2

Modify Default Behavior of Bug Finder Checkers 18-3
Defect Checkers and Coding Rules Modified by Analysis Options . . 18-3

Modify Bug Finder Checkers Through Code Behavior Specifications

.. 18-12
XML Format e e 18-12
Datalog Format i 18-16

Flag Deprecated or Unsafe Functions, Keywords, or Macros Using

Bug Finder Checkers 18-21
Identify Need for Extending Checker 18-21
Extend Checker i 18-22
Checkers That Can Be Extended 18-22
Extend Bug Finder Checkers for Standard Library Functions to
Custom Libraries 18-24
Identify Need for Extending Checker 18-24
Extend Checker i 18-24
Checkers That Can Be Extended 18-25
Limitations e 18-25
Extend Bug Finder Checkers to Find Defects from Specific System
Input Values e 18-26
Identify Need for Extending Checker 18-26
Extend Checker 18-26
Checkers That Can Be Extended 18-27

Extend Concurrency Defect Checkers to Unsupported Multithreading

Environments e 18-30
Identify Need for Extending Checker 18-30
Extend Checker 18-31
Checkers That CanBe Extended 18-31
Limitations i e 18-32

Extend Checkers for Initialization to Check Function Arguments

Passed by Pointers 18-33
Identify Need for Existing Checker 18-33
Extend Checker i 18-33
Checkers That Can Be Extended 18-34

Extend Data Race Checkers to Atomic Operations 18-35
Identify Need for Extending Checker 18-35
Extend Checker i 18-35
Checkers That Can Be Extended 18-36

Prepare Checkers Configuration for Polyspace Bug Finder Analysis

.. 18-38
Identify Checkersto Enable 18-38
Create Checkers Configuration Files 18-40

Bug Finder Defect Groups 18-43
CH4+ ExXCeptionst e 18-43
CONCUITENCY &« o v v vt e et e et e e e et e et e e 18-43
Cryptography e 18-44
Dataflow i 18-44
DynamiC MEeMOIYo v ittt e e e 18-45
Good Practice e 18-45
Numerical 18-45
Object Oriented 18-45
Performance i 18-46
Programming i e 18-46
Resource Management 18-47
Static Memory 18-47
Security 18-47
Tainteddata 18-47

Classification of Defects by Impact 18-49
HighImpactDefects 18-49
Medium Impact Defects 18-51
Low ImpactDefects 18-56

Sources of Tainting in a Polyspace Analysis 18-61
Sourcesof Tainted Data, 18-61
Impact of Tainted Data Defects 18-61

Polyspace Bug Finder Defects Checkers Enabled by Default 18-65

Polyspace Bug Finder Defects Checkers Enabled by Default for

Generated Code 18-70
Bug Finder Results Found in Fast Analysis Mode 18-72
Polyspace Bug Finder Defects 18-72

xix

MISRA C:2004 and MISRAACAGCRules 18-75

MISRA C:2012 RUleS . ..o ottt e 18-81
MISRAC++4+ 2008 Rules 18-87
Extend CWE Coding Standard Coverage Using Polyspace Defect
Checkers i e e e 18-97
Find CWE IDs from Polyspace Results 18-97
Mapping Between CWE Identifiers and Polyspace Results 18-97

Configure File Sets for Bug Finder Analysis

19]

Classify Project Files Into File Sets for Precise Control of Bug Finder

Analysis 19-2
Classification File Structure Based on Analysis Requirements 19-2
Classification File Usage, 19-3
Parts of Classification File 19-4

Configure Comment Import from Previous Results

20

Import Review Information from Previous Polyspace Analysis 20-2
Automatic Import from Last Analysis 20-2
Import from Another AnalysisResult 20-2
Import Algorithm 20-3
View Imported Review Information That Does Not Apply 20-4

Import Existing MISRA C: 2004 Justifications to MISRA C: 2012

Resulls 20-5
Mapping Multiple MISRA C: 2004 Annotations to the Same MISRA C:
2012 Result 20-6

Review Results in Polyspace User Interface

Interpret Polyspace Bug Finder Results

21

Interpret Bug Finder Results in Polyspace Desktop User Interface

... 21-2
Interpret Result Details Messaget 21-3

Find Root Cause of Result 21-3
Investigate the Cause of Empty Results List 21-7

Contents

Dashboard in Polyspace Desktop User Interface 21-9

Code Covered by Analysis iiiiinnn... 21-9
Defect Distribution by Impact 21-10
Defect Distribution by CategoryorFile 21-10
Coding Rule Violations by Ruleor File 21-11
Other Dashboard Featuresvvvivn.... 21-12
Concurrency Modeling in Polyspace Desktop User Interface 21-13
Results List in Polyspace Desktop User Interface 21-15
Source Code in Polyspace Desktop User Interface 21-17
Examine Source Code 21-17
Expand Macros i 21-18
Manage Multiple Files in Source Pane 21-20
View Code Block i 21-21
Result Details in Polyspace Desktop User Interface 21-22
Call Hierarchy in Polyspace Desktop User Interface 21-24
Actions Supported on Call Hierarchy Pane 21-25
Limitations of Call Hierarchy Display in Bug Finder 21-25
Understanding Changes in Polyspace Results After Product Upgrade
.. 21-26
Changes in Polyspace Code Prover Results 21-26
Changes in Polyspace Bug Finder Results 21-28

Fix or Comment Polyspace Results

22|

Address Results in Polyspace User Interface Through Bug Fixes or

Justifications 22-2
Add Review Information to Results File 22-2
Comment or AnnotateinCode, 22-3

Manage Results

23

Filter and Group Results in Polyspace Desktop User Interface 23-2
Filter Results e 23-3
Group Results e 23-7

xxi

xxii

Generate Reports from Polyspace Results

24

Generate Reports from Polyspace Results 24-2
Generate Reports from User Interface 24-2
Generate Reports from Command Line 24-3

Export Polyspace Analysis Results 24-5
Export Resultsto Text File 24-5
Export Results to MATLABTable 24-5
Export Results to JSON Format 24-6
View Exported Results 24-6

Export Polyspace Analysis Results to Excel by Using MATLAB Scripts

... 24-9
Report Result Summary and Details in One Worksheet 24-9
Control Formatting of Excel Report 24-10

Visualize Bug Finder Analysis Results in MATLAB 24-11
Export Results to MATLABTable 24-11
Generate Graphs from Results and Include in Report 24-11

Customize Existing Bug Finder Report Template 24-15
Prerequisites 24-15
View Components of Template 24-15
Change Components of Template 24-16

Generate Report Containing MISRA C:2012 Violations, Code Metrics,

and Runtime Check Results 24-20
Prerequisite 24-20
Obtain Code Metrics and Coding Rules Results by Using Bug Finder

.. 24-20
Obtain Run Time Check and Stack Usage Results by Using Code

Prover e 24-21

Generate a Combined Report 24-22

Review Results on Web Browser

Interpret Polyspace Bug Finder Results

25|

Interpret Bug Finder Results in Polyspace Access Web Interface

... 25-2
Interpret Result Details Messageciiin... 25-3

Find Root Cause of Result 25-3
Investigate the Cause of Empty Results List 25-7
Dashboard in Polyspace Access Web Interface 25-9

Contents

Code Metrics Dashboard in Polyspace Access Web Interface

Quality Objectives Dashboard in Polyspace Access
Monitor Code Quality Against Software Quality Objectives
Customize Software Quality Objectives

Results List in Polyspace Access Web Interface

Source Code in Polyspace Access Web Interface
ToOItIPS . .o
Examine Source Code
Expand Macros it e
View Code Block i
Navigate from CodetoModel

Result Details in Polyspace Access Web Interface
Call Hierarchy in Polyspace Access Web Interface
Configuration Settings in Polyspace Access Web Interface
Review History in Polyspace Access Web Interface
Create Bug Tracking Tool Tickets from the Polyspace Access Web
Interface

Createa Ticket 0 i
Manage Existing Tickets

25-11

25-14
25-14
25-16

25-19

25-21
25-21
25-22
25-23
25-24
25-24

25-26

25-28

Fix or Comment Polyspace Results on Web Browser

26

Address Results in Polyspace Access Through Bug Fixes or
Justifications
Add Review Information in Result Detailspane
Comment or AnnotateinCode

Import Review Information from Existing Polyspace Access Projects
Import Review Information from Source Project to Target Project in
POlysSpace ACCESS . .o v i et
View and Select Imported Reviews
Confirm Imported Review Information
Import Review Information at the Command-Line

xxiii

xxiv

Manage Results

27

Manage Permissions and View Project Trends in Polyspace Access

Web Interface 27-2
Createa ProjectFolder i, .. 27-2
Manage Project Permissions 27-3
View Project Trends 27-6

Filter and Sort Results in Polyspace Access Web Interface 27-8
Filter Results i e 27-9
Create Custom Filter Groups in Polyspace Access Web Interface
.. 27-11
Manage Software Quality Objectives in Polyspace Access 27-13
Manage SQOs in the User Interface 27-13
Manage SQOs at the Command Line 27-14
Add Labels to Project Runs in Polyspace Access 27-16
Manage Labels in the User Interface 27-16
Manage Labels at the Command Line 27-17
Compare Results in Polyspace Access Project to Previous Runs and

ViewTrends 27-19
Comparison Mode in the Polyspace Access Interface 27-19
Comparison Mode at the Command Line 27-21

Export Results from Polyspace Access Web Server

28

Open or Export Results from Polyspace Access 28-2
Open Polyspace Access Results in a Desktop Interface 28-2
Export Polyspace Access Resultstoa TSV File 28-2

Generate Report and Variables List from Polyspace Access 28-4

Review Results in IDEs

Review Results in Polyspace as You Code

29

Run Polyspace as You Code in Visual Studio and Review Results

Contents

Run Analysison Savet 29-2

Run AnalysisonDemand 0.... 29-2
Review Resultso 29-3
Justify Results Using Code Annotations 29-4
ViewHelp 29-4
Configure Checkers and Other Settings 29-5

Run Polyspace as You Code in Visual Studio Code and Review Results
... 29-6
Check Installation and Start Extension 29-6
View Extension Information in StatusBar 29-6
Open Additional Polyspace Views 29-7
Run Analysis e 29-9
Review Results 29-10
View Context-Sensitive Help forResult 29-13
Configure Checkers and Other Settings 29-13
Run Polyspace as You Code in Eclipse and Review Results 29-15
Check Installation and Start Plugin 29-15
Open Polyspace as You Code Perspective 29-15
Run Analysisc i 29-18
Review Results i e 29-18
Justify Results Using Code Annotations 29-19
View Context-Sensitive HelpforResult 29-19
Configure Checkers and Other Settings 29-19

Run Polyspace as You Code from Command Line and Export Results

.. 29-21
Add Install FoldertoPath 29-21
Run Analysis and See Resultson Console 29-21
Store Results in SpecificFolder 29-21
Export Results to JSON Format (SARIF Output) 29-22
Specify Analysis Options by Using Options Files 29-22
Create Options File by Analyzing Build 29-22

Integrate Polyspace as You Code in IDEs and Editors Without Plugins
.. 29-24
Overview of Approach 29-24
Integration Stepso e 29-24
Further Exploration 29-26

Use a Justification Catalog to Autocomplete Annotations in Polyspace
asYouCodeplugins 29-27
Create and Edit Justification Catalog 29-27

Review Workflows Common to All Platforms

Hide Known or Acceptable Results Using Code

30

Annotations
Annotate Code and Hide Known or Acceptable Results 30-2
Code Annotation Syntax 30-2
Syntax Examples 30-6
Code Annotation Warnings 30-9
Ignoring Code Annotations 30-9
Short Names of Bug Finder Defect Groups and Defect Checkers
.. 30-11
Bug Finder Defect Groups Short Names 30-11
Bug Finder Defect Checkers Short Names 30-11
Short Names of Code Complexity Metrics 30-24
Project Metricso oot 30-24
File Metrics i e 30-24
Function Metrics i 30-24

Annotate Code for Known or Acceptable Results (Not Recommended)

.. 30-26
Add Annotations from the Polyspace Interface 30-26

Add Annotations Manually 30-27
Define Custom Annotation Format 30-30
Define Annotation Syntax Format 30-32

Map Your Annotation to the Polyspace Annotation Syntax 30-35
Define Multiple Custom Annotation Syntaxes 30-36
Annotation Description Full XML Template 30-38
Example 30-41

Advanced Review Workflows

31

Contents

Evaluate Polyspace Bug Finder Results Against Bug Finder Quality

Objectives 31-2
Comparing Analysis Results Against Quality Objectives 31-5
Justify Coding Rule Violations Using Code Prover Checks 31-7
Rules About Data Type Conversions 31-7
Rules About Pointer Arithmetic 31-9
Polyspace Results in Lines Containing Macros 31-12
Macros in Source Lines Can Be Expanded in Place 31-12

Results in Function-Like Macros Shown Only Once 31-12

Migrate Results from Polyspace Metrics to Polyspace Access . . . 31-14

Requirements for Migration 31-15

Migrationof Results 31-16

Differences in SQO Between Polyspace Metrics and Polyspace Access
.. 31-17

Troubleshooting

Troubleshooting in Polyspace Bug Finder

32

Fix License Error -4,0 When Running Polyspace 32-3
ISSUE . .o 32-3
Possible Cause: Another Polyspace Instance Running 32-3
Possible Cause: Prior Polyspace Run in Simulink or MATLAB Coder

... 32-3

View Error Information When Analysis Stops 32-4
View Error Information in User Interface 32-4
View Error Informationin Log File 32-4

Contact Technical Support About Issues with Running Polyspace

... 32-6
Provide System Information 32-6
Provide Information AbouttheIssue 32-7
Provide Polyspace Analysis Statistics File (Optional) 32-8

Resolve Error: No Compilation Unit Detected in Your Build 32-9
ISSUE . .ot 32-9
Possible Solutions 32-9

Create Polyspace Projects from Build Systems That Use Unsupported

Compilers e 32-11
ISSUE . . e 32-11
CaUSE . ot 32-11
Solution e 32-11

Fix Slow Build Process When Polyspace Traces Build 32-17
ISSUE . .ot e 32-17
CaUSE . ot 32-17
Solution e 32-17

Check if Polyspace Supports Build Scripts 32-18
ISSUE . .o 32-18
Possible Causettt e 32-18
Solution e 32-18

xxvii

Troubleshoot Project Creation from MinGW Build 32-19

ISSUE . .o 32-19
CaUSE .« ottt 32-19
Solution 32-19
Troubleshoot Project Creation from Visual Studio Build 32-20
Fix Error: Polyspace Cannot Find Server 32-21
MESSagE « v et 32-21
Possible Cause e 32-21
Solution e 32-21
Fix Error: Job Manager Cannot Write to Database 32-22
MESSAGE . . vt 32-22
Possible Causet 32-22
Workaround e 32-22
Fix Polyspace Compilation Errors About Undefined Identifiers . . 32-23
ISSUE . .ot 32-23
Possible Cause: Missing Files 32-23
Possible Cause: Unrecognized Keyword 32-23
Possible Cause: Declaration Embedded in #ifdef Statements 32-24
Possible Cause: Project Created from Non-Debug Build 32-24

Fix Polyspace Compilation Errors About Unknown Function
Prototype e 32-26
ISSUE . .ot e 32-26
CaUSE ot e 32-26
Solution e 32-26
Fix Polyspace Compilation Errors Related to #error Directive ... 32-27
ISSUE . .o 32-27
CaUSE .« ottt 32-27
Solution 32-27
Fix Polyspace Compilation Errors About Large Objects 32-28
ISSUE . .o e 32-28
CaUSE vttt 32-28
Solution 32-28
Fix Polyspace Compilation Errors Related to Generic Compiler .. 32-30
ISSUE . ot 32-30
CaUSE . vttt e 32-30
Solution o e 32-30
Fix Polyspace Compilation Errors Related to GNU Compiler 32-31
ISSUE . 32-31
CaUSE . .t 32-31
Solution e 32-31
Fix Polyspace Compilation Errors Related to Visual Compilers . . 32-32
Import Folder e 32-32
pragmaPack 32-32
CHA/CLI L 32-33

xxviii Contents

Fix Polyspace Compilation Errors Related to Keil or IAR Compiler

.. 32-34
Missing Identifiers 32-34
Fix Polyspace Compilation Errors Related to Diab Compiler 32-35
ISSUE . oo 32-35
CaUSE vttt 32-35
Solution 32-35
Fix Polyspace Compilation Errors Related to Green Hills Compiler
.. 32-37
ISSUE . ot 32-37
CaUSE vttt e 32-37
Solution e 32-37
Fix Polyspace Compilation Errors Related to TASKING Compiler
.. 32-39
ISSUE . . 32-39
CaUSE . .t 32-39
Solution 32-39
Fix Polyspace Compilation Errors Related to Texas Instruments
Compilers e 32-41
ISSUE . .ot e 32-41
Possible Solutions 32-41
Fix Errors from Use of Polyspace Header Files 32-42
ISSUE . .o 32-42
Possible Solutions 32-42
Fix Polyspace Compilation Errors About Namespace std Without
Prefix 32-44
ISSUE . .o 32-44
CaUSE ottt 32-44
Solution 32-44
Fix Polyspace Compilation Warnings Related to Assertion or Memory
Allocation Functions 32-45
ISSUE . .o 32-45
CaUSE vttt 32-45
Solutiono 32-45
Fix Polyspace Compilation Errors About In-Class Initialization (C++)
.. 32-46
Update Eclipse Java Version for Polyspace Plug-in 32-47
ISSUE . . 32-47
CaUSE . ot 32-47
Solution e 32-47
Fix MATLAB Crashes Referring to Polyspace in matlabroot 32-48
ISSUE . .ot 32-48
Possible Solutions 32-48

xxix

XXX

Contents

Diagnose Why Coding Standard Violations Do Not Appear as

Expected 32-49
ISSUE . . o e 32-49
Possible Solutions 32-49

Check Why a Bug Finder Defect Does Not Appear as Expected . . 32-52
[SSUE . .ot e 32-52
Possible Solutions 32-52

.. 32-55
Issue 32-55
Possible Solutions 32-55

Fix Errors or Slow Polyspace Runs from Disk Defragmentation and
Anti-virus Software i il 32-58
ISSue 32-58
Possible Cause 32-58
Solution 32-58
Fix SQLite I/O Errors on Running Polyspace 32-60
ISSUE 32-60
Possible Solutions 32-60
Fix Polyspace Errors Related to Temporary Files 32-61
NoAccessRights 32-61
No Space LeftonDevice 32-61
Cannot Open Temporary File 32-61
Fix Errors Applying Custom Annotation Format for Polyspace Results

.. 32-63
Issue 32-63
Possible Solutions 32-63

Fix Issues When when Integrating Polyspace with MATLAB and
Simulink 32-65
Issue 32-65
Possible Solutions 32-65

Check Why Polyspace Functions are Unavailable in MATLAB 32-67
Issue 32-67
Possible Solution 32-67

Troubleshoot Java Incompatibility in Polyspace Plugin for Eclipse

.. 32-68
ISSUE . . o 32-68
Possible Solutions 32-68

Troubleshooting Polyspace Access

33

Polyspace Access ETL and Web Server services do not start 33-2
Issue 33-2
Possible Cause: Hyper-V Network Configuration Cannot Resolve Local

Host Names 33-2

Contact Technical Support About Polyspace Access Issues 33-5

xxxi

Introduction

1

Introduction

About This User's Guide

This User's Guide covers all Polyspace Bug Finder products:

1-2

Polyspace Bug Finder
Polyspace Bug Finder Server™
Polyspace Access™

Depending on how you set up a Bug Finder run, you might be running an analysis from one of these
locations:

Desktop: If you are running an analysis and reviewing the results on your desktop, you use
Polyspace Bug Finder. For desktop-specific workflows, see “Configure Analysis on Desktop” or
“Review Results in Polyspace User Interface”.

Server: If you are running an analysis on a server, or reviewing the results from a server run on a
web browser, you use:

* Polyspace Bug Finder Server to run the analysis.

* Polyspace Access to host the analysis results (for review on a web browser).

For server-specific workflows, see “Configure Analysis on Servers” or “Review Results on Web
Browser”.

IDE: If you are running an analysis on the current file in your Integration Development
Environment (IDE), you use Polyspace as You Code. Polyspace as You Code is a feature available
with Polyspace Access. For IDE-specific workflows, see “Configure Analysis in IDEs” or “Review
Results in IDEs”.

The Bug Finder analysis engine underlies all Bug Finder products. Chapters that do not mention a
particular platform typically describe the underlying Bug Finder analysis engine and apply to all
three platforms.

Configure Analysis on Desktop

Set Up Polyspace Projects on Desktop

* “Add Source Files for Analysis in Polyspace Desktop User Interface” on page 2-2

* “Contents of Polyspace Project and Results Folders” on page 2-7

* “Create Polyspace Projects from Visual Studio Build” on page 2-9

* “Create Project in Polyspace Desktop User Interface Using Configuration Template” on page 2-13
* “Update Project in Polyspace Desktop User Interface” on page 2-17

* “Organize Layout of Polyspace Desktop User Interface” on page 2-20

* “Customize Polyspace Desktop User Interface” on page 2-22

* “Upload Results to Polyspace Access” on page 2-25

2 set Up Polyspace Projects on Desktop

Add Source Files for Analysis in Polyspace Desktop User
Interface

This topic shows how to create a project in the user interface of the Polyspace desktop products.

» Ifusing the Polyspace Server products, see “Set Up Bug Finder Analysis on Servers During
Continuous Integration”.

» Ifusing Polyspace as You Code, see “Set Up Polyspace Analysis in IDEs”.
To begin a Polyspace analysis, you must specify the path to your source files and headers.

You can specify your source paths explicitly or extract them from a build command (makefile) after
executing the command. If you use a build command for building your source code or build your
source code in an IDE (using an underlying build command), try extracting from the build command
first. If Polyspace cannot trace your build command, manually add the paths to your source and
include folders. You specify the target and compiler options later. See “Target and Compiler”.

Provide the source paths in a Polyspace project. The source files are displayed on the Project
Browser pane.

q_ud

rTOZTR|ILT HE

__'_‘_'.l Project Source Files

: ——_='| polyspace_project
—__=i S0Urces

bl]| example.c
>|_'_=| Project Incude Folders
=03 Module_1

-3 Module Source Files
—__=i polyspace_project

5. sources

Iil example.c

-3 Configuration

¥} Project_test1
-4 Ty Result

A corresponding .psprj file is created in the location where you saved the project. When you create
a project, choose the default location for saving it or enter a new location. To change the default
location, select Tools > Preferences and use the options on the Project and Results Folder tab.

Polyspace Project and Source File Paths

A Polyspace project points to source files using their absolute paths. However, each time you reopen a
project in the Polyspace user interface, the absolute paths to the sources are recomputed relative to
the current location of the project.

For instance, suppose that a project is stored in:

2-2

Add Source Files for Analysis in Polyspace Desktop User Interface

//networkLocation/polyspaceProjects/

Suppose that the project points to the source file path:
//networkLocation/src/file.c

If you move the project to

//usr/local/polyspaceProjects/

and open the project in the user interface, it now points to the source file path:
//usr/local/src/file.c

(Note that if you open the project file in a text editor, it continues to show the old path. You have to
run an analysis using the newly moved project for the new paths to be hardcoded in the project and
show up even in a text editor.)

Because source file paths are recomputed relative to a project path, you can commit a Polyspace
project to a version control system along with your source files. When you check out the project from
your version control system and open a local copy of the project, all source file paths are recomputed
based on the new location of the project. The project now points to a local copy of the source files.

Add Sources from Build Command
Select File > New Project. Select Create from build command.

After providing a project name and location, on the next window, enter this information:

* The build command, exactly as you run it on your code.
* The folder from which you run your build command.

2-3

2 Set Up Polyspace Projects on Desktop

2-4

" Create project using build information >

Create project using build information

Build command

Spedfy command used for building your source files

cmd.exe [C "Cioyawingbin'bash. exe” -c make 13
Spedfy working directory for running build command

C:\sourcesicomp 1 ﬁ
Add advanced configure options

-prog Polyspace_compl_verification

D Run [l stop

Command output

Back Mext Finish Cancel

When you click Run, Polyspace runs the build command and extracts the information for creating a
Polyspace project, specifically, source paths and compiler information.

If you build your source code within an IDE such as Visual Studio®, in the field for specifying the
build command, enter the path to your executable, for instance, C:\Program Files
(x86)\Microsoft Visual Studio 10.0\Common7\IDE\VCExpress.exe. When you click Run,
Polyspace opens your IDE. In your IDE, perform a complete build of your code. When you close your
IDE, Polyspace extracts your source paths and compiler information. See also “Create Polyspace
Projects from Visual Studio Build” on page 2-9.

When you create a project from your build command, the Project Browser pane displays your source
folders but not the include folders. In case you want to verify that your include folders were
extracted, open the project file (with extension .psprj) in a text editor.

You can use additional options to modify the default project creation from build command. For
instance, to create a Polyspace project despite build errors, in the Add advanced configure options
field, enter the option -allow-build-error. To look up allowed options, see polyspace-
configure.

Add Source Files for Analysis in Polyspace Desktop User Interface

Add Sources Manually
Select File > New Project.

After providing a project name and location, on the next window, enter or navigate to the root folder
containing your source files. After selecting the Add recursively box, click Add Source Folders. All
files in the folder and subfolders are added to your project. To exclude specific files or folders from
analysis, right-click the files or folders and select Exclude Files.

" Project - Link to Source Folders =

Link to Source Folders

M ® |[E| PAmodfyrath

=3 Project_test1
=+ Project Source Files
ed
: “olc| example.c
“-[3 Project Indude Folders Bt vy

Select Source Folder

C:'polyspace_project\sources

I:E:I Add Source Folders

Tips:

Manage file and folder exclusions from the right dick menu.

Add a single file: browse to the file and dick "Add Source Folders®, All other files in this
folder will be exduded from the analysis.

Chanage location of a source folder by selecting the folder and "Maodify Path™ from the
toolbar,

Update folders and contents: from the Project Browser select a folder and right dick to
"Refresh Source Folder™
in order to update the latest folder content.

Back Mext Finish Cancel

On the next window, add include folders. The analysis looks for include files relative to the include
folder paths that you specify. For instance, if your code contains the preprocessor directive
#include<../mylib.h> and you include the folder:

C:\My Project\MySourceFiles\Includes

the folder C:\My Project\MySourceFiles must contain a file mylib.h.

For Standard Library headers such as stdio. h, if you know the path to the headers from your
compiler, specify them explicitly. Otherwise, the analysis uses Polyspace implementation of the

2-5

2 Set Up Polyspace Projects on Desktop

2-6

Standard Library headers, which in some special cases, might not match your compiler
implementation. See also “Provide Standard Library Headers for Polyspace Analysis” on page 13-20.

Your project file with source and include folders are displayed in the Project Browser pane. Later, if
you add files to one of these folders, you can update your project. Right-click the folder that you want
to update, or the entire Project Source Files folder, and select Refresh Source Folder.

You can also right-click to exclude files or add more folders to the project. The files that you add the
first time are copied to the first module in your project. If you add new files later, you must explicitly
right-click them and add them to a module.

Add Source Files Based on AUTOSAR Design Specifications

If your code implements AUTOSAR software components, you can provide the top level folder
containing your AUTOSAR design specifications and folders containing the source code
implementation of those specifications.

1 Select File > New. In the Project-Properties window, select Create from AUTOSAR
specification.

2 Specify the top level folder containing your ARXML files and all the folders containing source
files.

For details, see “Run Polyspace on AUTOSAR Code” (Polyspace Code Prover).

See Also

More About

. “Run Analysis in Polyspace Desktop User Interface” on page 3-2
. “Create Polyspace Projects from Visual Studio Build” on page 2-9

. “Provide Standard Library Headers for Polyspace Analysis” on page 13-20

Contents of Polyspace Project and Results Folders

Contents of Polyspace Project and Results Folders

This topic applies only to the Polyspace desktop products..

A Polyspace analysis generates files that contain information about configuration options and analysis
results.

If you run the analysis from the Polyspace user interface, you can group results into modules in a
single project. The project, module and results can correspond to physical folder locations. If you run
the analysis from the command line, you can only specify the path to a results folder (using the option
-results-dir). You have to group related results using appropriate conventions for creating
folders.

File Organization

The organization of Polyspace files in the physical folder location follows the hierarchy displayed in
the Polyspace user interface: project > module > results. The project folder contains a subfolder for
each module. In each module folder, there is one or more result subfolder, named Result #.

The number of result folders depends on whether you overwrite or retain previous results for each
new run. To use a different folder naming convention or different storage location for results, select
Tools > Preferences and use the options on the Project and Results Folder tab.

The project folder has the project file with extension .psprj. If you open a project from a previous
release in the user interface, the project is upgraded for the new release. A backup of the old project
file is saved with the extension .bak.psprj.

Files in the Results Folder

Some of the files and folders in the results folder are described below. The contents of the results
folder are the same irrespective of whether you run the analysis from the user interface or command
line.

* Polyspace release project name date-time.log — A log file associated with each
analysis.

* ps_results.psbf — An encrypted file containing your Polyspace results. Open this file in the
Polyspace environment to view your results.

* ps_sources.db — A non-encrypted database file listing source files and macros.

* drs-template.xml — A template generated when you use constraint specification.

* ps_comments.db — An encrypted database file containing your comments and justifications.
« comments bak — A subfolder used to import comments between results.

* .status and .settings — Two folders that store files required to relaunch the analysis.

* Polyspace-Doc — When you generate a report, by default, your report is saved in this folder
with the name ProjectName ReportType. For example, a developer report in PDF format would
be, myProject Developer.pdf.

Note that by default, the results folder is cleaned up and repopulated at each run. To avoid accidental

removal of files during the cleanup, instead of using an existing folder that contains other files,
specify a dedicated folder for the Polyspace results.

2-7

2 Set Up Polyspace Projects on Desktop

See Also
-results-dir

2-8

Create Polyspace Projects from Visual Studio Build

Create Polyspace Projects from Visual Studio Build

In this section...

“Create Polyspace Project from Build in Visual Studio Developer Command Prompt” on page 2-9

“Create Polyspace Project from Build in Visual Studio IDE” on page 2-10

This topic shows how to create a Polyspace project for use with the Polyspace desktop products. If
using the Polyspace as You Code plugin for single-file analysis in Visual Studio, see “Run Polyspace as
You Code in Visual Studio and Review Results”.

If you develop in the Visual Studio IDE, you can trace the commands running underneath your Visual
Studio build and create a Polyspace project. This method of creating a project automatically adds
source files and compilation options from the Visual Studio project to the Polyspace project.

Note that to accurately reflect your Visual Studio project, you must run a complete build of your
project and not an incremental build. An incremental build only rebuilds sources that changed since
the previous build and might lead to incomplete Polyspace projects.

You can create a Polyspace project by tracing a Visual Studio build at the command line or within an
IDE. Although the latter approach might be simpler, building within an IDE introduces additional
complications when tracing the build. Therefore, calling the build command directly at the command
line is the recommended approach.

Create Polyspace Project from Build in Visual Studio Developer
Command Prompt

To create a Polyspace project, you simply have to prepend polyspace-configure to your regular
build command. For instance, suppose you have a Visual Studio project TestProject.vcxproj. To
create a Polyspace project:

1 Open the Visual Studio developer command prompt. For instance, in Windows®, start typing
Developer Command Prompt for VS 2017.

This command prompt is similar to a regular command prompt but with all Visual Studio
environment variables appropriately set up.

2 Perform a full build of your Visual Studio project: at the command prompt:
msbuild TestProject.vcxproj /t:Rebuild

This step is optional. Ensuring that the build completes successfully by itself allows you to create
a Polyspace project from an error-free build.

3 Run the complete build command from the previous step but prepended with the polyspace-
configure command:
polyspace-configure msbuild TestProject.vcxproj /t:Rebuild

For the above command to work, add the path polyspaceroot\polyspace\bin to the Path
environment variable in Windows. Here, polyspaceroot is the Polyspace installation folder, for
instance, C:\Program Files\Polyspace\R2023a.

Instead of a project, you can also run polyspace-configure on the full build of a solution.
However, a solution consists of multiple projects, each of which might generate a separate

2-9

2 Set Up Polyspace Projects on Desktop

2-10

executable. In this situation, polyspace-configure generates a project that mixes source files
contributing to separate executables. To avoid the issue:

If all projects in the solution generate a single process, for instance, when the solution generates
an executable for a GUI app and a DLL containing the engine for the app, you can run
polyspace-configure on the full build of the solution. In all other cases, run polyspace-
configure on specific projects in the solution.

For instance, if a solution ExampleProject contains two projects AProject and
AnotherProject, you can run polyspace-configure from the folder containing the solution
as follows:

polyspace-configure -prog AProject ©

msbuild ExampleProject/AProject.vcxproj /t:Rebuild
polyspace-configure -prog AnotherProject *

msbuild ExampleProject/AnotherProject.vcxproj /t:Rebuild

These commands generate two Polyspace projects, AProject.psprj and
AnotherProject.psprj.

Instead of creating a Polyspace project to run analysis, you can run the analysis using options
files. See also “Options Files for Polyspace Analysis” on page 12-5. If you take the options file
approach to run Polyspace, you can first run polyspace-configure on a Visual Studio solution
to generate one options file per project in the solution.

For instance, if a solution ExampleProject contains two projects AProject and
AnotherProject, you can run polyspace-configure as follows:

polyspace-configure -module -output-options-path . *©
msbuild ExampleProject.sln /t:Rebuild

This command generates two options files, AProject exe.psopts and
AnotherProject exe.psopts. You can continue the analysis using these options files.

Create Polyspace Project from Build in Visual Studio IDE

To create a Polyspace project, you can also open the Visual Studio IDE from within Polyspace and

perform a full build within the IDE.

1
2

In the Polyspace interface, select File > New Project.

In the Project - Properties window, under Project Configuration, select Create from build
command and click Next.

Create Polyspace Projects from Visual Studio Build

"Y' Project - Properties @
Define project

Project definition and location
Project name myProject
Version | 1.0

Author |username

Use default location
Location |C:\PolyspaceProjects Q

Project configuration

IUse template

| Create from buid command

ack | Mext ” Finish ” Cancel |

In the field Specify command used for building your source files, enter the full path to the
Visual Studio executable. For instance, "C:\Program Files (x86)\Microsoft Visual
Studio 10.0\Common7\IDE\devenv.exe".

In the field Specify working directory for running build command, enter a folder to which
you have write access, for instance, C:\temp\Polyspace. Click lﬂ/.

This action opens the Visual Studio environment.
In the Visual Studio environment, create and build a Visual Studio project.

If you already have a Visual Studio project, open the existing project and build a clean solution.
For instance, to build a clean solution in Visual Studio 2012, select BUILD > Rebuild Solution.

2-11

2 Set Up Polyspace Projects on Desktop

o8 CppExample - Microsoft Visual Studic
File Edit Wiew Project Build | Debug Team Data Polyspace Tools Test

Tk = - Build Solution Ctrl+Shift+B f| |
Pl B An I | = Rebuild Solution
ﬁ Clean Soluticn
CppExample.cpp X |
W £ Build Selection
S (Global Scope)))
b - Rebuild Selection -
= -|// CppExample =
.E' I Clean Selection
E Project Only]
— #include "std
A Profile Guided Optirnization]
_|
a2 Batch Build...
= —lint _tmain(in))
2 I Configuration Manager...
return @; & Compile Ctrl+F7
}

6 After the project builds, close Visual Studio.
Polyspace traces your Visual Studio build and creates a Polyspace project.

The Polyspace project contains the source files from your Visual Studio build and the relevant
Target & Compiler options.

7 If you update your Visual Studio project, to update the corresponding Polyspace project, on the
Project Browser, right-click the project name and select Update Project.

See Also
polyspace-configure

More About

. “Troubleshoot Project Creation from Visual Studio Build” on page 32-20

2-12

Create Project in Polyspace Desktop User Interface Using Configuration Template

Create Project in Polyspace Desktop User Interface Using
Configuration Template

This topic shows how to export and reuse a configuration in the user interface of the Polyspace
desktop products.

» Ifusing the Polyspace Server products, see “Set Up Bug Finder Analysis on Servers During
Continuous Integration”.
» Ifusing Polyspace as You Code, see “Set Up Polyspace Analysis in IDEs”.

A configuration template is a predefined set of analysis options for a specific compilation
environment.

Why Use Templates

Use templates to simplify your project setup. For instance, after you configure a project for a specific
compilation environment, you can create a template out of the configuration. Using the template, you
can reuse the configuration for projects that have the same compilation environment.

When creating a new project, you can do one of the following:

* Use an existing template to automatically set analysis options for your compiler.
Polyspace software provides predefined templates for common compilers such as IAR, Kiel,
Visual and VxWorks. For additional templates, see Polyspace Compiler Templates.

* Set analysis options manually. You can then save your options as a template and reuse them later.
You can also share the template with other users and enforce consistent usage of Polyspace Bug
Finder in your organization.

Use Predefined Template

Select File > New Project.

2 On the Project - Properties dialog box, after specifying the project name and location, under
Project configuration, select Use template.

3 On the next screen, select the template that corresponds to your compiler. For further details on
a template, select the template and view the Description column on the right.

If your compiler does not appear in the list of predefined templates, select Baseline C or
Baseline C++.

4 On the next screen, add your source files and include folders.

Create Your Own Template

This example shows how to save a configuration from an existing project and create a new project
using the saved configuration.

» To create a template from a project that is open on the Project Browser pane:

1 Right-click the project configuration that you want to use, and then select Save As Template.

2-13

https://www.mathworks.com/matlabcentral/fileexchange/35927-polyspace-compiler-templates

2 Set Up Polyspace Projects on Desktop

2 Enter a description for the template, then click Proceed. Save your template file.

Suppose you create a Code Prover configuration template that runs Code Prover analysis to a
precision level of 1 and a verification level of 1. See:

* Precision level (-00 | -01 | -02 | -03) (Polyspace Code Prover)
* Verification level (-to) (Polyspace Code Prover)

You can enter this description for the template.

e

"V Project Template @

Features:
1. Predision level: 1
2, Verification level: 1

Proceed] [Cancel

* When you create a new project, to use a saved template:

' Select ’ 0.7 Add custom template...

2 Navigate to the template that you saved earlier, and then click Open. The new template
appears in the Custom templates folder on the Templates browser. Select the template for
use.

2-14

Create Project in Polyspace Desktop User Interface Using Configuration Template

"¢ Project - Browse for Template @
Select a template

example_project

Templates Description

=7 Baseline Features:
[} Baseline_C-++ 1. Predsion level: 1

% Bassline C 2. Verification level: 1
=3 6cC

-l GCC_C4++

- ¥} Gee_C

= IAR

= Keil

o [, Keil

=1 visual

- g Visual10.0_i386

- [Visual10.0_x86_564
- e Visuald.0_i3586

- 4G Visuald.0_x86_64
- g Visuals.0_i386

- [Visual9.0_wB6_64
=1 VaWorks

- g VxWorks5.x_i386
- 4G VxWorkss.x_i386
=7 Custom templates

L :4my_configuration

[2+¢ Remove custom template l

[Back][Next][Finish][Cancel

Sharing Project Templates

A configuration template stores all options set on the Configuration pane in the Polyspace desktop

user interface. If you share the template, another user who uses the template can benefit from those
options.

Note however that options that refer to specific files point to their absolute paths. If a shared
template sets one of those options, the corresponding file must also be shared. Preferably, the shared
file must be in the same location as when the template was created, otherwise end-users have to
modify the template to point to a new location. If you set one of those options in a configuration
template that is meant to be shared with other users, make sure that the corresponding file is in a
location accessible to the end-users. Some common options that refer to specific files are:

2-15

2 Set Up Polyspace Projects on Desktop

2-16

* Command/script to apply to preprocessed files (-post-preprocessing-command)
and Command/script to apply after the end of the code verification (-post-
analysis-command)

* Set checkers by file (-checkers-selection-file) and -checkers-activation-
file

* Constraint setup (-data-range-specifications)

* Command-line-only options such as -options-file and -code-behavior-specifications.
In the Polyspace user interface, you enter these options in the Other field.

See Also

More About
. “Specify Polyspace Analysis Options” on page 12-2
. “Complete List of Polyspace Bug Finder Analysis Engine Options”

Update Project in Polyspace Desktop User Interface

Update Project in Polyspace Desktop User Interface

This topic shows how to update a project in the user interface of the Polyspace desktop products.

» Ifusing the Polyspace Server products, see “Set Up Bug Finder Analysis on Servers During
Continuous Integration”.

» Ifusing Polyspace as You Code, see “Set Up Polyspace Analysis in IDEs”.

To analyze your C/C++ source files with Bug Finder or Code Prover in the Polyspace user interface,

you create a Polyspace project. During development, you can simply update this project and rerun the
analysis for updated results. This topic describes the updates that you can make.

To begin updates, right-click your project on the Project Browser pane. You see a different set of
options depending on the node that you right-click.

IHE_
T A® RR LT DHE
EI'_:I Bug_Finder_Example

=3 Project Source Files

& =

Ces

(& Refresh Source Folder F5
Muodify Path

Exclude Files

ulrulrulrulr

Remowve Delete

[

Open Folder with File Manager

7=

Copy to -

[

BF LSO N

Project Properties Alt+P

-

-] resourcemanagement.c
-~ security.c
- 2| staticmemory.c
-] tainteddata.c
-3 Project Indude Folders
=3 Module_1
E]_:"l Module Source Files
[sources
EI'_:"I Configuration
% Bug_Finder_Example
=13 Result
|§_| BF_Result [Completed]

Change Folder Path

If you have moved the source folder that you added to your project, modify the path in your Polyspace
project. You can also modify the folder path to point to a different version of the code in your version
control system.

2-17

2 Set Up Polyspace Projects on Desktop

2-18

In the Project Browser, right-click the top sources folder ==l and select Modify Path.Change the
path to the new location.

To resync the files under this source folder, right-click your source folder and select Refresh Source
Folder.

Refresh Source List

If you made changes to files in a folder already added to the project, you do not need to re-add the
folder to your project. Refreshing your source file list looks for new files, removed files, and moved
files.

Right-click your source folder and select Refresh Source Folder. The files in your Polyspace project
refresh to match your file system.

Refresh Project Created from Build Command

If you created your project automatically from your build system, to update the project later by
rerunning your build command, right-click the project folder and select Update Project.

You see the information that you entered when creating the original project. Click Run to retrace
your build command and recreate the Polyspace project.

Add Source and Include Folders

If you want to change which files or folders are active in your project without removing them from

your project tree, right-click the file or folder and select Exclude Files. The file appears with an @
symbol in your project indicating it is not considered for analysis. You can reinclude the files for
analysis by right-clicking and selecting Include Files.

If you want to add additional source folders or include folders, right-click your project or the Source
or Include folder in your project. Select Add Source Folder or Add Include Folder.

Before running an analysis, you must copy the source files to a module. Select the source files that
you want to copy. To select multiple files together, press the Ctrl key while selecting the files. Right-
click your selection. Select Copy to > Module_n. n is the module number.

Manage Include File Sequence

You can change the order of include folders to manage the sequence in which include files are
compiled.

When multiple include files by the same name exist in different folders, you might want to change the
order of include folders instead of reorganizing the contents of your folders. For a particular include
file name, the software includes the file in the first include folder under Project Name > Include.

In the following figure, Folder 1 and Folder_ 2 contain the same include file include. h. If your
source code includes this header file, during compilation, Folder 2/include. h is included in
preference to Folder 1/include.h.

Update Project in Polyspace Desktop User Interface

-E Include
' ' ----- 3 H:\Polyspace\Sources\Manage_Include_File_Sequence\Folder_2
- 3 H:\Polyspace\Sources\Manage_Include_File_Sequence\Folder 1

To change the order of include folders, in your project, expand the Include folder. Select the include

A [—=—]
folder or folders that you want to move. To move the folder, click either = or W

See Also

Related Examples

. “Add Source Files for Analysis in Polyspace Desktop User Interface” on page 2-2

2-19

2 Set Up Polyspace Projects on Desktop

Organize Layout of Polyspace Desktop User Interface

The Polyspace user interface has two default layouts of panes.

The default layout for project setup has the following arrangement of panes:

Project Browser Configuration

Output Summary

The default layout for results review has the following arrangement of panes:

Results List Result Details

Dashboard

You can create and save your own layout of panes. If the current layout of the user interface does not
meet your requirements, you can use a saved layout.

You can also change to one of the default layouts of the Polyspace user interface. Select Window >
Reset Layout > Project Setup or Window > Reset Layout > Results Review.

Create Your Own Layout

To create your own layout, you can close some of the panes, open some panes that are not visible by
default, and move existing panes to new locations.

To open a closed pane, select Window > Show/Hide View > pane_name.
To move a pane to another location:
1 Float the pane in one of three ways:
* Click and drag the blue bar on the top of the pane to float all tabs in that pane.

For instance, if Project Browser and Results List are tabbed on the same pane, this action
floats the pane together with its tabs.

* Click and drag the tab at the bottom of the pane to float only that tab.
For instance, if Project Browser and Results List are tabbed on the same pane, dragging

out Project Browser creates a pane with only Project Browser on it and floats this new
pane.

* Click [=f on the top right of the pane to float all tabs in that pane.
2 Drag the pane to another location until it snaps into a new position.

If you want to place the pane in its original location, click =l in the upper-right corner of the
floating pane.

For instance, you can create your own layout for reviewing results.

2-20

Organize Layout of Polyspace Desktop User Interface

olyspace - Bug_Finder_Example C: :_proj 2\Bug_Finder_| :_1\BF Result
¥ Polyspace - Bug_Finder_Example C: proj ples\R20172\Bug_Finder_Example\Module_1\BF Resul (=N
File Reporting Metrics Tools Window Help
[, % @&l | [> Run Bug Finder v [Stop | &
S Results List ¥ source 5 a a E
Al results + | T New E~ <2 5> @ Showing 2,000/2,000 | cancurrency.c x| 4+ B Variable trace concurrency.c|| &
F..| & Type o Check F File & Function ¥ They are defined in the code, after the comment | [@ Result Reviews 3

" : = = i : @
O * Defect Assertion programming.c bug_assert() =] : The . mn:“'_ms d:'mln_; :h: b?gmmr_‘g Emll end of szl:i Severity ~ | |Enter comment here! k)
O = pefect Invalid use of == operator programming.c bug_badequalequal e optlons -exitical-section-begin/-eritieal-section-end ha —
O * Defect Tnvalid free of pointer dynamicmemor... bug_badfree() * to configure the critical sections. || Status _
O * Defect Missing unlock concurrency.c File Scope * Fox example: —

. —eri - ion-begi - o TION: L
O Defect Bad order of dropping privileges security.c bug_badprivilegedr critical-section-begin BEGIN_CRITICAL SECTION:cal = | | © pata race (1mpact: High) \2J
O* Defect Bad order of dropping privileges security.c bug_badprivilegedr: * -critical-section-end END_CRITICAL SECTION:csl Certain operations on variable 'bad_globl' can interfere with each other
O * Defect Character value abserbed into ... programming.c bug_chareofconfuse = Access Access Prote... Task File
o Defect Use of previously closed resource resourcemana... bug_closedresource sdetine Toeat crrox() apert() ‘Wr\ta |Nn protection ‘hug_dataraca_taskl[j concurrel
=] Defect Writing to const qualified object programming.c bug_constantobject = ‘Read |Nu protection ‘hugidalaraceitaskzﬂj concurre|
efect concurrency.c _[File Scope
O * Defect Data race concurrency.c File Scope ’
. o

O * Defect Data race through standard libr... concurrency.c File Scope DRTR RACE
O * Dpefect Deadlock concurrency.c File Scope ~
O * Defect Declaration mismatch programming.c ~ File Scope o] :nt bad globi: /* Defect Data race ! i v
O Defect Deallocation of previously deall... dyr bug int goed_globl; /* Fix: Use a critical section TO protect
O * Defect Double lock concurrency.c File Scope _ _ i -
O * Defect Closing previously closed resou... resourcemana... bug_doubleresourc: /* Functions defining the beginning and end of critical section - S dh e
O * Defect Double unlock concurrency.c File Scope veid E[amfﬂHI“ALfSE“H“'Nwmd) : -
O = Defect Misuse of errna programming.c bug_errnomisuse() void END_CRITICRL SECTION(void) Data race
O * Dpefect Absorption of float operand numerical.c bug_floatabsorptior 4 Bas das - B Multiple tasks perform unprotected non- expand all in page
O * Defect Float conversion overflow numerical.c bug_floatconvovfl() void bug datarace taskl(void) atomic operaticns en shared variable
O * Defect Invalid use of standard library f... numerical.c bug_floatstdlib() {
O * Defect Float division by zero numerical.c bug_floatzerodiv() bad_glebl = L o
O * Defect Use of previously freed pointer ~ dynamicmemor... bug_freedptr() ' Description
O * Defect Integer conversion overflow numerical.c bug_intconvovfl() aTug 4 2 s Data race occurs when
O * Defect Invalid use of standard library i... numerical.c bug_intstdlib() veid bug detarace task2(veid) .
O * pefect Invalid use of standard library i... numerical.c bug_intstdlib() { ! T;:‘E:E:Z tasks perform unprotected operations on a shared
O * Defect Integer division by zera numerical.c bug_intzerodiv(} int local var;
O * Defect Invalid va_list argument programming.c bug_invalidvalistarg lecal_yer = bad glokl; 2. At least one task parforms a read operation and another
O * Defect Fointer or reference to stack va... staticmemory.c bug_localaddrescar (veld)prine2("3d", local vez): task performs a write operation
O * Defect Invalid use of standard library ... staticmemory.c bug_memstdlib() ' i 3. At least one operation is non-atomic. For data race on both
oE——r— = s : > = atemic and non-atemic operations, see Data race including
Al il] G < i » N . -

Save and Reset Layout

After you have created your own layout, you can save it. You can change from another layout to this
saved layout.

* To save your layout, select Window > Save Current Layout As. Enter a name for this layout.
* To use a saved layout, select Window > Reset Layout > layout_name.

* To remove a saved layout from the Reset Layout list, select Window > Remove Custom Layout
> layout_name.

See Also

More About

. “Customize Polyspace Desktop User Interface” on page 2-22

2-21

2 Set Up Polyspace Projects on Desktop

Customize Polyspace Desktop User Interface

In this section...

“Possible Customizations” on page 2-22
“Storage of Polyspace User Interface Customizations” on page 2-24

You can customize various aspects of the Polyspace user interface, for instance, default project
storage locations or default font size of source code. Select Tools > Preferences.

" Polyspace Preferences

Tools Menu Review Statuses Miscellaneous Character Encoding Review Scope
: Project and Results Folder Editors

Server Configuration

Project location configuration
Default project location: | \\fs-58-ah\wmarsthomels\agangopa'\Documents\Polyspace_Waorkspace =

Results folder configuration
Parent results folder location: |

Add a subfolder using the project name

Formatting options:
Results folder prefix Project variable Date format Time format Counter
Result v v w | _[counter] -

Maote: Result folder names will be automatically prefixed by BF or CP for Bug Finder analysis or Code Prover verification respectively

Compilation Assistant
[] Use Compilation Assistant.

For unit by unit verification, Compilation Assistant is automatically disabled.

Import comments
Automatically import comments from last verification.

>

oK Apply Cancel

Possible Customizations

Change Default Font Size
To change the default font size in the Polyspace user interface, select the Miscellaneous tab.

* To increase the font size of labels on the user interface, select a value for GUI font size.

For example, to increase the default size by 1 point, select +1.

» To increase the font size of the code on the Source pane and the Code Editor pane, select a value

for Source code font size.

2-22

Customize Polyspace Desktop User Interface

When you restart Polyspace, you see the increased font size.
Specify External Text Editor

You can change the default text editor for opening source files from the Polyspace interface. By
default, if you open your source file from the user interface, it opens on a Code Editor tab. If you
prefer editing your source files in an external editor, you can change this default behavior.

To change the text editor, select the Editors tab. From the Text editor drop-down list, select
External. In the Text editor field, specify the path to your text editor. For example:

C:\Program Files\Windows NT\Accessories\wordpad.exe

To make sure that your source code opens at the correct line and column in your text editor, specify
command-line arguments for the editor using Polyspace macros, $FILE, $LINE and $COLUMN. Once
you specify the arguments, when you right-click a check on the Results List pane and select Open
Editor, your source code opens at the location of the check.

Polyspace has already specified the command-line arguments for these editors: Emacs, Notepad++
(Windows only), UltraEdit, VisualStudio, WordPad (Windows only) or gVim. If you are using one
of these editors, select it from the Arguments drop-down list. If you are using another text editor,
select Custom from the drop-down list, and enter the command-line options in the field provided.

For console-based text editors, you must create a terminal. For example, to specify vi:

1 In the Text Editor field, enter /usr/bin/xterm.
2 From the Arguments drop-down list, select Custom.
3 Inthe field to the right, enter -e /usr/bin/vi $FILE.

To revert back to the built-in editor, on the Editors tab, from the Text editor drop-down list, select
Built In.

Create Naming Convention for Results Folder

By default, results are stored in a subfolder of the project folder. When you run an analysis, you can
overwrite the results of the previous run or create a new results folder.

[7 EH L) Run Bug Finder + [Stop | Ly

L Bug Finder a
= =
O WR | = Code Prover
=17 Bug_Finder_Example
+-[T Project Source Files

>|3 Project Indude Folders
5.5 Module 1 [Run All Modules

Create new Bug Finder result folder

Create new Code Prover result folder

You can customize the results folder on the Project and Results Folder tab in these ways:

» Ifyou create a new results folder for each run, you can define a naming convention for the folder.
To specify a results folder naming convention, in the section Results folder configuration, use
the options under Formatting options to create a naming convention for results folders.

2-23

2 Set Up Polyspace Projects on Desktop

For instance, the results folder naming convention below uses the module name and date and time
of analysis. So, a Bug Finder result folder using this convention has a name such as
BF Result module 2 01 01 2020 22 30.

Results folder prefix Praoject variable Date format Time format Counter
Result _[module] w | _[dd_MM_yyyy] - | _[HH_mm] - e

Mote: Result folder names will be automatically prefixed by BF or CP for Bug Finder analysis or Code Prover verification respectively

* You can store results separately from projects. In the section Results folder configuration, you

can specify a root folder for storing results and store per-project results in subfolders of the root
folder:

* Specify the root folder for Parent results folder location.
* Select the option Add a subfolder using the project name.

Create Custom Review Status

When reviewing Polyspace results, you can assign a status such as To fix or Justified. See
“Address Results in Polyspace User Interface Through Bug Fixes or Justifications” on page 22-2.

You can also create and assign custom statuses. To create a new status:

Select the Review Statuses tab.
Enter the status in the Add a new status field and click Add.

Optionally, to specify that Polyspace should consider results with this review status justified,
select the checkbox next to the Add button. See also “Address Results in Polyspace User
Interface Through Bug Fixes or Justifications” on page 22-2.

Storage of Polyspace User Interface Customizations

The software stores the settings that you specify through the Polyspace Preferences in the following
file:

* Windows: $Drive\Users\$User\AppData\Roaming\MathWorks \MATLAB\$Release
\Polyspace\polyspace.prf

* Linux®: /home/$User/.matlab/$Release/Polyspace/polyspace.prf

Here, $Drive is the drive where the operating system files are located such as C:, $User is the
username and $Release is the release number.

The following file stores the location of all installed Polyspace products across various releases:

* Windows: $Drive\Users\$User\AppData\Roaming\MathWorks\MATLAB
\polyspace shared\polyspace products.prf

* Linux: /home/$User/.matlab/polyspace shared/polyspace products.prf

2-24

Upload Results to Polyspace Access

Upload Results to Polyspace Access

Polyspace Access offers a centralized database where you can store Polyspace analysis results for
sharing and collaborative reviews. After you upload results, open the Polyspace Access user interface
to view statistics about the quality of your code and to triage and review individual results.

Polyspace assigns a unique run ID to each analysis run that you upload and increments the run ID
with each upload to any project. If you use an automation tool such as Jenkins to upload results, the
Polyspace Access run ID is not related to the tool job ID.

Note You can upload up to 2GB of results per upload to Polyspace Access.

Upload Results from Polyspace Desktop Client

Before you upload results, you must configure the Polyspace desktop client to communicate with
Polyspace Access. See “Register Polyspace Desktop User Interface”.

To upload analysis results to the Polyspace Access database from the Polyspace desktop client, select
a set of results in the Project Browser pane or open the results in the Results List pane. Go to
Access > Upload Results and follow the prompts. If you get a login request, use your Polyspace

Access login credentials.

File Rtpblting Access | Tools Window Help

& W &l [P RE Open Web Intesface

. Open Result...

Ll “| [Upload Result... 275275 +

Farly 4 Log Out jsmith 7 Fle
Rumy-time Chedt 44
i Red Chadk .

- Ghobal Varisble

" Upload result to Polyspace Access repository

Regult folder:

Project name:

Sadact upload location:

Projects

BOCEES_LISAT_Droject

& bugfinder_metrics

_Workzspace\Examples . 20 150 Code_Prover_ExampleModule_140P_Result
miyProject]

finder

Upload Cancel

You can also upload results to Polyspace Access by selecting a result in the Project Browser pane

and using the context menu.

2-25

2 Set Up Polyspace Projects on Desktop

2-26

After you upload results to Polyspace Access, if you open a local copy of the results in the desktop
interface, you cannot make changes to the Status, Severity, or comment fields. To make changes to
the Status, Severity, or comment fields, open the results from Polyspace Access by going to Access
> Open Results.

Once you save the changes you make to these fields in the desktop interface, the changes are
reflected in the Polyspace Access web interface. To create custom statuses, see “Add Custom Status
in Polyspace Access Project” on page 26-3.

Upload Results at Command Line

You can upload results from the command line only if they are generated with Polyspace Bug Finder
Server or Polyspace Code Prover™ Server.

To upload analysis results to Polyspace Access from the DOS or UNIX command line, use the
polyspace-access binary. See polyspace-access.

In the command, specify the path of the folder under which the .psbf, . pscp, or . rte results file is
stored. For instance, to upload Polyspace Bug Finder results stored in the file BF results
\ps_results.psbf, use this command:

polyspace-access %login% -upload BF results\ps results.psbf

The command uploads the results to the public folder of the Polyspace Access database and outputs
information about the upload including an ACCESS URL. You can use the URL to view the uploaded
results in the Polyspace Access interface. To upload results to a different folder, use the -parent-
project option.

Here, %l0gin% is a variable that stores the login credentials and other connection information. To
configure this variable, see “Encrypt Password and Store Login Options in a Variable”.

For faster uploads, store your analysis results in a dedicated results folder by using option -
results-dir when you run the analysis. If you store results in a folder that contains a large number
of files unrelated to Polyspace analysis results, for example the root folder of your repository,
Polyspace Access takes longer to upload the results.

Results Upload Compatibility and Permissions
Results Compatibility

You cannot upload analysis results to a Polyspace Access version that is older than the version of the
Polyspace product that generated the results. For instance, you cannot upload results generated with
a Polyspace product version R2019b to a Polyspace Access version R2019a.

If you upload results generated with a Polyspace product version R2018b or earlier, you cannot view
these results in the Polyspace Access REVIEW perspective. To review R2018b or earlier results that
you uploaded to Polyspace Access, see “Open Polyspace Access Results in a Desktop Interface” on
page 28-2.

You can upload results to an existing Polyspace Access project only if those results were generated by
the same type of analysis. For instance, you cannot upload results of a Bug Finder analysis to a
project that contains Code Prover results.

Upload Results to Polyspace Access

User Permissions for Uploaded Results

You are the project Owner for all the results that you upload. The project Owner or an
Administrator must add other users as Contributor to grant them permission to see those results,
unless you upload the results to a folder that other users already have permission to see.

Results that you upload to the public folder are visible to all Polyspace Access users. For more
information, see “Manage Project Permissions” on page 27-3.

See Also
polyspace-access

More About

. “Register Polyspace Desktop User Interface”

2-27

Run Polyspace Analysis on Desktop

3 Run Polyspace Analysis on Desktop

Run Analysis in Polyspace Desktop User Interface

3-2

This topic shows how to run an analysis in the user interface of the Polyspace desktop products.

» Ifusing the Polyspace Server products, see “Set Up Bug Finder Analysis on Servers During
Continuous Integration”.

» Ifusing Polyspace as You Code, see “Set Up Polyspace Analysis in IDEs”.

This topic describes how to run an analysis in the Polyspace user interface, monitor progress, fix
compilation issues, and open analysis results as available.

After you specify your source files and compiler on page 2-2, start the Polyspace analysis. During
analysis, Polyspace first compiles your code, and then checks for bugs (Bug Finder) or proves code
correctness (Code Prover). If you encounter compilation errors, read the error message and diagnose
the root cause of the error. To resolve the errors, you often have to set some Polyspace configuration
options and rerun the analysis.

Compilation

Errors? View Resulis

Start Analysis @ |———

Set Options

Arrange Layout of Windows for Project Setup

To set up a convenient distribution of windows, in the Polyspace user interface, select Window >
Reset Layout > Project Setup.

Run Analysis in Polyspace Desktop User Interface

» Select product.
» Start/stop analysis.

Set options as needed:

+ Target & Compiler
+ Macros
+ Environment Settings

File Reporting Metrics Tools Window Help
(5 % &l| P> run Code Prover v [stp | O

+*EO WR| L
=3 Bug_Finder_Example
& (3 Project Source Fies
[Project Inchude Folders
= 3 Module_1
&)1 Maduie Source Fies
&7 sources
=3 Configuration
[} Bug_Finder_Example
&3 Remult
|| BF_Result [Completed]

=

T|kE

|Bug_Finder_Example X

=R Target & Compiler ~ Target & Compiler
Macros
Environment Settings
Inputs & Stubbing ~
Multitasking Target Language
Coding Rules & Code Metrics Ry 7
Bug Finder Analysis
(=1~ Code Prover Verification Target Environment
Verification Assumptions
& iler L6 ~
Check Behavior o L
Precision Target processor type |x86_64 ~ | Edit
Scaling || 71 oot o0 sandacd 5
| Cutput Surmary \fe-58-ah wmgr § homedB lagangana iDocuments Polysnace_Warkspace Examples 20 171Bug_Finder_Examplel,., & R

Verification running

Bapsed time: 00:00:24
Total elapsed time: 00:00:24

» Monitor progress
Check for warnings

m— e - e . and errors.
[§7) C verification starts at Wed May 10 19:22:29 2017
o Option "-main-generatar’ is not compatible with option(s) -entr...
(1) & core(s) detected but the verification uses 4 core(s).
[& oba decrotonof pivead_gere fctanesobperco. phveadh |
yiiy other lacation for previous warming __potyspace__stdstubs.c 115490
(1) e generated default DRS XML file “drs-tempiate.sml” can be ...
Declazed function type has 'azg 1" type incompatible with defimition
Declared pointer to & type incompatible with definicion. & < SeIeCt efrror mes Sage

Declared “int’ (§4) type incompatible with defined 'pointer’ (64) type.
Definition: function with argument 1 of px r to type pointer (C-STUBS_ polyspace_stdstubs.c
Declaration: function with arqument 1 of pointer to type int (C-STUBS__polyspace_ stdstubs_c lir¥

for more details.

Set Product and Result Location

To switch products or create a separate folder for each run, select options from the drop-down list
beside the Run button. For instance, to avoid overwriting previous results each time that you run Bug
Finder and keep existing results, select Create new Bug Finder result folder.

[, i | [RunBug Finder » [Stop | (O}
I el [V Bug Finder
+ IO W R LT

EIE Bug_Finder_Example
[Project Source Files

[Project Incude Folders
=3 Module_1

Code Prover |

Create new Bug Finder result folder

Create new Code Prover result folder

[£# FRun All Modules

The results are stored in subfolders Module 1, Module 2, and so on in the project folder. To find the
physical location of the project folder, right-click a project on the Project Browser pane and select
Open Folder with File Manager.

To use a different folder naming convention or a different storage location for results, select Tools >
Preferences and use the options on the Project and Results Folder tab. See also “Create Naming
Convention for Results Folder” on page 2-23.

3-3

3 Run Polyspace Analysis on Desktop

3-4

Start and Monitor Analysis

If your project has multiple modules, select the module that you want to analyze. To start the analysis,
select Run Bug Finder or Run Code Prover. Monitor progress on the Output Summary pane.

* Bug Finder: You can see some results after partial analysis because certain defect checkers do not
need cross-functional information and can show results as soon as a function is analyzed. If results
are available while the analysis is still running, you see this icon beside the Run Bug Finder
button:

% Running (11)

The icon indicates the number of results available. To open the results, click the icon. Once the
analysis is over, the Running label in the icon changes to Completed. To reload the full set of
results, click the icon again.

* Code Prover: You can see results only after the analysis is complete. Code Prover is more likely to
report compilation errors because it does a more rigorous analysis and must follow stricter rules
for compilation. The progress bar distinguishes between the various phases of analysis starting
from compilation.

Fix Compilation Errors

If compilation errors occur, the analysis continues on the remaining files that do compile. The
Dashboard pane shows that some files did not compile and links to the Qutput Summary pane for

details. The Output Summary pane shows compilation errors with a @ icon.

For further diagnosis, select the error message for more details. Identify the line in your code
responsible for the compilation error. You can use the error message details to understand why the
line compiled with your compiler and what additional information Polyspace requires to emulate your
compiler. See if you can work around the error by using a Polyspace option. For more information, see
“Troubleshoot Compilation Errors”.

For more precise run-time error checking in Code Prover, it is recommended that you fix all
compilation errors. Use the option Stop analysis if a file does not compile (-stop-if-
compile-error).

Open Results

After analysis, the results open automatically. To open results that you have closed, double-click the
result node on the Project Browser pane.

Run Analysis in Polyspace Desktop User Interface

hf‘hll _il II .__
+AOWR|LT | BE
=7 Bug_Finder_Example
--EI Praoject Source Files
>|3 Project Indude Folders
&3 Module_1
EI_‘._='| Module Source Files
- @[sources
IHEI Configuration
% Bug_Finder_Example
&3 Result

The Bug Finder (Code Prover) results are stored in a . psbf (. pscp) file in the results folder. For
instance, if you save your project in C:\Projects\, a . psbf file for the Bug Finder analysis results
on the first module Module 1 is stored in C:\Projects\Module 1\BF Result. See also “Contents
of Polyspace Project and Results Folders” on page 2-7.

See Also

More About

. “Run Polyspace Analysis from Command Line” on page 4-2

. “Run Polyspace Analysis by Using MATLAB Scripts” on page 5-9

. “Review Polyspace Bug Finder Results in Polyspace User Interface”
. “Upload Results to Polyspace Access” on page 2-25

3 Run Polyspace Analysis on Desktop

Storage of Temporary Files During Polyspace Analysis

Polyspace produces some temporary files when performing an analysis. If your analysis runs slow or
you encounter errors such as running out of disk space, check your temporary file location. For more
information on possible errors, see:

* “Fix Polyspace Errors Related to Temporary Files” on page 32-61
* “Reduce Memory Usage and Time Taken by Polyspace Analysis” (Polyspace Code Prover)

To determine where to store temporary files, Polyspace looks for these environment variables in the
following order:

* RTE_TMP_ DIR: Define this environment variable only if you want to store Polyspace temporary
files in a folder different from the standard temporary folders (defined by TMPDIR and such). You
can see the current standard temporary folder by using the MATLAB® function tempdir.

Note This path must be an absolute path to an existing folder on which the current user has
access rights (for reading and writing).

- TMPDIR
. TMP
« TEMP

If one of these variables is defined, Polyspace uses that path for storing temporary files. If these
environment variables are not defined, Polyspace stores temporary files in:

* /tmp on Linux and Mac

* Folder specified with the USERPROFILE environment variable, folder returned from
GetWindowsDirectoryW Windows API, or Temp directory on Windows

3-6

Run Polyspace Analysis with Windows or
Linux Scripts

* “Run Polyspace Analysis from Command Line” on page 4-2
* “Modularize Polyspace Analysis by Using Build Command” on page 4-5
» “Select Files for Polyspace Analysis Using Pattern Matching” on page 4-11
“Configure Polyspace Analysis Options in User Interface and Generate Scripts” on page 4-15

4 Run Polyspace Analysis with Windows or Linux Scripts

Run Polyspace Analysis from Command Line

4-2

To run an analysis from a DOS or UNIX® command window, use the command polyspace-bug-
finder or polyspace-code-prover followed by other options you wish to use. See also:

* polyspace-bug-finder
* polyspace-code-prover

To save typing the full path to the commands, add the path polyspaceroot\polyspace\bin to the
Path environment variable on your operating system. Here, polyspaceroot is the Polyspace
installation folder, for instance, C:\Program Files\Polyspace\R2023a. See also “Installation
Folder”.

Specify Sources and Analysis Options Directly

At the Windows, Linux or Mac OS X command-line, append sources and analysis options to the
polyspace-bug-finder or polyspace-code-prover command.

For instance:
» To specify sources, use the -sources option followed by a comma-separated list of sources.
polyspace-bug-finder -sources C:\mySource\myFilel.c,C:\mySource\myFile2.c

If your current folder contains a sources subfolder with the source files, you can omit the -
sources flag. The analysis considers files in sources and all subfolders under sources.

» To specify the target processor, use the -target option. For instance, to specify the m68k
processor for your source file file.c, use the command:

polyspace-bug-finder -sources "file.c" -lang c -target m68k

* To check for violation of MISRA C™ rules, use the -misra2 option. For instance, to check for only
the required MISRA C rules on your source file file. ¢, use the command:

polyspace-bug-finder -sources "file.c" -misra2 required-rules
* To specify a results folder, use the option -results-dir.

Note that by default, the results folder is cleaned up and repopulated at each run. To avoid
accidental removal of files during the cleanup, instead of using an existing folder that contains
other files, specify a dedicated folder for the Polyspace results.

For the full list of analysis options, see:

* “Complete List of Polyspace Bug Finder Analysis Engine Options”
* “Complete List of Polyspace Code Prover Analysis Options” (Polyspace Code Prover)

For the full list of options, enter the following at the command line:
polyspace-bug-finder -help
Specify Sources and Analysis Options in Text File

Instead of specifying the options directly, you can save the options in a text file and use the text file
each time you run the analysis.

Run Polyspace Analysis from Command Line

Create an options file called listofoptions. txt with your options. For example:

#These are the options for MyCodeProverProject
-lang ¢

-prog MyCodeProverProject

-author jsmith

-sources "mymain.c,funAlgebra.c, funGeometry.c"
-target x86 64

-compiler generic

-dos

-misra2 required-rules
-do-not-generate-results-for all-headers
-main-generator

-results-dir C:\Polyspace\MyCodeProverProject

Run Polyspace using options in the file listofoptions. txt.

polyspace-code-prover -options-file listofoptions.txt

See also -options-file.

Create Options File from Build System

If you use a build command (makefile) to build your source code, you can collect the sources and
compiler options from your build command. Trace your build command to generate a text file with the
required Polyspace options.

1 Create a list of Polyspace options using the configuration tool.
polyspace-configure -output-options-file \
myOptions buildCommand
where buildCommand is the command you use to build your source code, for instance make -B.
See also polyspace-configure.
2 Run Polyspace using the options read from your build.
polyspace-bug-finder -options-file myOptions \
-results-dir myResults
In addition to the options collected from your build command, you might want to add further
options, for instance, to specify the defect checkers. You can append these options to the options
file, add them directly at the command line or add them through a second options file (using
another -options-file flag).
3 Open the results in the Polyspace user interface.
polyspace-bug-finder myResults
See Also

polyspace-configure | polyspace-bug-finder | polyspace-code-prover

More About

“Configure Polyspace Analysis Options in User Interface and Generate Scripts” on page 4-15

4-3

4 Run Polyspace Analysis with Windows or Linux Scripts

. “Modularize Polyspace Analysis by Using Build Command” on page 4-5

External Websites
. Set up Continuous Code Verification with Jenkins

4-4

https://www.mathworks.com/matlabcentral/answers/279990-how-do-i-use-polyspace-bug-finder-with-jenkins

Modularize Polyspace Analysis by Using Build Command

Modularize Polyspace Analysis by Using Build Command

To configure the Polyspace analysis, you can reuse the compilation options in your build command
such as make. First, you trace your build command with polyspace-configure (or
polyspaceConfigure in MATLAB) and create a Polyspace options file. You later specify this options
file for the subsequent Polyspace analysis.

If your build command creates several binaries, by default polyspace-configure groups the
source files for all binaries into one Polyspace options file. If binaries that use the same source files or
functions are compiled with different options, you lose this distinction in the subsequent Polyspace
analysis. The presence of the same function multiple times can lead to link errors during the
Polyspace analysis and sometimes to incorrect results.

This topic shows how to create a separate Polyspace options file for each binary created in your
makefile. Suppose that a makefile creates four binaries: two executable (target cmd1 and cmd2) and
two shared libraries (target 1iba and libb). You can create a separate Polyspace options file for
each of these binaries.

To try this example, use the files in polyspaceroot\help\toolbox\bugfinder\examples
\multiple modules. Here, polyspaceroot is the Polyspace installation folder, for instance,
C:\Program Files\Polyspace\R2023a or C:\Program Files\Polyspace Server\R2023a.

Build Source Code

Inspect the makefile. The makefile creates four binaries:

4 Run Polyspace Analysis with Windows or Linux Scripts

4-6

CC := gcc

LIBA SOURCES := $(wildcard src/liba/*.c)
LIBB SOURCES := $(wildcard src/libb/*.c)
CMD1 SOURCES := $(wildcard src/cmdl/*.c)
CMD2_SOURCES := $(wildcard src/cmd2/*.c)
LIBA OBJ := $(notdir $(LIBA SOURCES:.c=.0))
LIBB 0BJ := $(notdir $(LIBB SOURCES:.c=.0))
CMD1 0BJ := $(notdir $(CMD1 SOURCES:.c=.0))
CMD2 0BJ := $(notdir $(CMD2 SOURCES:.c=.0))
LIBB SOBJ := libb.so

LIBA SOBJ := liba.so

all: cmdl cmd2

cmdl: liba 1libb
$(CC) -0 $@ $(CMD1 SOURCES) $(LIBA SOBJ) $(LIBB SOBJ)

cmd2: libb
$(CC) -c $(CMD2_SOURCES)
$(CC) -0 $@ $(CMD2 OBJ) $(LIBB SOBJ)

liba: libb
$(CC) -fPIC -c $(LIBA SOURCES)
$(CC) -shared -o $(LIBA SOBJ) $(LIBA OBJ) $(LIBB SOBJ)

libb:
$(CC) -fPIC -c $(LIBB SOURCES)
$(CC) -shared -o $(LIBB SOBJ) $(LIBB OBJ)

.PHONY: clean
clean:
rm *.0 *.so

The binaries created have the dependencies shown in this figure. For instance, creation of the object
cmdl.o depends on all . c files in the folder cmd1 and the shared objects liba.so and libb.so

Modularize Polyspace Analysis by Using Build Command

Build your source code by using the makefile. Use the -B flag to ensure full build.

|make -B

Make sure that the build runs to completion.

Create One Polyspace Options File for Full Build

Trace the build command by using polyspace-configure. Use the option -output-options-
file to create a Polyspace options file psoptions from the build command.

polyspace-configure -output-options-file psoptions make -B

Run Bug Finder or Code Prover by using the previously created options file: Save the analysis results
in a results subfolder.

|polyspace-bug-finder -options-file psoptions -results-dir results

You see this link error (warning in Bug Finder):

|Procedure 'main' multiply defined.

4 Run Polyspace Analysis with Windows or Linux Scripts

The error occurs because the files cmd1l/cmdl _main.c and cmd2/cmd2_main.c both have a main
function. When you run your build command, the two files are used in separate targets in the
makefile. However, polyspace-configure by default creates one options file for the full build. The
Polyspace options file contains both source files resulting in conflicting definitions of the main
function.

To verify the cause of the error, open the Polyspace options file psoptions. You see these lines that
include the files with conflicting definitions of the main function.

-sources src/cmdl/cmdl main.c
-sources src/cmd2/cmd2 main.c

Create Options File for Specific Binary in Build Command

To avoid the link error, build the source code for a specific binary when tracing your build command
by using polyspace-configure.

For instance, build your source code for the binary cmdl.o. Specify the makefile target cmd1 for
make, which creates this binary.

|polyspace-configure -output-options-file psoptions -allow-overwrite make -B cmdl |

Run Bug Finder or Code Prover by using the previously created options file.

|polyspace-bug-finder -options-file psoptions -results-dir results |

The link error does not occur and the analysis runs to completion. You can open the Polyspace options
file psoptions and see that only the source files in the cmd1 subfolder and the files involved in
creating the shared objects are included with the -sources option. The source files in the cmd?2
subfolder, which are not involved in creating the binary cmdl.o, are not included in the Polyspace
options file.

Special Considerations for Libraries (Code Prover only)

If you trace the creation of a shared object from libraries, the source files extracted do not contain a
main function. In the subsequent Code Prover analysis, you can see an error because of the missing
main.

Use the Polyspace option Verify module or library (-main-generator) to generate a main
function. Specify the option in the options file that was created or directly at the command line. See
“Verify C Application Without main Function” (Polyspace Code Prover).

In C++, use these additional options for classes:

*+ (Class (-class-analyzer)
* Functions to call within the specified classes (-class-analyzer-calls)

Create One Options File Per Binary Created in Build Command

To create an options file for a specific binary created in the build command, you must know the
details of your build command. If you are not familiar with the internal details of the build command,
you can create a separate Polyspace options file for every binary created in the build command. The
approach works for binaries that are executables, shared (dynamic) libraries and static libraries.

4-8

Modularize Polyspace Analysis by Using Build Command

This approach works only if you use these compilers:
* GNU C or GNU C++

* Microsoft Visual C++

Trace the build command by using polyspace-configure.To create a separate options file for each
binary, use the option -module with polyspace-configure.

polyspace-configure -module -output-options-path optionsFilesFolder make -B

The command creates options files in the folder optionsFilesFolder. In the preceding example,
the command creates four options files for the four binaries:

* cmdl.psopts

* cmd2.psopts

* liba so.psopts

* libb so.psopts

You can run Polyspace on the code implementation of a specific binary by using the corresponding

options file. For instance, you can run Code Prover on the code implementation of the binary created
from the makefile target cmdl by using this command:

polyspace-bug-finder -options-file optionsFilesFolder\cmdl.psopts -results-dir results|

For this approach, you do not need to know the details of your build command. However, when you
create a separate options file for each binary in this way, each options file contains source files
directly involved in the binary and not through shared objects. For instance, the options file
cmdl.psopts in this example specifies only the source files in the cmd1 subfolder and not the source
files involved in creating the shared objects 1iba.so and libb. so. The subsequent analysis by
using this options file cannot access functions from the shared objects and uses function stubs
instead. In the Code Prover analysis, if you see too many orange checks due to the stubbing, use the
approach stated in the section “Create Options File for Specific Binary in Build Command” on page 4-
8.

Special Considerations for Libraries (Code Prover only)

If you trace the creation of a shared object from libraries, the source files extracted do not contain a
main function. In the subsequent Code Prover analysis, you can see an error because of the missing
main.

Use the Polyspace option Verify module or library (-main-generator) to generate a main
function. Specify the option in the options file that was created or directly at the command line. See
“Verify C Application Without main Function” (Polyspace Code Prover).

In C++, use these additional options for classes:

* (Class (-class-analyzer)
* Functions to call within the specified classes (-class-analyzer-calls)

See Also
polyspace-configure | polyspace-bug-finder | polyspace-bug-finder-server

4-9

4 Run Polyspace Analysis with Windows or Linux Scripts

More About

. “Run Polyspace Analysis from Command Line” on page 4-2
. “Create Polyspace Analysis Configuration from Build Command (Makefile)” on page 13-22

4-10

Select Files for Polyspace Analysis Using Pattern Matching

Select Files for Polyspace Analysis Using Pattern Matching

When you run static analysis using Polyspace products, the analysis covers all files specified in your
Polyspace project (or specified using -sources at the command line). Sometimes, you might want to
see results only in a subset of these files, or might want a different analysis behavior to apply to a
subset of files. You can specify a subset of files using file selection patterns. The file selection patterns
(glob patterns) use wildcards such as ? or * to cover multiple files.

When to Specify File Selection Patterns

You can select a subset of files when creating a Polyspace project or options file from your build
command, or when running static analysis using Polyspace Bug Finder.

Select Files When Setting Up Polyspace Analysis from Build Command

When you create projects by using polyspace-configure, you can include or exclude source files
whose paths match the pattern that you pass to the options -include-sources or -exclude-
sources. You can specify these two options multiple times and combine them at the command line.

This folder structure applies to these examples.

= SOUrces
= app
i T .
[g main.c
= lib
. alc
azc

EloEEiw

bic

[&f b2.c

| Makefile

To try these examples, use the demo files in polyspaceroot\help\toolbox\bugfinder
\examples\sources-select. polyspaceroot is the Polyspace installation folder.

Run this command:

polyspace-configure -allow-overwrite -include-sources "glob pattern" \
-print-excluded-sources -print-included-sources make -B

glob _pattern is the glob pattern that you use to match the paths of the files you want to include or
exclude from your project. To ensure the shell does not expand the glob patterns you pass to
polyspace-configure, enclose them in double quotes.

Select Files When Running Bug Finder Analysis

When analyzing C/C++ code with Polyspace Bug Finder, you can define file sets in your project that
need specific treatment during analysis. For instance, you might want to skip the definitions of
function bodies in third-party libraries or force analysis of all functions in files that you own. You can
enumerate file sets with specific behaviors in a classification XML file and fine-tune the Bug Finder
analysis using this classification file.

4-11

4 Run Polyspace Analysis with Windows or Linux Scripts

In the classification XML file, you can specify file patterns inside a file-pattern element (child of
fileset > files-in-setor fileset > files-not-in-set element). For instance, the
following patterns select . hpp files in subfolders of myproject/inc but excludes files ending with -
generated.

<fileset name="Application implementation and header files">
<files-in-set>
<file-pattern>myproject/inc/**/*.hpp</file-pattern>
</files-in-set>
<files-not-in-set>
<file-pattern>myproject/inc/**/*-generated.hpp</file-pattern>
</files-not-in-set>
<behaviors>
<!-- Specific behaviors for this file set -->
</behaviors>
</fileset>

To specify a classification file during static analysis, use the analysis option -classification. For
instance, you can run Bug Finder using this command:

polyspace-bug-finder -options-file myOptions.txt -classification myClassification.xml
For more information, see:

+ -classification
» “Classify Project Files Into File Sets for Precise Control of Bug Finder Analysis” on page 19-2

Supported Patterns for File Selection

In the table, the examples assume that sources is a top-level folder.

Glob Pattern Syntax Example

No special characters, slashes ('/'), or backslashes|-include-sources "main.c" matches:
(‘\").
/sources/app/main.c
Pattern matches corresponding files, but not
folders.

Pattern contains '*' or '?' special characters. |-include-sources "b?.c" matches:

'*' matches zero or more characters in file or /sources/lib/b/bl.c
folder name. .
/sources/1lib/b/b2.c

'?' matches one character in file or folder name. | . " "
-include-sources "app/*.c" matches:

The matches do not include path separators. /sources/app/main. c

Pattern starts with: -include-sources "/a" does not match
anything.

* Aslash '/' (UNIX).

« Drive letter, for example C:\ (Windows). -include-sources "/sources/app"
matches:

Pattern matches absolute path only.

/sources/app/main.c

4-12

Select Files for Polyspace Analysis Using Pattern Matching

Glob Pattern Syntax

Example

Pattern ends with:

e A sslash (UNIX).
e A backslash (Windows).
e A double asterisk (' **"')

Pattern matches all files under specified folder.

"**! isignored if it is at the start of the pattern.

-include-sources "a/" matches
/sources/lib/a/al.c

/sources/lib/a/a2.c

Pattern contains:

o '/¥%x/' (UNIX).
o '**\' (Windows).

Pattern matches zero or more folders in the
specified path.

-include-sources "lib/**/?1.c" matches:
/sources/lib/a/al.c

/sources/1lib/b/bl.c

Pattern starts with '. "' or

Pattern matches paths relative to the path where
you run the command.

If you start polyspace-configure from /
sources/lib/a,

-include-sources "../lib/**/b?.c"
matches:

/sources/lib/b/bl.c
/sources/1lib/b/b2.c

Pattern is a UNC path on Windows .

If your files are on server myServer:
\\myServer\sources\1ib\b** matches:

\\myServer\sources\1lib\b\bl.c

\\myServer\sources\lib\b\b2.c

polyspace-configure does not support these glob patterns:

* Absolute paths relative to the current drive on Windows.

For instance, \foo\bar.
* Relative paths to the current folder.

For instance, C: foo\bar.
* Extended length paths in Windows.

For instance, \\?\ foo.

* Paths that contain '.' or '..' except at the start of the pattern.

For instance, /foo/bar/../a?.c.
* The '*' character by itself.

4-13

4 Run Polyspace Analysis with Windows or Linux Scripts

See Also
-classification | polyspace-configure

More About
. “Classify Project Files Into File Sets for Precise Control of Bug Finder Analysis” on page 19-2

4-14

Configure Polyspace Analysis Options in User Interface and Generate Scripts

Configure Polyspace Analysis Options in User Interface and
Generate Scripts

In this section...

“Prerequisites” on page 4-16
“Generate Scripts from Configuration” on page 4-16
“Run Analysis with Generated Scripts” on page 4-17

If you have an installation of the desktop products, Polyspace Bug Finder and/or Polyspace Code
Prover, you can configure your project in the user interface of the desktop products. You can then
generate a script or an options file from the configuration defined in the user interface and use the
script or options file for automated runs with the desktop or server products.

| L2 Conf
Bug_Finder_Example = 4 ¢ @
.
Macros
Environment Settings
i~ Inputs & Stubbing A

Target & Compiler

- Multitasking

- Coding Standards 8 Code Metrics

1+~ Bug Finder Analysis

- Code Prover Verification
Verification Assumptions
Check Behavior
Precision
Scaling

i~ Reporting

1 Run Settings

- Advanced Settings

Target Language

Source code language | C-CPP

Cstandard version | defined-by-compiler
C++ standard version defined-by-compiler

Target Environment

Compiler generic
Target processor type 1386

[Block char15/32_t types

Compiler Behavior

[[] Civision round down
Pack alignment value defined-by-compiler

polyspace

-generate-launching-script-for Bug Finder Example.pspr] -bug-finder

l polyspace —generate-launching-script-for Code Prover Example.psrp]

—target x86 64
-c—-version cll

—compiler gnu4.6

—dos

—-sources-list-file source command.txt

Unless you create a Polyspace project from existing specifications such as a build command, when
setting up the project, you might have to perform a few trial runs first. In these trial runs, if you run
into compilation errors or unchecked code, you might have to modify your analysis configuration. It is
easier performing this initial setup in the user interface of the desktop products. The user interface
provides various features such as:

4-15

4 Run Polyspace Analysis with Windows or Linux Scripts

* Auto-generation of XML file for constraint specification.
» Context-sensitive help for options.

Prerequisites

You must have at least one license of Polyspace Bug Finder and/or Polyspace Code Prover to open the
Polyspace user interface and configure the options.

After generating the scripts, you can run the analysis using either the desktop products (Polyspace
Bug Finder and Polyspace Code Prover) or the server products (Polyspace Bug Finder Server and/or
Polyspace Code Prover Server).

Generate Scripts from Configuration

This example shows how to generate a script from a Bug Finder configuration. The same steps apply
to a Code Prover configuration.

1 Add source files to a new project in the Polyspace user interface.

Navigate to polyspaceroot\polyspace\bin, where polyspaceroot is the Polyspace
installation folder, for instance, C:\Program Files\Polyspace\R2023a. Open the Polyspace
user interface using the polyspace executable and create a new project.

See “Add Source Files for Analysis in Polyspace Desktop User Interface” on page 2-2.

2 Specify the analysis options on the Configuration pane in the Polyspace project. To open this
pane, in the project browser, click the configuration node in your Polyspace project.

See “Specify Polyspace Analysis Options” on page 12-2.
3 Run the analysis. Based on compilation errors and analysis results, modify options as needed.

See “Run Analysis in Polyspace Desktop User Interface” on page 3-2.
4 Once your analysis options are set, generate a script from the project (. psprj file).

To generate a script from the demo project, Bug Finder Example:

a Load the project. Select Help > Examples > Bug_Finder_ Example.psprj. A copy of this
project is loaded in the Examples folder in your default workspace. To find the project
location, place your cursor on the project name in the Project Browser pane.

b Navigate to the project location and enter:
polyspace -generate-launching-script-for Bug Finder Example.psprj -bug-finder
To generate Code Prover scripts, use the same command without the -bug-finder option.

If a project has more than one module (with more than one configuration in each module),
the options from the currently active configuration in the currently active module will be
extracted in the script.

These files are generated for scripting the analysis:

* source_command.txt: Lists source files. This file can be provided as argument to the -
sources-list-file option.

4-16

Configure Polyspace Analysis Options in User Interface and Generate Scripts

+ options command.txt: Lists analysis options. This file can be provided as argument to the -
options-file option.

* TlaunchingCommand.bat or launchingCommand. sh, depending on your operating system. The
file uses the polyspace-bug-finder or polyspace-code-prover executable to run the
analysis. The analysis runs on the source files listed in source command. txt and uses the
options listed in options command. txt.

Run Analysis with Generated Scripts

After configuring your analysis and generating scripts, you can use the generated files to automate
the subsequent analysis. You can automate the subsequent analysis using either the desktop or server
products.

To automate a Bug Finder analysis with the desktop product, Polyspace Bug Finder:

1 Generate scripts as mentioned in the previous section.

2 Execute the script launchingCommand.bat or launchingCommand. sh at periodic intervals or
based on predefined triggers.

To automate a Bug Finder analysis with the server product, Polyspace Bug Finder Server:

1 After specifying options in the user interface and before generating scripts, move the Polyspace
project (. psprj file) to the server where the server product is running.

2 Generate scripts as mentioned in the previous section.

The scripts refer to the server product executable instead of the desktop products.

3 Execute the script LaunchingCommand.bat or launchingCommand. sh at periodic intervals or
based on predefined triggers.

Alternatively, you can modify the script generated for the desktop product so that the server product
is executed. The script refers to the path to a desktop product executable, for instance:

"C:\Program Files\Polyspace\R2023a\polyspace\bin\polyspace-code-prover.exe"
Replace this with the path to a server product executable, for instance:

"C:\Program Files\Polyspace Server\R2023a\polyspace\bin\
polyspace-code-prover-server.exe"

Sometimes, you might want to override some of the options in the options file. For instance, the
option to specify a results folder is hardcoded in the script. You can remove this option or override it
when launching the scripts:

launchingCommand -results-dir newResultsFolder

where newResultsFolder is the new results folder. This folder can even be dynamically generated
for each run.

If you override multiple options in options command.txt, you can save the overrides in a second
options file. Modify the script LaunchingCommand.bat or launchingCommand. sh so that both
options files are used. The script uses the option -options-file to use an options file, for instance:

-options-file options command.txt

4-17

4 Run Polyspace Analysis with Windows or Linux Scripts

If you place your option overrides in a second options file overrides. txt, modify the script to
append a second -options-file option

-options-file options _command.txt -options-file overrides.txt

See Also
-generate-launching-script-for

Related Examples

. “Run Polyspace Analysis from Command Line” on page 4-2
. “Run Polyspace Bug Finder on Server and Upload Results to Web Interface”

4-18

Run Polyspace Analysis with MATLAB
Scripts

* “Integrate Polyspace with MATLAB and Simulink” on page 5-2

* “Get Started with Polyspace Analysis by Using MATLAB” on page 5-5

* “Run Polyspace Analysis by Using MATLAB Scripts” on page 5-9

* “Compare Results from Different Polyspace Runs by Using MATLAB Scripts” on page 5-13
* “Generate MATLAB Scripts from Polyspace User Interface” on page 5-16

* “Troubleshoot Polyspace Analysis from MATLAB” on page 5-18

5 Run Polyspace Analysis with MATLAB Scripts

Integrate Polyspace with MATLAB and Simulink

5-2

Polyspace Bug Finder and Polyspace Code Prover are standalone products. Install these Polyspace
products by using the MathWorks® installer. See “Install Polyspace with Other MathWorks Products”.

Polyspace products are installed in a different root folder from other MathWorks products. For
instance, in Windows:

* The default MATLAB root folder is C:\Program Files\MATLAB\R2023a.

* The default Polyspace root folder is C:\Program Files\Polyspace\R2023a.

To run Polyspace from MATLAB, Simulink, or MATLAB Coder™, perform a post-installation procedure
to integrate Polyspace with MATLAB and Simulink.

The integration process and supported MATLAB releases might be different for previous Polyspace
releases. Check the documentation of your release if you have Polyspace from an older release.

Same Release of Polyspace and MATLAB

If Polyspace and MATLAB are both from the same release, you can do the following after integrating
Polyspace and MATLAB:

* Run a Polyspace analysis on C/C++ code generated from a model or included as custom code in a
model from the Simulink Editor. You can also run these analyses using a MATLAB script. See “Bug
Finder Analysis in Simulink”.

« If you have Embedded Coder®, run a Polyspace analysis on C/C++ code that is generated from
MATLAB code by using the MATLAB Coder App. See “Bug Finder Analysis in MATLAB Coder”.

* Run a Polyspace analysis on hand-written C/C++ code by using MATLAB scripts. See “Bug Finder
Analysis with MATLAB Scripts”.

Note that the MATLAB-Polyspace integration does not make the Polyspace documentation available
within the MATLAB Help Browser. You can continue to access the Polyspace documentation online.

Prerequisite

Before you integrate Polyspace with MATLAB or Simulink from the same release, determine if your
MATLAB or Simulink is already integrated with Polyspace. See “Check Integration Between MATLAB
and Polyspace” on page 5-4.

Integrate Polyspace with MATLAB or Simulink

1 Open MATLAB with administrator or root privileges. For instance, in Windows, to open MATLAB
with administrator privilege, right-click the MATLAB executable and select Run as
administrator.

2 At the MATLAB command prompt, enter the following:
polyspacesetup('install');

If you installed Polyspace in the default folder C:\Program Files\Polyspace\R2023a, the
command integrates Polyspace with MATLAB. If a Polyspace installation is not detected at the
default location, you are prompted for the installation location. Alternatively, use:

polyspacesetup('install', 'polyspaceFolder', Folder)

Integrate Polyspace with MATLAB and Simulink

where Folder is the Polyspace installation folder. If you are prompted that the workspace will be
cleared and that all open models closed, click Yes. The process might take a few minutes to
complete. To avoid interactive prompts, enter:

polyspacesetup('install', 'polyspaceFolder', Folder, 'silent', true);
3 Restart MATLAB.

You can also perform the integration by using a script. See “Integrate Polyspace Noninteractively
with MATLAB at Command Line by Using -batch”.

Unlink and Relink MATLAB and Polyspace

You can integrate MATLAB with only one instance of Polyspace. To integrate with a different instance
of Polyspace, uninstall the current integration. At the MATLAB command prompt, enter:

polyspacesetup('uninstall')
This step uninstalls only the integration between MATLAB and Polyspace. To uninstall an instance of

Polyspace, use the MathWorks installer.

MATLAB Release Earlier Than Polyspace

You can also integrate Polyspace with MATLAB or Simulink from an earlier release. This cross-release
integration offers limited functionalities compared to the same-release integration. In a cross-release
workflow:

* You can run a Polyspace analysis of generated C/C++ code in the MATLAB Command Window.
* You cannot analyze custom code included in models or handwritten code.
* You cannot start Polyspace analyses from the Simulink Editor or MATLAB Coder App.

See “Polyspace Support of MATLAB and Simulink from Different Releases” on page 6-68.
Prerequisite
To perform a cross-release integration, these conditions must be true:

* The MATLAB or Simulink release supports cross-release integration with a Polyspace release. See
“Polyspace Support of MATLAB and Simulink from Different Releases” on page 6-68.

* MATLAB or Simulink is not already integrated with Polyspace.To determine if Polyspace is already
integrated, see “Check Integration Between MATLAB and Polyspace” on page 5-4.

Integrate Polyspace with Cross-Release MATLAB or Simulink

1 Open MATLAB.
2 At the MATLAB command prompt, enter:

polyspacesetup('install', 'polyspaceFolder', Folder)

where FOLDER is the Polyspace installation folder. If you are prompted that the workspace will be
cleared and that all open models closed, click Yes. The process might take a few minutes to
complete. To avoid interactive prompts, enter:

polyspacesetup('install', 'polyspaceFolder', Folder, 'silent',k true);

5-3

5 Run Polyspace Analysis with MATLAB Scripts

3 Restart MATLAB. This integration process does not integrate the Polyspace documentation with
the MATLAB Help Browser.

In addition to using a command line prompt, you can also perform the integration by using a script.
See “Integrate Polyspace Noninteractively with MATLAB at Command Line by Using -batch”.

You can integrate MATLAB with only one instance of Polyspace. To integrate with a different instance
of Polyspace, uninstall the current integration. At the MATLAB command prompt, enter:

polyspacesetup('uninstall')
This step uninstalls only the integration between MATLAB and Polyspace. To uninstall an instance of

Polyspace, use the MathWorks installer.

Check Integration Between MATLAB and Polyspace

To determine if MATLAB is already linked to Polyspace, open MATLAB and enter:

ver

If Polyspace is integrated with MATLAB, you see the Polyspace products in the list of installed
products.

The integration of MATLAB and Polyspace adds Polyspace installation subfolders to the MATLAB
search path. To see the added paths, enter:

polyspacesetup('showpolyspacefolders"')

See Also
polyspacesetup

More About

. “Polyspace Support of MATLAB and Simulink from Different Releases” on page 6-68

. “Bug Finder Analysis with MATLAB Scripts”

. “Bug Finder Analysis in Simulink”

. “Bug Finder Analysis in MATLAB Coder”

. “Fix Issues When when Integrating Polyspace with MATLAB and Simulink” on page 32-65

Get Started with Polyspace Analysis by Using MATLAB

Get Started with Polyspace Analysis by Using MATLAB

This tutorial shows how to analyze handwritten C/C++ code by running a Polyspace analysis from the
MATLAB Command Window or the MATLAB Editor. To analyze code generated from a Simulink
model, see “Run Polyspace Analysis on Code Generated from Simulink Model” on page 6-15.

Prerequisites

Integrate Polyspace with MATLAB before you run a Polyspace analysis from the MATLAB Command
Window. See “Integrate Polyspace with MATLAB and Simulink” on page 5-2.

Run Polyspace Analysis by Using MATLAB

You analyze handwritten C code by configuring and then starting a Polyspace analysis from the
MATLAB Command Window or the MATLAB Editor.

To perform a Polyspace analysis, create a polyspace.Project object, specify the source files and
the analysis options, and then start the analysis by using this object. To create a
polyspace.Project object, use the function polyspace.Project.

psPrj = polyspace.Project;

In this tutorial, the handwritten code in the file numerical. c is analyzed. The file numerical.c is
part of your Polyspace software. This source file and the header files required to analyze it can be
found in the folder polyspaceroot\polyspace\examples\cxx\Bug Finder Example
\sources. Here, polyspaceroot is the location of the Polyspace installation folder in your
development environment. Create the paths to these source and header files by using the function
fullfile.

% Create the Path to source and header files
sourceFile = fullfile(polyspaceroot, 'polyspace’,

'examples', 'cxx', 'Bug_Finder Example', 'sources', 'numerical.c');
includeFolder = fullfile(polyspaceroot, 'polyspace’,
‘examples', 'cxx', 'Bug_Finder Example', 'sources');

Associate the source and header files with the psPrj object.

% Associate the source and header files
psPrj.Configuration.Sources = {sourceFile};
psPrj.Configuration.EnvironmentSettings.IncludeFolders = {includeFolder};

Configure the Polyspace analysis options. For instance, you can specify the compiler for the Polyspace
analysis and check for violation of specific coding rules. You can also specify a folder where you store
the generated results. For instance, store the results in the folder 'results' in the current working
directory.

% Specify target compiler
psPrj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
% Enable Mchecking for MISRA C violation
psPrj.Configuration.CodingRulesCodeMetrics.EnableMisraC3
psPrj.Configuration.CodingRulesCodeMetrics.MisraC3Subset
% Specify results folder

psPrj.Configuration.ResultsDir = fullfile(pwd, 'results');

true;
'mandatory’';

3-5

5 Run Polyspace Analysis with MATLAB Scripts

The variable pwd contains the path of the current working directory. For details on configurable
Polyspace analysis options, see polyspace.Project.Configuration Properties.

Start the Polyspace analysis by using the function run.

start BugFinder analysis

bfStatus

= run(psPrj, 'bugFinder'");

The progress of the Polyspace analysis appears in the MATLAB Command Window. When the analysis
is successful, bfStatus is set to 0.

The Polyspace analysis result consists of a list of Bug Finder defects. To view a summary of the Bug
Finder defects in a MATLAB table, use the function getSummary. For more details about obtaining
summary of different kinds of results, see getSummary.

% Obtain
resObj =

list of Bug Finder defects
psPrj.Results;

bfSummary = getSummary(resObj, 'defects');

The Bug Finder defects are listed in the 9x4 table bfSummary.

=4 table
Category Defect Impact Total
Numerical Absorption of float operand High 1
Numerical Float conversion overflow High 1
Humerical Float division by zero High 1
Humerical Integer conversion overflow High 1
Humerical Integer division by zero High 1
Numerical Invalid use of standard library floating point routine High 1
Numerical Invalid use of standard library integer routine High 2
Humerical Sign change integer conversion overflow Medium 1
Humerical Unsigned integer conversion overflow Low 1

Frequently Used MATLAB Functions

This table lists some MATLAB functions that you can use for automating a Polyspace analysis from

the MATLAB Editor or Command Window.

Function Application

fopen Opens a file for binary read access. For instance, use this function to
read an error log file.

fclose Closes a file that was opened by using fopen. For instance, use this
function to close an error log file after reading it.

open Opens a file outside MATLAB in an appropriate application. For
instance, use this function to open psprj files in the Polyspace Ul.

Get Started with Polyspace Analysis by Using MATLAB

Function Application

exist Checks for the existence of an entity. For instance, use this function to
check if a particular folder or file already exists.

delete Deletes a file or an object. For instance, use this function to delete
older results or unnecessary options objects.

questdlg Creates a configurable dialog box. Use this function to change
different settings of a Polyspace analysis in a script. For instance, you
can choose to enable different coding rules based on the output of this
function.

clear Clears the workspace by deleting all objects. You can this function at
the beginning of the Polyspace analysis.

clc Clears all text from the MATLAB Command Window.

fullfile Builds full file names from its parts. For instance, use this function to
construct the full paths to source files.

char Converts an array to a character array. For instance, use this function
to construct the input arguments to functions that take character
arrays.

string Converts a variable into string arrays. For instance, use this function
to construct input arguments for functions that take strings.

dir Lists the content of the current working folder. For instance, use this
function to find specific files or folders in the current folder.

system Executes operating system commands and returns their outputs. For
instance, use this function to execute a command-line script without
exiting MATLAB.

disp Displays the value of the input variable. For instance, use this function
for debugging code, similar to how printf () is used in C code.

visdiff Compares two files or folder. For instance, use this function to
compare results from different Polyspace analysis to see the
difference.

ismember Determines if the elements in one array are also present in another
array. For instance, use this function to check if a checker or coding
rule is enabled in a Polyspace analysis, or to filter results to find a
specific check.

any Determines if any array elements are nonzero. For instance, use this
function to check for new results.

nnz Returns the number of nonzero matrix elements. For instance, use
this function to check for new results.

fieldnames Reads a structure, a Java object, or a Microsoft COM object and
returns the field names. For instance, use this function to read and
manipulate tables.

See Also

polyspace.Project | polyspaceBugFinder | run

5-7

5 Run Polyspace Analysis with MATLAB Scripts

Related Examples

“Run Polyspace Analysis by Using MATLAB Scripts” on page 5-9
“Visualize Bug Finder Analysis Results in MATLAB” on page 24-11
“Troubleshoot Polyspace Analysis from MATLAB” on page 5-18
“Generate MATLAB Scripts from Polyspace User Interface” on page 5-16

Run Polyspace Analysis by Using MATLAB Scripts

Run Polyspace Analysis by Using MATLAB Scripts

You can automate the analysis of your C/C++ code by using MATLAB scripts. In your script, you
specify your source files and analysis options such as compiler, run an analysis, and read the analysis
results to MATLAB tables.

For instance, use this script to run a Polyspace Bug Finder analysis on a sample file:
proj = polyspace.Project

% Specify sources and includes
sourceFile = fullfile(polyspaceroot, 'polyspace',

‘examples', 'cxx', 'Bug_Finder Example', 'sources', 'numerical.c');
includeFolder = fullfile(polyspaceroot, 'polyspace’,
‘examples', 'cxx', 'Bug_Finder Example', 'sources');

% Configure analysis

proj.Configuration.Sources = {sourceFile};
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9"';
proj.Configuration.EnvironmentSettings.IncludeFolders = {includeFolder};
proj.Configuration.ResultsDir = fullfile(pwd, 'results');

% Run analysis
bfStatus = run(proj, 'bugFinder');

% Read results
resObj = proj.Results;
bfSummary = getSummary(resObj, 'defects');

See also polyspace.Project.

Prerequisites

Before you run Polyspace from MATLAB, you must link your Polyspace and MATLAB installations. See
“Integrate Polyspace with MATLAB and Simulink” on page 5-2.

Specify Multiple Source Files

You can specify a folder containing all your source files. For instance, if proj is a
polyspace.Project, object, enter:

sourceFolder = fullfile(polyspaceroot, 'polyspace’,

‘examples', 'cxx', 'Bug_Finder Example', 'sources');
proj.Configuration.Sources = {fullfile(sourceFolder,'*")};
You can also specify multiple source folders in the cell array.

You can specify a folder that contains all your source files both directly and in subfolders. For
instance:

sourceFolder = fullfile(polyspaceroot, 'polyspace',
'examples', 'cxx', 'Bug Finder Example', 'sources');
proj.Configuration.Sources = {fullfile(sourceFolder, '**")};

If you do not want to analyze all files in a folder, you can explicitly specify which files to analyze. For
instance:

5-9

5 Run Polyspace Analysis with MATLAB Scripts

5-10

sourceFolder = fullfile(polyspaceroot, 'polyspace’,
‘examples', 'cxx', 'Bug_Finder Example', 'sources');

filel = fullfile(sourceFolder, 'numerical.c');

file2 = fullfile(sourceFolder, 'staticmemory.c');

proj.Configuration.Sources = {filel, file2};

You can explicitly exclude files from analysis. For instance:

% Specify source folder.

sourceFolder = fullfile(polyspaceroot, 'polyspace',
'examples', 'cxx', 'Bug Finder Example', 'sources');

proj.Configuration.Sources = {fullfile(sourceFolder, '**")};

% Specify files to exclude.

filel = fullfile(sourceFolder, 'security.c');

file2 = fullfile(sourceFolder, 'tainteddata.c');

proj.Configuration.InputsStubbing.DoNotGenerateResultsFor = ['custom=' filel ...
Y, file2];

However, this method of exclusion does not apply to Code Prover run-time error checking.

Check for MISRA C:2012 Violations

You can customize the Polyspace analysis to check for MISRA C:2012 rule violations.

Set options for checking MISRA C:2012 rules. Disable the regular Bug Finder analysis, which looks
for defects.

If proj is a polyspace.Project object, to run a Bug Finder analysis with all mandatory MISRA
C:2012 rules, enter:

% Enable MISRA C checking
proj.Configuration.CodingRulesCodeMetrics.EnableMisraC3
proj.Configuration.CodingRulesCodeMetrics.MisraC3Subset

true;
'mandatory’;

% Disable defect checking
proj.Configuration.BugFinderAnalysis.EnableCheckers = false;

% Run analysis
bfStatus = run(proj, 'bugFinder');

% Read summary of results

resObj = proj.Results;
misraSummary = getSummary(resObj, 'misraC2012');

Check for Specific Defects or Coding Rule Violations
Instead of the default set of defect or coding rule checkers, you can specify your own set.

If proj is a polyspace.Project object, to disable MISRA C:2012 rules 8.1 to 8.4, enter:

% Disable rules
misraRules = polyspace.CodingRulesOptions('misraC2012");

false;
false;

misraRules.Section 8 Declarations and definitions.rule 8 1
misraRules.Section 8 Declarations and definitions.rule 8 2

Run Polyspace Analysis by Using MATLAB Scripts

misraRules.Section 8 Declarations and definitions.rule 8 3 = false;
misraRules.Section 8 Declarations and definitions.rule 8 4 = false;
% Configure analysis
proj.Configuration.CodingRulesCodeMetrics.EnableMisraC3 = true;

proj.Configuration.CodingRulesCodeMetrics.MisraC3Subset = misraRules;

See also polyspace.CodingRulesOptions.

To enable Bug Finder defects, use the class polyspace.DefectsOptions. One difference between
coding rules and defects class is that coding rule checkers are enabled by default. You disable the
ones that you do not want. All defect checkers are disabled by default. You enable the ones that you
want.

You can also specify a coding standard XML file that enables coding rules from different standards.
When checking for coding rule violations, you can refer to the file. For instance, to use the template
XML file StandardsConfiguration.xml provided with the product in the subfolder polyspace
\examples\cxx\Bug Finder Example\sources, enter:
pathToTemplate = fullfile(polyspaceroot, 'polyspace', 'examples',...

"cxx', 'Bug_Finder Example', 'sources', 'StandardsConfiguration.xml');
proj.Configuration.CodingRulesCodeMetrics.EnableMisraC3 = true;
proj.Configuration.CodingRulesCodeMetrics.MisraC3Subset = 'from-file';

proj.Configuration.CodingRulesCodeMetrics.EnableCheckersSelectionByFile = true;
proj.Configuration.CodingRulesCodeMetrics.CheckersSelectionByFile = pathToTemplate;

Find Files That Do Not Compile

If one or more of your files contain a compilation error, the analysis continues with the remaining
files. You can choose to stop analysis on compilation errors.

If proj is a polyspace.Project object, to stop analysis on compilation errors, enter:
proj.Configuration.EnvironmentSettings.StopWithCompileError = true;

However, it is more convenient to let the analysis complete and capture all compilation errors from
the analysis log file. For more information, see “Troubleshoot Polyspace Analysis from MATLAB” on
page 5-18.

Run Analysis on Server

You can run an analysis on a remote server instead of your local desktop. Once you have set up
connection to a server, you can run the analysis in batch mode. For setup information, see “Install
Products for Submitting Polyspace Analysis from Desktops to Remote Server”.

Specify that the analysis must run on a server. Specify a folder on your desktop where results are
downloaded after analysis. If proj is a polyspace.Project object, to configure analysis on a
server, enter:

proj.Configuration.MergedComputingSettings.BatchBugFinder = true;
proj.Configuration.ResultsDir = fullfile(pwd, 'results');

Specify the head node that manages the Polyspace jobs:

proj.Configuration.Advanced.Additional = '-schedular nodeHost'

5-11

5 Run Polyspace Analysis with MATLAB Scripts

5-12

Run analysis as usual.

run(proj, 'bugFinder');

Open the results from the results folder location.

pslinkfun('openresults', '-resultsfolder', proj.Configuration.ResultsDir);

If the analysis is complete and the results have been downloaded, they open in the Polyspace user

interface.

See Also
polyspace.Project | polyspaceBugFinder | -scheduler

Related Examples

. “Generate MATLAB Scripts from Polyspace User Interface” on page 5-16
. “Visualize Bug Finder Analysis Results in MATLAB” on page 24-11

. “Troubleshoot Polyspace Analysis from MATLAB” on page 5-18

Compare Results from Different Polyspace Runs by Using MATLAB Scripts

Compare Results from Different Polyspace Runs by Using
MATLAB Scripts

This topic shows how to run Polyspace by using MATLAB scripts, save each result in a separate
folder, and see only new or unreviewed results compared to the last run.

If your project consists of legacy code, it is often beneficial to run a preliminary analysis. In the
subsequent runs, you can focus only on results related to newly added code.

Review Only New Results Compared to Last Run

To see only new results, specify that the current run must import results and comments from the
results folder of the last run.

This script saves results of each Polyspace run in a separate folder and compares each result set with
the result set from the previous run.
* The first time you run the script, all results are new and stored in the variable newResTable.

» If you run the script a second time without modifying the files in between, there are no new
results. The variable newResTable contains an empty table and an appropriate message is
displayed.

If you modify files in between two runs, the variable newResTable contains only results related to
the modifications.

proj = polyspace.Project;

% Specify sources and includes
sourceFile = fullfile(polyspaceroot, 'polyspace’,

‘examples', 'cxx', 'Bug _Finder Example', 'sources', 'numerical.c');
includeFolder = fullfile(polyspaceroot, 'polyspace',
'examples', 'cxx', 'Bug_Finder Example', 'sources');

% Create results folder name based on time of analysis
runTime = datetime('now','Format',"d MMM y H'h' m'm'");
resultsFolder = ['results ', char(runTime)];

% Configure analysis

proj.Configuration.Sources = {sourceFile};
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.EnvironmentSettings.IncludeFolders = {includeFolder};
proj.Configuration.ResultsDir = fullfile(pwd, resultsFolder);

% Set up import from previous results if a previous result folder exists
if isfile('lastResultFolder.mat"')
load('lastResultFolder.mat', 'lastResultsFolder');
proj.Configuration.ImportComments = fullfile(pwd, lastResultsFolder);
end
lastResultsFolder = resultsFolder;
save('lastResultFolder.mat', 'lastResultsFolder');

% Run analysis
bfStatus = run(proj, 'bugFinder');

5-13

5 Run Polyspace Analysis with MATLAB Scripts

% Read results
resObj = proj.Results;
resTable = getResults(resObj);
matches = (resTable.New == 'yes');
newResTable = resTable(matches ,:);
if isempty(newResTable)

disp('There are no new results."')
end

The key functions used in this example are:
* polyspace.Project: Run a Polyspace analysis and read the results to a table.

* To specify a results folder, use the property Configuration.ResultsDir.

* To specify a previous results folder to import results from, use the property
Configuration.ImportComments.

* datetime: Read the current time, convert to an appropriate format, and append it to the results
folder name.

* load and save: Load the previous results folder name from a MAT-file lastResultFolder.mat
and save the current results folder name to the MAT-file for subsequent runs.

Review New Results and Unreviewed Results from Last Run

Instead of focusing on new results only, you can choose to focus on unreviewed results. Unreviewed
results include new results and results from the last run that were not assigned a status in the
Polyspace user interface.

To focus on unreviewed results, replace this section of the previous script:

% Read results
resObj = proj.Results;
resTable = getResults(resObj);
matches = (resTable.New == 'yes');
newResTable = resTable(matches ,:);
if isempty(newResTable)

disp('There are no new results."')
end

with this section:

% Read results
resObj = proj.Results;
resTable = getResults(res0Obj);
matches = (resTable.Status == 'Unreviewed');
unrevResTable = resTable(matches ,:);
if isempty(unrevResTable)
disp('There are no unreviewed results.')
end

See Also
polyspace.Project | datetime | load | save

5-14

Compare Results from Different Polyspace Runs by Using MATLAB Scripts

More About
. “Run Polyspace Analysis by Using MATLAB Scripts” on page 5-9

5-15

5 Run Polyspace Analysis with MATLAB Scripts

Generate MATLAB Scripts from Polyspace User Interface

You can specify analysis options in the Polyspace user interface and later generate a MATLAB script
for easier reuse of those options.

In the user interface, to determine which options to specify, you have tooltips, autocompletion of
function names, context-sensitive help and so on. After you specify the options, you can generate a
MATLAB script. For subsequent analyses, you can modify and run the script without opening the
Polyspace user interface.

Prerequisites

Before you run Polyspace from MATLAB, you must link your Polyspace and MATLAB installations. See
“Integrate Polyspace with MATLAB and Simulink” on page 5-2.

Create Scripts from Polyspace Projects

To start an analysis in the Polyspace user interface, create a project. In the project:

* You specify source and include folders during project creation.

* You specify analysis options such as compiler or multitasking in your project configuration. You
also enable or disable checkers.

From this project, you can generate a script that contains your sources, includes and other analysis
options. To begin, select File > New Project. For details, see “Add Source Files for Analysis in
Polyspace Desktop User Interface” on page 2-2.

This example uses a sample project. To open the project, select Help > Examples >
Code_Prover_Example.psprj. You see the options in the project configuration. For instance, on the
Target & Compiler node, you see a generic compiler and an 1386 processor.

_

{Code Prover Example i 4 [B

- Trget & Compiler 1 Ta rget & Compiler

- Macros

“ Environment Settings
Inputs & Stubbing Py
Multitasking
Coding Rules & Code Metrics
Bug Finder Analysis

Target Language

Source code language | C w

Target Environment

[l Code Prover Verification
Verification Assumptions

: . Compiler generic w
Check Behavior
> Precizion Target processor type 1386 w | Edit
-+ Sealing [] respect €80 standard
----- Reporting "

1 Open MATLAB.

5-16

Generate MATLAB Scripts from Polyspace User Interface

2 Create a polyspace.Options object from the sample Polyspace project.

projectFile = fullfile(polyspaceroot, 'polyspace', 'examples', 'cxx',
'Code Prover Example', 'Code Prover Example.psprj');
opts = polyspace.loadProject(projectFile);

If a project has more than one module (with more than one configuration in each module), the
options from the currently active configuration in the currently active module will be extracted in
the options object. You cannot use the LoadProject method on a project file that is created
from a build command by using polyspace-configure.

3 Append the object to a MATLAB script.

filePath = opts.toScript('runPolyspace.m', 'append');

Open the script runPolyspace.m. You see the options that you specified from the user interface.
For instance, you see the compiler and target processor.

opts.TargetCompiler.Compiler = 'generic';
opts.TargetCompiler.Target = 'i386"';

Later, you can run the script to create a polyspace.Options object.

run(filePath);

The preceding example converts the sample project Code Prover Example directly to a script.
When you open the sample project in the user interface, a copy is loaded into your Polyspace
workspace. If you make changes to the sample project, the changes are made to the copied version.
To see the changes in your MATLAB script, provide the copied project path to the LoadProject
method. To see the location of your workspace, select Tools > Preferences and view the Project
and Results Folder tab.

See Also

Related Examples
. “Run Polyspace Analysis by Using MATLAB Scripts” on page 5-9

5-17

5 Run Polyspace Analysis with MATLAB Scripts

Troubleshoot Polyspace Analysis from MATLAB

When you run a Polyspace analysis on your C/C++ code, if one or more of your files fail to compile,
the analysis continues with the remaining files. You can choose to stop the analysis on compilation
erTors.

proj = polyspace.Project;
proj.Configuration.EnvironmentSettings.StopWithCompileError = true;

However, it is more convenient to let the analysis complete and capture all compilation errors.

The compilation errors are displayed in the analysis log that appears on the MATLAB command
window. The analysis log also contains the options used and the various stages of analysis. The lines
that indicate errors begin with the Error: string. Find these lines and extract them to a log file for
easier scanning. Produce a warning to indicate that compilation errors occurred.

Prerequisites

Before you run Polyspace from MATLAB, you must link your Polyspace and MATLAB installations. See
“Integrate Polyspace with MATLAB and Simulink” on page 5-2.

Capture Polyspace Analysis Errors in Error Log

The function runPolyspace defined later captures the output from the command window using the
evalc function and stores lines starting with Error: in a file error. 1og. You can call
runPolyspace with paths to your source and include folders.

For instance, you can call the function with paths to demo source files in the subfolder polyspace/
examples/cxx/Bug_Finder Example/sources of the MATLAB installation folder.

sourcePath = fullfile(polyspaceroot, 'polyspace’,

‘examples', 'cxx', 'Bug_Finder Example', 'sources');
includePath = fullfile(polyspaceroot, 'polyspace’,
‘examples', 'cxx', 'Bug_Finder Example', 'sources');

[status, resultsSummary] = runPolyspace(sourcePath, includePath);
The function is defined as follows.

function [status, resultsSummary] = runPolyspace(sourcePath, libPath)
% runPolyspace takes two string arguments: source and include folder.
The files in the source folder are analyzed for defects.

If one or more files fail to compile, the errors are saved in a log.
A warning on the screen indicates that compilation errors occurred.

o° o o°

proj = polyspace.Project;

% Specify sources
proj.Configuration.Sources = {fullfile(sourcePath,'*')};

% Specify compiler and paths to libraries
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.EnvironmentSettings.IncludeFolders = {fullfile(libPath,'*")};

% Run analysis

5-18

Troubleshoot Polyspace Analysis from MATLAB

end

runMode = 'bugFinder';
[LogFileContent,status] = evalc('run(proj, runMode)');

% Open file for writing errors
errorFile = fopen('error.log', 'wt+');

% Check log file for compilation errors
numgrrors = 0;

log = strsplit(logFileContent, '\n');
errorLines = find(contains(log, {'Error:'}, 'IgnoreCase', true));
for ii=1:numel(errorLines)
fprintf(errorFile, '%s\n', log{errorLines(ii)});
numErrors = numErrors + 1;
end

if numErrors

warning('%sd compilation error(s). See error.log for details.', numErrors);
end

fclose(errorFile);
% Read results

resObj = proj.Results;
resultsSummary = getSummary(resObj, 'defects');

The analysis log is also captured in a file Polyspace R20##n ProjectName date-time.log.
Instead of capturing the output from the command window, you can search this file.

You can adapt this script for other purposes. For instance, you can capture warnings in addition to
errors. The lines with warnings begin with Warning:. The warnings indicate situations where the
analysis proceeds despite an issue. The analysis makes an assumption to work around the issue. If the
assumption is incorrect, you can see errors later or in rare cases, incorrect analysis results.

See Also
polyspace.Project

Related Examples

“Run Polyspace Analysis by Using MATLAB Scripts” on page 5-9
“Troubleshoot Compilation Errors”

5-19

Run Polyspace Analysis in Simulink

6 Run Polyspace Analysis in Simulink

Run Polyspace Analysis on Code Generated with Embedded
Coder

6-2

If you generate code from a Simulink model by using Embedded Coder or TargetLink®, you can
analyze the generated code for bugs or run-time errors with Polyspace from within the Simulink
environment. You do not have to manually set up a Polyspace project.

This topic uses Embedded Coder for code generation. For analysis of TargetLink-generated code, see
“Run Polyspace Analysis on Code Generated with TargetLink” on page 6-62.

For a tutorial with a specific model, see “Run Polyspace Analysis on Code Generated from Simulink
Model” on page 6-15.

You might want to analyze the generated code outside Simulink with other handwritten code. In this
workflow, extract the Polyspace options and run the analysis , for instance, from the Windows
Command Line. See “Run Polyspace Analysis on Generated Code by Using Packaged Options Files”
on page 6-29. For older releases, Polyspace supports navigating from the generated code back to
model. See “Navigate Back to Model” on page 6-71.

Prerequisites

Before you run Polyspace from Simulink, you must link your Polyspace and MATLAB installations. See
“Integrate Polyspace with MATLAB and Simulink” on page 5-2.

Generate and Analyze Code

Configure code

Configure code
. Generate code > g .
generation analysis

¥

h 4

Analyze code

Configure Code Generation and Generate Code

To configure code generation and generate code from a model, do one of the following:

* On the Apps tab, select Embedded Coder. Then, on the C Code tab, select Quick Start. Follow
the on-screen instructions.

* On the C Code tab, click Settings and configure code generation through Simulink configuration
parameters. The chief parameters to set are:
* Type (Simulink): Select Fixed-step.

* Solver (Simulink): Select auto (Automatic solver selection) or Discrete (no continuous
states).

+ System target file (Simulink Coder): Enter ert.tlc or autosar.tlc. If you derive target files
from ert.tlc, you can also specify them.

* Code-to-model (Embedded Coder): Select this option to enable links from code to model.

Run Polyspace Analysis on Code Generated with Embedded Coder

For the full list of parameters to set, see “Recommended Model Configuration Parameters for
Polyspace Analysis” on page 6-51.

Alternatively, run the Code Generation Advisor with the objective Polyspace and see if the
required parameters are already set. See “Configure Model for Code Generation Objectives by
Using Code Generation Advisor” (Embedded Coder).

To generate code from the model, on the C Code tab, select Generate Code. You can follow the
progress of code generation in the Diagnostic Viewer.

Configure Code Analysis

On the Apps tab, select Polyspace Code Verifier. On the Polyspace tab:

1 Select the product to run: Bug Finder or Code Prover. A Code Prover analysis detects run-time
errors while a Bug Finder analysis detects coding defects and coding rule violations.

2 Select Settings. If needed, change default values of these options.
* Settings from: Enable checking of MISRA™ coding rules in addition to the default checks

specified in the project configuration. The default Bug Finder checks look for coding defects.
The default Code Prover checks look for run-time errors.

* “Input”, “Tunable parameters” and “Output”: Constrain inputs, tunable parameters, or
outputs for a more precise Code Prover analysis.

* “Output folder”: Specify a dedicated folder for results. The default analysis saves the results
in a folder results_modelName in the current working folder.

* “Open results automatically after verification”
Analyze Code

To analyze the code generated from the model, click anywhere on the canvas. The Analyze Code
from field shows the model name. Select Run Analysis.

Analyze Code from [/)
olyspace_cont r_de

|pJpaE_or::ue_ o |i| R un

Code Generated as Top Model - Analysis

AMALYZE

When using Embedded Coder, Polyspace checks for generated code when you click Run Analysis. If
no generated code is present or if the model has changed since the last Polyspace analysis, Polyspace
first launches the code generation process and then starts the analysis.

If the current model is referenced in another model and you want to verify the generated code in the
context where the model is referenced, instead of Code Generated as Top Model, use Code
Generated as Model Reference. In the latter case, Polyspace does not launch code generation
automatically if there's no generated code. When analyzing Code Generated as Model Reference,
generate code before running the Polyspace analysis.

You can follow the progress of the analysis in the MATLAB Command Window.

The results open automatically unless explicitly disabled. By default, the results are saved in a folder
results ModelName in the current folder. Each new run overwrites previous results. You can

6-3

6 Run Polyspace Analysis in Simulink

change the default folders or save the results to a Simulink project. To make these changes, on the
Polyspace tab, select Settings.

If you have closed the results and want to open them later, on the Polyspace tab, select Analysis
Results. To open a result prior to the last run, select Open Earlier Results and navigate to the
folder containing the previous results.

Review Analysis Results

f* Sum: "<56>/Sum' incorporates:
* UnitDelay: '«<S56>/Unit Delay'
Y

’) Code with

S5um = (intlé T) (in_pressure - psdemo model link s]1 DWork.UnitDelay DSTATE b)r—— p R
e —— possible overflow
(orange)

e Block
CO— [> »| responsible for

faultl Code

nt16

._1_. ki
.

sfx16_E1 nt16
-
GO———s faul

Review Results in Code

The results appear in the Polyspace user interface on the Results List pane. Click each result to see
the source code on the Source pane and details on the Result Details pane. See also:

* “Interpret Bug Finder Results in Polyspace Desktop User Interface” on page 21-2

* “Bug Finder Defect Groups” on page 18-43

* “Address Results in Polyspace User Interface Through Bug Fixes or Justifications” on page 22-2

« “Filter and Group Results in Polyspace Desktop User Interface” on page 23-2

Navigate from Code to Model

Links in code comments show blocks that generate the subsequent lines of code. To see the blocks in
the model, click the block names in the links. If you encounter issues, see “Troubleshoot Navigation
from Code to Model” on page 6-66.

Alternatively, you can right-click a variable name and select Go to Model. This option is not available
for all variables. Only a subset of source code variables can be directly traced to a Simulink block.

6-4

Run Polyspace Analysis on Code Generated with Embedded Coder

The Go to Model options is available for such a variable. For more details on which variables in
generated code can be traced to Simulink blocks, see “Trace Simulink Model Elements in Generated
Code” (Embedded Coder).

Fix Issue
Investigate whether the issues in your code are related to design flaws in the model.
Design flaws in the model can lead to issues in the generated code. For instance:

* The generated code might be free of specific run-time errors only for a certain range of a block
parameter. To fix this issue, you can change the storage class of that block parameter or use
calibration data for the analysis by using the configuration parameter “Tunable parameters”.

* The generated code might be free of specific run-time errors only for a certain range of inputs. To
determine this error-free range, you can specify a minimum and maximum value for the Inport
block signals. The Polyspace analysis uses this constrained range. See “Work with Signal Ranges
in Blocks” (Simulink).

* Certain transitions in Stateflow® charts can be unreachable.

You might integrate the generated code with handwritten code. A Polyspace analysis can detect
coding defects and coding rule violations stemming from the integration. If you include any
handwritten code in your Simulink model, you can analyze the included handwritten code in isolation.
See:

* “Run Polyspace Analysis on Custom Code in C Function Block” on page 6-45

* “Run Polyspace Analysis on Custom Code in C Caller Blocks and Stateflow Charts” on page 6-37

* “Run Polyspace Analysis on S-Function Code” on page 6-35

Annotate Blocks to Justify Issues
You might want to justify some Polyspace results without modifying the code or the model. Annotate

Simulink blocks either from the Polyspace user interface or the Simulink editor. See “Address
Polyspace Results by Annotating Simulink Blocks” on page 6-6.

See Also

More About
. “Configure Polyspace Options in Simulink” on page 6-53

6 Run Polyspace Analysis in Simulink

Address Polyspace Results by Annotating Simulink Blocks

When reviewing Polyspace results, you might want to address known Polyspace results by adding
justifications. Annotate the relevant Simulink blocks with the justification in the Simulink Editor or
the Polyspace User Interface. Polyspace supports annotating these results:

* Code Prover run-time error checks. See “Run-Time Checks” (Polyspace Code Prover).

* Bug Finder defects. See “Defects”.

* MISRA C:2004, MISRA AC AGC, and MISRA C:2012 coding rules. See “MISRA C:2004 Rules” and
“MISRA C:2012 Directives and Rules”.

* MISRA C++:2008 coding rules. See “MISRA C++:2008 Rules”.

* CERT C and C++ rules. See “CERT C Rules and Recommendations” and “CERT C++ Rules”.
* AUTOSAR C++14 rules. See “AUTOSAR C++14 Rules”.

* IS0O-17961 rules. See “ISO/IEC TS 17961 Rules”.

* Custom naming convention rules. See “Custom Coding Rules”.

* Software complexity guidelines. See “Guidelines”.

After you annotate a block, code operations generated from the block show results that are
prepopulated with your comments. If you annotate a subsystem block or a block that leads to a
function call, code operations generated from the block do not show your comments in the analysis
results. If the block is a Lookup Table, enable the Stub lookup tables instead of using
annotations. See Stub lookup tables

In code generated by using Embedded Coder, there are known deviations from MISRA C:2012. See
“Deviations Rationale for MISRA C:2012 Compliance” (Embedded Coder). Justify these known issues
by annotating blocks.

Annotations in Simulink blocks or in generated code do not take the history of the analysis into
account. If you update your model, the Polyspace results might change while the annotations do not.
Updating the model might render the existing annotations outdated. Update your annotations when
you update your model or generated code.

Annotate Blocks Through Polyspace User Interface

If you use Embedded Coder to generate code, you can annotate Simulink blocks directly through the
Polyspace UI. Locate the issue that you want to annotate, and then enter review information by
adding Severity, Status, and optional notes in the Result Details pane. For instance:

* Set the Status of the issue to To Investigate
* Set the Comment for the issue to Might Impact "Module"

In the source code, right-click the variable showing the issue (or another variable in the same
expression) and from the context menu, select Annotate Block.

6-6

Address Polyspace Results by Annotating Simulink Blocks

J psdemo_model_link_slc x |

/% S-Functicn (Command Strategy): "<52>/Command Strategy' %/

in battery info):

/¥ Gain: '"<56>/Gain" incorporates:
¥ Sum: "<5&6>/5uml’

ke
I Gain = (intlé_T) {{{intlé_T) {(in rotation + ip batterv infod =o 1) * I4578) o>
10); Ié Print Source Code: psdemo_model_link_sl.c
L Search For "in_rotation" in Current Source File Ctrl+F
* PR s o5 - |
/% Sum: TeS€s/Sum’ INCOrporates: (. Search For "in_rotation” in All Source Files
¥ TUnitDelay: '<58>/Unit Delay’)))
‘. Select Results At This Location (Ctrl+ Click)
Sum = (intlé_T) {in_pressurs - psden Search For All References
Go To Definition
/% Switch: '<57>/Switch' */ Go To Line Chrl+L
; in rars =
i1f (o _zate 3= 0) 1 #3 Go To Model
Etk Switch = in kattery infoj
| elae [1 Annotate Block |
rth Switch = in rate: o Show Call { Annotates the corresponding block in Madel |
} Show In Variable Access View
= Open Editor

¥ End of Switch: "<37>/Switch" *
/% End of Swi STl owdreht Add Pre-Justification To Clipboard

/% Sum: '<510%/Sum2' incorporates: | M Bxpand All Macros
¥ TUnitDelay: '<310>/Unit Delay’ 1 Cellapse All Macros

Create Duplicate Code Window
tomp = rth Switch - pademo model line———wo=mr——=—e—=or——=——=——=v

The review information carries over to the Simulink Editor as block annotation where the annotated
block is highlighted.

Wi

Polyspace annotation

You can annotate a Simulink block multiple times. Subsequent annotations on a block are appended
to previous annotations. These annotations cannot be seen in the Simulink Editor. When you analyze
the generated code by using Polyspace, these annotations are displayed as review information in the
Result details pane of the Polyspace UL

6 Run Polyspace Analysis in Simulink

6-8

The option Annotate Block is available for code elements that can be traced to a Simulink block. For
more information, see “Trace Simulink Model Elements in Generated Code” (Embedded Coder).

Annotate Blocks in Simulink Editor

To annotate a block in the Simulink Editor, select the block and on the Polyspace tab, select Add
Annotation. In the Polyspace Annotation window:

* Select the type of Polyspace result that you want to annotate from the drop-down list Annotation
Type.

+ Ifyou want to annotate multiple results of the same type, enter a comma-separated list of result
acronyms in the text box. See:

* “Short Names of Bug Finder Defect Groups and Defect Checkers” on page 30-11
* “Short Names of Code Prover Run-Time Checks” (Polyspace Code Prover)

+ Ifyou want to annotate only one result, select Only 1 check. The text box is converted into a
dropdown list. Select the result that you want to annotate from this dropdown list.

* In the corresponding text boxes, enter the status, severity, and comment that you want to assign
to the results.

In the Polyspace Annotation window, you can annotate a single type of Polyspace result at a time.
To annotate multiple types of results, open the Polyspace Annotation window multiple times. Each
time, add an annotation corresponding to one type of Polyspace result. The different annotations are
appended to each other. These annotations cannot be seen in the Simulink Editor. When you analyze
the generated code by using Polyspace, these annotations are displayed as review information in the
Result details pane of the Polyspace UI.

Sometimes operations in the generated code cause orange checks in Code Prover. Suppose an
operation potentially overflows. The generated code protects against the overflow by following the
operation with a saturation. Polyspace still flags the possible overflow as an orange check. To justify
these checks through code comments, specify the configuration parameter Operator annotations
(Embedded Coder).

Limitations

When you copy an annotated block, and then use it in a different model or in a different position in
the same model, the changed context can render the annotation incorrect:

* Polyspace does not allow annotation in blocks inside libraries and nonatomic subsystems because
these blocks are reused in many different contexts. For instance, you cannot annotate a block
inside a library block and justify results on all instances of the library block.

+ Simulink does not retain Polyspace annotations in blocks that are copied to a different model or in
a different position in the same model.

See Also

More About
. “Configure Polyspace Options in Simulink” on page 6-53

Changes in Polyspace Analysis Workflows in Simulink in R2019b

Changes in Polyspace Analysis Workflows in Simulink in
R2019b

In R2019b, a toolstrip with contextual buttons replaces the menus and toolbars in the Simulink
Editor. The Simulink toolstrip includes contextual tabs, which appear only when you need them.

Code generation and verification tasks appear in separate tabs on the Simulink toolstrip.

* To generate code, open the C Code tab. To access this tab, on the Apps tab, select Embedded
Coder.

» To analyze the generated code, open the Polyspace tab. To access this tab, on the Apps tab,
select Polyspace Code Verifier.

SIMULATION POLYSPACE X
—] Analyze Code from L> =
8 T
Code Settings B2 TAET U Run Analysis Open Earlier Code Remove
Frover = bt Code Generated as Top Model Analysis Results Results Quality ... Highlighting
MODE PREPARE AMALYZE REVIEW RESULTS

Code Verification Workflow in a Nutshell

After code generation, on the Polyspace tab, use these steps to perform code verification:

1 Select product to run:

For instance, select Bug Finder.
2 Specify code analysis options:
Optionally, configure code analysis options. To configure the basic options related to the model,

select Settings > Polyspace Settings. To configure advanced options related to the generated
code, select Settings > Project Settings.

3 Specify which code to analyze:

Select whether to analyze the code generated for standalone use (typically, in the
modelname ert rtw folder), the code generated for referencing in another context (typically, in
the slprj folder), or the custom code called from C Caller blocks or Stateflow charts.

4 Run analysis:
To start an analysis, select Run Analysis. The analysis runs on the model element selected,
provided code has been generated earlier from the same element. The selected element appears

in the Analyze Code from field. To select the entire model, click anywhere on the canvas outside
a model element.

Locate Pre-R2019b Menu Items in Simulink Toolstrip

All menu items available earlier in the submenu Code > Polyspace now appear on the Polyspace
tab.

6-9

6 Run Polyspace Analysis in Simulink

6-10

Task

Before R2019b in Code >
Polyspace menu

R2019b on Polyspace tab

Specify a Bug Finder analysis.

Select Options. Specify Bug
Finder for the configuration
parameter Product mode.

In the Mode group, select Bug
Finder.

Run analysis on code generated
from the model as standalone
code.

Typically, the analysis runs on
the generated code in the
modelname_ert rtw folder.

Select Verify Code Generated
for > Model.

Click anywhere on the canvas
outside a model element. In the
toolstrip, the Analyze Code
from field displays the model
name. Below the field, select
Code Generated as Top
Model. Then, select Run
Analysis.

Run analysis on code generated
from the model for reference in
other models

Typically, the analysis runs on
the generated code in the
slprj folder.

Select Verify Code Generated
for > Referenced Model.

Click anywhere on the canvas
outside a model element. In the
toolstrip, the Analyze Code
from field displays the model
name. Below the field, select
Code Generated as Model
Reference. Then, select Run
Analysis.

Configure basic analysis options
related to the model.

Select Options.

Select Settings > Polyspace
Settings.

Configure advanced analysis
options related to the generated
code.

Select Options. Click the
Configure button next to the
configuration parameter
Project Configuration.

Select Settings > Project
Settings.

Detach Polyspace options from
model configuration for sharing
with others who do not have
Polyspace.

Select Remove Options from
Current Configuration.

Select Settings > Remove
Polyspace Configuration from
Model.

Open results from the last
Polyspace analysis on the
model.

Select Open Results > For
Generated Code or Open
Results > For Generated
Model Referenced Code.

Make sure that the Analyze
Code from field states the
model name (otherwise select
anywhere on the canvas outside
a model element). Below this
field, select one of Code
Generated as Top Model or
Code Generated as Model
Reference. Then, select
Analysis Results.

Changes in Polyspace Analysis Workflows in Simulink in R2019b

Task

Before R2019b in Code >
Polyspace menu

R2019b on Polyspace tab

Open remote job monitor (if you
are offloading the analysis to a
server).

Select Open Job Monitor.

For remote analysis, you must
first set up communication with
a server by using Polyspace
preferences. See “Install
Products for Submitting
Polyspace Analysis from
Desktops to Remote Server”.

In the Review Results group,
select Remote Job Monitor.

For remote analysis, you must
first set up communication with
a server by using Polyspace
preferences. See “Install
Products for Submitting
Polyspace Analysis from
Desktops to Remote Server”.

Open Polyspace Metrics or
Polyspace Access web interface
if you are using one of them to
host Polyspace results.

Note Polyspace Metrics is
removed in R2021b and later
releases.

Select Open Metrics.

For opening a web interface,
you must first specify the
hostname and port number used
for the web server in Polyspace
preferences.

In the Review Results group,
select Code Quality Metrics
(Polyspace Metrics) or Access
(Polyspace Access).

For opening a web interface,
you must first specify the
hostname and port number used
for the web server in Polyspace
preferences.

See Also

More About

. “Run Polyspace Analysis on Code Generated with Embedded Coder” on page 6-2

6-11

6 Run Polyspace Analysis in Simulink

Run Polyspace on Code Generated by Using Previous Releases
of Simulink

6-12

You can use a more recent release of Polyspace without changing your Simulink release. See
“Polyspace Support of MATLAB and Simulink from Different Releases” on page 6-68.

In such a cross-release configuration, use the function pslinkrunCrossRelease to run a Polyspace
analysis on the code generated by using Embedded Coder. If you use Polyspace and Simulink from the
same release, see “Run Polyspace Analysis on Code Generated from Simulink Model” on page 6-15.

Prerequisite

When starting a Polyspace analysis from a different release of MATLAB or Simulink:

* The Polyspace release must be more recent compared to your Simulink release.
* Your Simulink release must be R2020b or later.

* You must integrate Polyspace with Simulink. See “Integrate Polyspace with MATLAB and
Simulink” on page 5-2.

This cross-release configuration does not support analyzing the custom code in your Simulink model.

Run a Cross-Release Polyspace Analysis

To run a Polyspace analysis of code generated by using an earlier release of Simulink, generate code
archive from the Simulink model and then call the function pslinkrunCrossRelease. Create and
customize a pslinkoptions object to modify the model configuration. For a list of configuration
options that you can modify, see pslinkrunCrossRelease. To apply Polyspace analysis options, use
an options file.

1 Open the Simulink model rtwdemo roll and configure the model for code generation. See
“Recommended Model Configuration Parameters for Polyspace Analysis” on page 6-51.

% Load the model

model = 'rtwdemo roll';

load system(model);

% Configure the Solver

configSet = getActiveConfigSet(model);

set param(configSet, 'Solver', 'FixedStepDiscrete');
set param(configSet, 'SystemTargetFile', 'ert.tlc');

2 The cross-release analysis requires packaging the generated code into a code archive. Set the
option PackageGeneratedCodeAndArtifacts to true.
set param(configSet, 'PackageGeneratedCodeAndArtifacts', true)

3 Create temporary folders for code generation and generate code.

[TEMPDIR, CGDIR] = rtwdemodir();
slbuild(model);

Alternatively, create a folder in a writable location and set your MATLAB directory to the created
folder.

mkdir CodeGenFolder;
cd CodeGenFolder;

Run Polyspace on Code Generated by Using Previous Releases of Simulink

To specify the model configuration for the Polyspace analysis, use a pslinkoptions object. To
run a Polyspace Bug Finder analysis, set psOpt.VerificationMode to 'BugFinder’.

% Create a Polyspace options object from the model.
psOpts = pslinkoptions(model);

% Set properties that define the Polyspace analysis.
psOpts.VerificationMode = 'BugFinder’;

Alternatively, set psOpt.VerificationMode to 'CodeProver' to run a Polyspace Code Prover
analysis.

To specify Polyspace analysis options, create an options file. An options file is a text file that
contains Polyspace options in a flat list, one line for each option. For instance, to enable all
checkers and CERT C coding rules, create a text file in the current folder containing the
corresponding options.

% Create Options file

optFile = 'Options.txt"';

fid = fopen(optFile, 'wt');

optionl = '-checkers all';

option2 = '-cert-c all’';

fprintf(fid, '%s\n%s', optionl, option2);
fclose(fid);

See “Complete List of Polyspace Bug Finder Analysis Engine Options”.

Start a Polyspace analysis.

* To specify the model configurations for the Polyspace analysis run, set the object psOpt as
the optional second argument in pslinkrunCrossRelease.

* Because the code is generated as standalone code, set the third argument asModelRef to
false.

» To specify the Polyspace analysis options, specify the relative path to the created options file
as the fourth argument.

% Locate options file in the current folder

optionsPath = fullfile(pwd,optFile);

% Run Polyspace analysis

[~,resultsFolder] = pslinkrunCrossRelease(model,psOpts,false,optionsPath);
bdclose(model) ;

Follow the progress of the analysis in the MATLAB Command Window.

Review Results

In a cross-release workflow, direct calls to functions such as polyspaceBugFinder or
polyspaceCodeProver are not available. To open the results, use the function pslinkfun.

1

To open the results in the Polyspace User Interface, use the function pslinkfun. The character
vector resultsFolder contains the full path to the results folder.

pslinkfun('openresults', '-resultsfolder',resultsFolder);

You can upload the results to Polyspace Access. See “Upload Results to Polyspace Access” on
page 2-25.

Review the results, and fix or justify the identified issues. For more information, see “Address
Results in Polyspace User Interface Through Bug Fixes or Justifications” on page 22-2.

6-13

6 Run Polyspace Analysis in Simulink

See Also
pslinkrunCrossRelease | polyspacePackNGo | slbuild | packNGo | pslinkfun

More About

. “Run Polyspace Analysis on Generated Code by Using Packaged Options Files” on page 6-29
. “Run Polyspace Analysis by Using MATLAB Scripts” on page 5-9
. “Polyspace Support of MATLAB and Simulink from Different Releases” on page 6-68

6-14

Run Polyspace Analysis on Code Generated from Simulink Model

Run Polyspace Analysis on Code Generated from Simulink
Model

This tutorial shows how to run a Polyspace analysis on C/C++ code generated from a Simulink model.
You can also analyze C/C++ code generated from a subsystem. For the complete workflow, see “Run
Polyspace Analysis on Code Generated with Embedded Coder” on page 6-2.

Prerequisites

Before you run Polyspace from Simulink, you must link your Polyspace and MATLAB installations. See
“Integrate Polyspace with MATLAB and Simulink” on page 5-2.

To open the model used in this example, in the MATLAB Command Window, run:

openExample('polyspace code prover/OpenSimulinkModelForPolyspaceAnalysisExample')

Open Simulink Model for Polyspace Analysis

Open the model polyspace controller _demo.

6-15

6 Run Polyspace Analysis in Simulink

int16 int18
D W) SEEMED
sl 1 P os_emd pos cmd

fbk_pos
s
w3 strategy
in_pressure Reduced precision
int16 { 3
in_prassura faulti P fault
Req
Pressura Pressure Thd
s
(D oo
int16
faultz p fault2 Pressure
int16 * 3 t
Cr——0
in_rotation i
Rotation — Fault Management FauliTable int12
» aul{Tatie
EER FaultTable
x synch_and_asynch_maonitoring
®uint1ﬁ C ree
in_battary_info v
Battary
info Command strategy
°E =
;] n
®umt1ﬁ = - angle
in_ratp cmd
Req -
Full precision
rate

Check for Run-Time Errors in Generated Code

1 On the Apps tab, select Polyspace Code Verifier. The Polyspace tab opens.

2 On the Polyspace tab, select Code Prover in the Mode section.

3 Locate the Analyze section and select Code Generated as Top model from the drop-down list.
4

Click Run Analysis. Polyspace checks if the model has been changed since the last code
generation. If the generated code is up-to-date, Polyspace starts the analysis. If the generated
code is not up-to-date or if there is no generated code, Polyspace generates the code first and
then starts the analysis.

Analyze Code from L)
olyspace_cont r_del
||::J|::ae_::- roller_demo |i| fun
Code Generated as Top Model - Analysis
AMALYZE

Alternatively, to start the analysis from the MATLAB Command Window, enter:

6-16

Run Polyspace Analysis on Code Generated from Simulink Model

% Load model

load system('polyspace controller demo');

% Generate code

slbuild('polyspace controller demo');

% Create Polyspace options object

mlopts = pslinkoptions('polyspace controller demo');
% Specify result folder

mlopts.ResultDir ='\cp result’;

% Set analysis to Code Prover mode
mlopts.VerificationMode = 'CodeProver';

% Run analysis

pslinkrun('polyspace controller demo', mlopts);

For more information about running Polyspace analysis in the MATLAB Command Window, See
pslinkoptions and pslinkrun.

Review Analysis Results

After the analysis completes, the analysis results appear in the Polyspace user interface. The results
consist of color coded checks:

Green(+"): The check appear on proven code that does not fail for the data constraints provided.
For instance, a division operation does not cause a Division by Zero error.

Red(®): The check appear on a verified error that always fails for the set of data constraints
provided. For instance, a division operation always causes a Division by Zero error.

Orange(*): The check indicates a possible error in unproven code that can fail for certain values
of the data constraints provided. For instance, a division operation sometimes causes a Division
by Zero error.

Gray(**): The check indicates a code operation that cannot be reached for the data constraints
provided.

Review each result in detail. In your Code Prover results:

1 On the Results List pane, locate the red Out of bounds array index check. Click the red check
(®).

2 On the Source pane, place your cursor on the red check on the [operator to view the tooltip. It
states the array size and possible values of the array index. The Result Details pane also
provides this information.

Both red checks occur in the handwritten C code in the C Function block Command Strategy.

Trace and Fix Issues in the Model

Issues reported by Polyspace on generated code might be caused by issues in the model. Trace an
issue back to your model to investigate the root cause. Issues in code might occur due to a design
issue such as:

* Faulty scaling, unknown calibrations, and untested data ranges coming out of a subsystem into an
arithmetic block.

* Saturations leading to unexpected data flow inside the generated code.

6-17

6 Run Polyspace Analysis in Simulink

6-18

* Faulty programming in custom code blocks such as the C Function and Stateflow blocks.

To fix design issues in the example model, identify the root cause of run-time errors reported by
Polyspace:

lllegally dereferenced pointer

On the Results List pane, select the Illegally dereferenced pointer check.
2 On the Source pane, click the link <Root>/Command strategy in the comments above the
erTor.

/* CFunction: '<Root>/Command strategy' incorporates:
* DataTypeConversion: '<S3>/Cast4'
* Inport: '<Root>/Battery info'

p = &array[0];

for (i =0; i <100; i++) {
*p = 0;
) p = &[1];
rtb x = (intl16 T)((uintl6 T)rtb yl - in battery info);
if (rtb x < 3) {
rtb x = (intle _T)(*p + 5);
//.

The Simulink Editor highlights the C Function block from which this error arises. In this block, the
pointer p is incremented 100 times, pointing *p outside the bound of array. The dereferencing
operationin rtb x = (intl6 T) (*p + 5); then causes a red Illegally dereferenced pointer
check.

One solution for this error is to point *p to a valid memory location after the for loop in the C
Function block:

// After the for loop, point p to a valid memory location
p = &(array[50]);

/...

tmp = *p + 5;

Out of bounds array index

On the Results List pane, select the Out of bounds array index check.

On the Source pane, click the link <Root>/Command strategy in the comments above the
error.

/* CFunction: '<Root>/Command strategy' incorporates:
* DataTypeConversion: '<S3>/Cast4'’
* Inport: '<Root>/Battery info'

*/

//. ..

for (i = 0; i < 100; i++) {
*p=0;

p = &plll;

}

//. ..

if ((rtb_x > 92) && (rtb x < 110)) {
if (another _array[(rtb x - i) + 9] !=0) {

Run Polyspace Analysis on Code Generated from Simulink Model

rtb x = 92;
} else {
rtb x = 91;

}
}

The Simulink Editor highlights the C Function block from which this error arises. In this block, the
value of i is set to 100 after the first for loop. The statement if ((rtb x > 92) && (rtb x <
110)) limits the possible value of rtb_x to 93..109. In the statement another_array[(rtb x -
i) + 9] != 0, the possible indices for another_array range from 93+9-100 = 2 to 109+9-100
= 18. Because the array another array has only two elements, the array access in

another array[(rtb x - i) + 9] resultsin a red Out of bounds array index run-time check.

One solution for this error is to modify the prevailing conditions on rtb_x so that the expression
[(rtb x - i) + 9] evaluatesto 0 or 1.

if ((rtb_x > 91) && (rtb x < 93)) {
if (another array[(rtb x - i) + 9] !=0) {

rtb x = 92;
} else {
rtb x = 91;
}
}

Orange checks

The orange checks represent run-time errors that might occur in specific code execution path.
Review the orange checks and triage the source of these potential issues. For instance:

* Division by zero — This orange check is reported twice. One of these checks is reported in the
statement rtb y1 = (intl6 T)((intl6 T)(10 * 10) / (intl1l6 T) (10 - rtb x)).To
trace the cause of this possible error, click the comment <S6>/Divide. The Simulink Editor
highlights the Divide block. In the execution paths where the + input equals zero, the division
operation results in a Division by zero error.

nt16 nt16
(1 ; |10

X

int16

.
.

nt16
G or——

¥

ni1G

To resolve this error, check that the + input is not zero. For instance, use the If block and put the
Divide block in an If Action Subsystem.

6-19

6 Run Polyspace Analysis in Simulink

action
— P u1 if(u1 ~=0) p---
+ If actiong -
d ﬂm — pl1 if(:Y 0)
iflut == :
> int16 B int16 1£'HE
.. . P2
y int16
If Action
Subsystem
intfl6 int16
10
X

The other Division by zero checks can be resolved using similar techniques to check for a zero
denominator.

* Out of bound array index: This orange check is reported on the statement
polyspace controller demo Y.FaultTable[*i] = 10;. To trace the root cause of this
potential error, click the link S4:76 in the comments above the orange error. The Simulink Editor
highlights the Stateflow chart synch_and_asynch _monitoring. Trace the error to the input
variable index of the Stateflow chart.

6-20

Run Polyspace Analysis on Code Generated from Simulink Model

Ir’b_nseﬂ utputSpeed A
| (entry 'T‘ Ny
i i IF condition1 THEN actionT]
| ELZE action? |
! ENDIF |
i * Compute the pressure threshold = i
! L I . . IF conditiond THEM sctiond !
! S ELZEIF condition? THEM action2 !
: | = index; ELSE action? i
i '1\ [i=(max/Kmax)] ENCIF :
: 1 = :
1 2 j++ E
' FauliTablelil=10; E
i ,5'.‘ [i=max] PressureThd = fault,]
: H =) H '
[i :
L |i=0; -+ :
i | FaultTablelil = 7; FauliTablefi] = § E
| |PressureThd = 0, PressureThd = Jautt2, i
| h E
i Oe O= O !
L\ J

One solution to avoid this check is to constrain the input variable index. Use a Saturation block
before the Stateflow chart to limit the value of index from zero to 100.

Overflow: Polyspace reports several orange Overflow checks. Resolve these checks by
constraining the inputs. For instance, consider the orange Overflow check in the statement rtb k
= (intl6 T)(((intl6 T)((in_rotation + in battery info) >> 1) * 24576) >>
10). To trace the check back to the model, click the link S1/Gain in the comments above the
orange check. The Simulink Editor highlights the Gain block in the Fault Management
subsystem.

ntig
CGr——»f+ o
B
in1 ol (1)
v fault
ntiG
1 .
— |Unit Delay
z
3
2 -+ .
=il El ntid
nZ e D
+ s fault2
N3 -gain

6-21

6 Run Polyspace Analysis in Simulink

One solution to avoid the orange Overflow checkk is to constrain the value of the signal
in_battery_ info thatis fed to the Sum block. For instance:

1 Double-click the Inport block Battery info that provides the input signal
in_battery_info to the model.

2 On the Signal Attributes tab, change the Maximum value of the signal to a lower value,
such as 500.

Use this technique to address similar orange Overflow checks.

Check for Coding Rule Violations

To check for coding rule violations, start a Polyspace Bug Finder analysis.

1 On the Polyspace tab, select Settings > Project Settings and enable the MISRA C:2012 coding

standard in the Coding Standards & Code Metrics node. Save the configuration and close the
window.

" Paolyspace - O
File Edit Tools Window Help
EIEY ~Q|

polyspace_con...er_demo_config x | q

EI---'[arget & Compiler Coding Standards & Code Metrics
- Macros

“~ Environment Settings

""" Inputs & Stubbing

Set checkers by file L
""" Multitasking = v
& Coding Standards & Code Metrics Coding Standards
""" Bug Finder Analysis [] Check MISRA C:2004 required-rules View
E-Code Prover Verification
-~ Verification Assumptions [Check MISRA AC AGC OBL-rules View
-~ Check Behavior Check MISRA C:2012 i v view
- Precision)
Scaling [] Use generated code requirements
..... Reporting Effective boolean types| Type w0
----- Run Settings boolean_T

""" Advanced Settings

2 In the Mode section, select Bug Finder.
3 Rerun the analysis.

Alternatively, in the MATLAB Command Window, enter:

% Enable checking for MISRA C:2012 violations
mlopts.VerificationSettings = 'PrjConfigAndMisraC2012"';
% Specify separate folder for Bug Finder analysis
mlopts.ResultDir ='\bf result’;

% Set analysis to Bug Finder mode

6-22

Run Polyspace Analysis on Code Generated from Simulink Model

mlopts.VerificationMode = 'BugFinder';
% Run analysis
pslinkrun('polyspace controller demo', mlopts);

After the analysis completes, the Polyspace Ul opens containing a list of MISRA C:2012 rule
violations.

Annotate Blocks to Justify Results

To justify Polyspace results, add annotations to your blocks. During code analysis, Polyspace
populates the results with your justification. Once you justify a result, you do not have to review it
again in subsequent analyses.

On the Results List pane, from the list in the upper-left corner, select File.

2 Inthe file polyspace controller demo.c, in the function
polyspace controller demo step(), select the violation of MISRA C:2012 rule 10.4. The
Source pane shows that an addition operation violates the rule.

3 On the Source pane, click the link S1/Sum1 in the comments above the addition operation.

/* Gain: '<S1>/Gain' incorporates:

* Inport: '<Root>/Battery Info'

* Inport: '<Root>/Rotation'

* Sum: '<S1>/Suml’

*/

rtb k = (intl6 T)(((intl6 T)((in_rotation + in battery info) >> 1) * 24576) >>
10);

The rule violation occurs in a Sum block.

ntiG

CGor——»f« |oue
.
i o (1)
v fault
ntiG
1 .
— | Unit Delay
z
3
2 |+ P
<itclf E nt16
2 oo —
QT SR _ faiz
Gain
In3

4 To annotate this block and justify the rule violation:

a Select the block. On the Polyspace tab, select Add Annotation.

Select MISRA-C-2012 for Annotation type and enter information about the rule violation.
Set the Status to No action planned and the Severity to Unset.

¢ Click Apply or OK. The words Polyspace annotation appear below the block, indicating
that the block contains a code annotation.

5 Regenerate code and rerun the analysis. The Severity and Status columns on the Results List
pane are now prepopulated with your annotations.

6-23

6 Run Polyspace Analysis in Simulink

See Also

More About

. “Run Polyspace Analysis on Code Generated with Embedded Coder” on page 6-2
. “Run Polyspace on Code Generated by Using Previous Releases of Simulink” on page 6-12

6-24

Fix Model Design Issues Found as Run-time Errors and Coding Rule Violations in Generated Code

Fix Model Design Issues Found as Run-time Errors and Coding
Rule Violations in Generated Code

After testing your Simulink model for standards compliance and design errors, you can generate code
from the model. Before deployment, you can perform a final layer of error checking on the generated
code by using Polyspace. The checks detect issues such as dead logic or incorrect code generation
options that can remain despite tests on the model.

Prerequisites

Before you run Polyspace from Simulink, you must link your Polyspace and MATLAB installations. See
“Integrate Polyspace with MATLAB and Simulink” on page 5-2.

To open the model used in this example, at the MATLAB Command Window, run:

openExample('polyspace code prover/FixIssuesInGeneratedCodeFoundWithPolyspaceCodeProverExample')

Open Model

The model CruiseControl RP contains a Stateflow chart with design issues. The issues translate to
possible run-time errors or unreachable branches in the generated code.

' ™
uinkl
L1) # CC_Mode
CC_Mode
CC_Mode
boolean RES AccelResSw engaged 4..{“ — :)
il engaged
RES/+
: boolean
3 - S@
SET }
SETI-
SpeedSel "
Speed_Set
I(E>-:I-:ul:|lne
SpeedAct " iepeed lepead .'C : }
Speed_Act P et
boolean
[6 J = ¥ Brake
reak
Break L _)

Compute target speed

Detect and Fix Run-Time Errors
Detect Run-Time Errors

On the Polyspace tab, click anywhere on the canvas. The Analyze Code from field shows the model
name. If you use Embedded Coder, then click Run Analysis. If you use other code generating tools,
manually generate the code before starting a Polyspaceanalysis.

6-25

6 Run Polyspace Analysis in Simulink

For more information, see “Run Polyspace Analysis on Code Generated with Embedded Coder” on
page 6-2.

After the analysis is complete, the Code Prover results open in the Polyspace user interface. The
results contain gray checks (unreachable code) and orange checks (potential run-time errors).

Fix Gray Checks

Select one of the two Unreachable code checks. Review the code that is unreachable.

if ((CoastSetSw prev != CruiseControl RP_DW.CoastSetSw start) &&
CruiseControl RP DW.CoastSetSw start &&
(CruiseControl RP_Y.tspeed > (real T)mintspeed)) {
/* Transition: '<S1>:74' */
CruiseControl RP DW.is ON = CruiseControl RP_IN Coast;
CruiseControl RP DW.temporalCounter il = 0U;

/* Entry 'Coast': '<S1>:73' */
CruiseControl RP Y.tspeed -= (real T)incdec;

}

Click the Transition: '<S1>:74" link in the if block. The transition is highlighted in the model.

T
*! i [hasChangedTo...
('S—teady — [CoastSetSw,true)) . -
2 =
{tspeed = Speed;}
} A
™ _/
. vy
3
[hasChangedTo...
(CoastSetSw.true) ... [hasChangedTo...
&& tspeed > mintspeed] (CoastSetSw, false) || ...
tspeed <= mintspeed]
2

6-26

Note the design flaw. The condition for outgoing transition 3 cannot be true without the condition for
outgoing transition 2 also being true. Therefore, transition 3, which executes later, is never reached.
This design flaw in the chart translates to the unreachable if block in the generated code.

One possible solution of the issue is to switch the execution order of transitions 2 and 3. To begin,
right-click transition 3.

After switching the execution order, regenerate and reanalyze the code. You no longer see the gray
Unreachable code checks.

Fix Orange Checks

Select one of the two Division by zero checks. Review the code.

Fix Model Design Issues Found as Run-time Errors and Coding Rule Violations in Generated Code

if (CruiseControl RP DW.temporalCounter il >= (uint32 T)(incdec /
holdrate * 10.0F))

Place your cursor on the variable holdrate. You see that it is a global variable whose value can be
zero.

The fact that holdrate is a global variable hints that it could be defined outside the model. Open the
Model Explorer window. In the model hierarchy, choose the base workspace. Find holdrate in the
list of parameters. You see that holdrate has a value 5, but the value can range from 0 to 10. The
Code Prover analysis uses this range and detects a division by zero.

You can modify either the generated code or the analysis configuration:
* Modify code:

In the Model Explorer window, change the storage class of holdrate from Global to Define.
The generated code defines a preprocessor directive stating that holdrate has the value of 5.

#define holdrate 5
* Modify analysis configuration:
On the Polyspace tab, select Settings. Modify the option Tunable parameters to use the

calibration data. The Code Prover analysis uses the value 5 for holdrate instead of a different
value in the range 0 to 10.

If you regenerate and reanalyze the code, you no longer see the orange Division by zero checks or
any other orange checks that have the same root cause. The Dashboard pane shows that all checks
are green.

Check distribution
Proven: 100%

Green (1453)

Detect and Fix Coding Rule Violations
Detect MISRA C:2012 Violations

To detect MISRA C violations:

1 In the Mode section of the Polyspace tab, select Bug Finder.

6-27

6 Run Polyspace Analysis in Simulink

2 Select Settings to open the Simulink Configuration Parameters window. In the Settings from
menu, select Project configuration and MISRA C 2012 checking.

3 Start the analysis by clicking Run Analysis.
Fix MISRA C:2012 Violations

After running the Bug Finder analysis, Polyspace reports the violations of MISRA C:2012 in the
generated code. To fix some of these violations, you might need to modify the model. Consider the
violation of rule 3.1:

The character sequences /* and // shall not be used within a comment.
Two of the violations is located in this code on the declarations of RES and SET:

typedef struct {

uint8 T CC Mode; /* '<Root>/CC _Mode' */
boolean T RES; /* '<Root>/RES//+' */
boolean T SET; /* '<Root>/SET//-' */
real T SpeedSet; /* '<Root>/Speed Set' */
real T SpeedAct; /* '<Root>/Speed Act' */
boolean T Break; /* '<Root>/Break' */

} ExtU CruiseControl RP T;

In these statements, you see two instances of // in the code comments in the structure definition.

To navigate to the corresponding location in the model, click '<Root>/RES//+"' in the code
comment. You see that the comment comes from the input variable RES/+, which contains the /
character.

boolean
(2) P AccelResSw
RES
RES/+

Rename the variables RES/+ and SET/ - so that they do not use the / character. When you reanalyze
the code, you no longer see violations of rule 3.1.

See Also

Related Examples
. “Run Polyspace Analysis on Code Generated from Simulink Model” on page 6-15

6-28

Run Polyspace Analysis on Generated Code by Using Packaged Options Files

Run Polyspace Analysis on Generated Code by Using Packaged
Options Files

When you start a Polyspace analysis directly from the Simulink toolstrip, the analysis takes the
model-specific context, such a design ranges, into consideration. When running a Polyspace analysis
from outside Simulink, you must specify the model-specific information by using options files. Instead
of authoring these options files, use the options files generated and packaged by the function
polyspacePackNGo.

Preserving the Simulink model context information when running a Polyspace analysis from outside
Simulink can be useful in various situations. For instance:

» Distributed workflow: A Simulink user generates code from a model and sends the code to another
development environment. In this environment, a Polyspace user, who might not have Simulink,
runs a separate analysis of the generated code. By using the packaged options files, the design
ranges and other model-specific information is preserved in the Polyspace analysis.

* Analysis options not available in Simulink: Some Polyspace analysis options are available only
when the Polyspace analysis is run separately from Simulink. Use packaged options files to run a
separate Polyspace analysis while preserving the model-specific information. For instance, analyze
concurrent threads in generated code by running a Polyspace analysis in the generated code by
using the packaged options files.

You must have Simulink to run the function polyspacePackNGo. You do not need Polyspace to
generate the options files from a Simulink model. The polyspacePackNGo function supports code
generated by Embedded Coder and TargetLink. For a tutorial on using polyspacePackNGo, see
“Analyze Code Generated as Standalone Code in a Distributed Workflow” (Simulink).

Generate and Package Polyspace Options Files

To generate and package Polyspace options file for analyzing code generated from a Simulink model,
use polyspacePackNGo.

1 In the Simulink Editor, open the Configuration Parameters dialog box and configure the model for
code generation.

2 To configure the model for compatibility with Polyspace, select ert.tlc as the System target
file

3 To enable generating a code archive, select the option Package code and artifacts. Optionally,
provide a name for the options package in the field Zip file name. If your code contains a custom
code block, select Use the same custom code settings as Simulation target in the Code
Generation> Custom Code pane.

Alternatively, in the MATLAB Command Window, enter:

% Configure the Simulink model mdlName for code generation
configSet = getActiveConfigSet(mdlName);

set param(configSet, 'PackageGeneratedCodeAndArtifacts', true);
set param(configSet, 'PackageName', 'CodeArchive.zip');

set param(configSet, 'SystemTargetFile', 'ert.tlc');

set param(configSet, 'RTWUseSimCustomCode', 'on');

4 Generate the code archive.

6-29

6 Run Polyspace Analysis in Simulink

6-30

* To generate an archive of standalone generated code from the top model, use the function
slbuild.

* To generate code as a model reference, use the function slbuild. After generating code as
model reference, create the code archive by using the function packNGo.

* Alternatively, you can use TargetLink to generate the code. Create the code archive by
archiving the generated code into a zip file.

To generate and package the Polyspace option files, in the MATLAB Command Window ,use the
polyspacePackNGo function :
zipFile = polyspacePackNGo (mdlName);

See “Generate and Package Polyspace Options Files”.

If you use TargetLink to generate code, then use the TargetLink subsystem name as the input
argument to polyspacepacknGo.

Optionally, you can use a pslinkoptions object as a second argument to modify the default
model configuration for the Polyspace analysis. Create a pslinkoptions object, modify model
configurations and specify the object when creating the archive:

psOpt.InputRangeMode "FullRange';
psOpt.ParamRangeMode = 'DesignMinMax';
zipFile = polyspacePackNGo(mdlName, psOpt);

psOpt = pslinkoptions(mdlName);

See “Package Polyspace Options Files That Have Specific Polyspace Analysis Options”.

Use the optional third argument to specify whether to generate and package Polyspace options
files for code generated as a model reference. Suppose you generated code as a model reference
by using the slbuild function. To generate and package Polyspace options for the code, at the
MATLAB Command Window, enter:

zipFile = polyspacePackNGo(mdlName,[],true);

See “Package Polyspace Options Files for Code Generated as a Model Reference”.

The function polyspacepackNGo returns the full path to the archive containing the options files.
The files are located in the polyspace folder within the archived folder hierarchy. The content of
the polyspace folder depends on the inputs of polyspacePackNGo function.

» Ifyou do not specify the optional second and third arguments, then the folder polyspace
contains these options files in a flat hierarchy:

* optionsFile.txt: This file specifies the source files, the include files, data range
specifications, and analysis options required for analyzing the generated code by using
Polyspace. If your code contains custom C code, then this file specifies the relative paths of
the custom source and header files.

* modelname_drs.xml: This file specifies the design range specification of the model.
* linksData.xml: This file links the generated code to the components of the model.

» Ifyou specify psOpts.ModelbyModelRef = true, then corresponding options files are
generated for all referenced models. These options files are stored in separate folders named
polyspace <referenced model name> within the code archive. The folder polyspace
contains the options files for the top model.

Run Polyspace Analysis on Generated Code by Using Packaged Options Files

Run Polyspace Analysis by Using the Packaged Options Files

Once the code archive and the Polyspace option files are generated, you can use the archive to run a
Polyspace analysis on the generated code in a different development environment without Simulink.

Unzip the code archive and locate the polyspace folder.

2 On a Windows or Linux command line, run: productname -options-file optionsFile.txt
-results-dir resultdir.

* productname corresponds to one of: polyspace-bug-finder, polyspace-code-prover, polyspace-
bug-finder-server, or polyspace-code-prover-server.

* resultdir corresponds to the location of the Polyspace results. This argument is optional.

To link the generated code with the Simulink model, the file LinksData.xml is required. In case
the file LinksData.xml is not generated in the options file archive, use the option Code
Generator Support in Polyspace desktop User Interface to specify which comments in the code
act as links to the Simulink model. In the Polyspace desktop User Interface, select Tools >
Preferences and locate the Miscellaneous tab. From the context menu Code comments that
act as code-to-model-link, select the code generator that you used. If you select User defined,
then specify the comments that act as a code-to-model link by specifying their prefix in the field
Comments beginning with. For instance, if you specify the prefix as //Link to model, then
Polyspace interprets comments starting with //Link to model as links to model.

If you are using Polyspace Access to view the results, upload the file linksData.xml in the
same folder as your Polyspace results. You cannot link the code with Simulink model if you do not
have the file lTinksData.xml or if you upload it outside the Polyspace result folder.

3 To review the result, upload it to Polyspace Access and view the results in a web browser.
Alternatively, view the result by using the user interface of the Polyspace desktop products.

See Also
polyspacePackNGo | polyspace.Project | slbuild | packNGo

More About

. “Analyze Code Generated as Standalone Code in a Distributed Workflow” (Simulink)
. “Run Polyspace Analysis by Using MATLAB Scripts” on page 5-9
. “Integrate Polyspace Server Products with MATLAB” on page 8-33

6-31

6 Run Polyspace Analysis in Simulink

Run Polyspace Analysis on Custom Code in Simulink Models

If you implement algorithms in your Simulink model by using custom C/C++ code, you can analyze
the custom code directly from the Simulink toolstrip without manually setting up a Polyspace project.
The behavior of the custom code in your model depends on the model context, such as number and
nature of input and design range specification. When you run Polyspace analysis from MATLAB or
Simulink, the analysis takes the model context into account. When running a Polyspace analysis of the
custom code outside of MATLAB/Simulink, specify the model context manually, for instance, by using
options files.

A Polyspace analysis of the custom code has different goals and configurations compared to a
Polyspace analysis of the generated code:

Generated Code Analysis Custom Code Analysis

Analyzes the code in a C Caller, C Function, or S- |Analyzes the code generated from the entire
Function block in isolation. model.

Detects issues in the custom code that can cause |Detects issues in the total generated code that
bugs or run-time errors in a Simulink simulation. |might cause bugs or run-time errors when
deployed to an embedded system.

The target settings for Polyspace is compatible |The Target processor type settings for

with a Simulink simulation. Polyspace is the same as the Hardware
Implementation settings specified in the
Configuration Parameters dialog box in Simulink.

Prerequisite

Before you run Polyspace with Simulink, link your Polyspace and MATLAB installations. See
“Integrate Polyspace with MATLAB and Simulink” on page 5-2 or “Integrate Polyspace Server
Products with MATLAB” on page 8-33.

Analyze Custom Code

You can implement custom algorithm by using different Simulink custom code blocks, such as:

* C Function: See “Integrate External C/C++ Code into Simulink Using C Function Blocks”
(Simulink)

* C Caller: See “Integrate C Code Using C Caller Blocks” (Simulink)
* S-Function: See “Implement C/C++ S-Functions” (Simulink)

These blocks have different functionalities. See “Comparison of Custom Block Functionality”
(Simulink).

Specify Configuration

Before running Polyspace on a Simulink model, configure the Simulink model to be compatible with
Polyspace.

To analyze custom code in Polyspace, select Import custom code in the Configuration Parameters
dialog box, on the Simulation Target pane.

6-32

Run Polyspace Analysis on Custom Code in Simulink Models

If the included custom code does not compile, the Polyspace analysis might fail. Before starting the
Polyspace analysis, include the appropriate header files and check the custom code for compilation
issues. The C function block does not support including header files. For this block, specify the
include statements in the Simulation Target pane. For the code included in C Caller and S Function
blocks, specify the include statements in the source file. Polyspace has stricter code and compilation
requirements than Simulink and your custom code might fail Polyspace compilation even though your
model simulation produces correct results.

Start Polyspace Analysis

Start the Polyspace analysis of custom code in your model in the Simulink Editor or in the MATLAB
Command Window.

* For more information about running a Polyspace analysis on custom code in a S function block,
see “Run Polyspace Analysis on S-Function Code” on page 6-35.

* For more information about running a Polyspace analysis on custom code in a C Caller block, see
“Run Polyspace Analysis on Custom Code in C Caller Blocks and Stateflow Charts” on page 6-37.

* For more information about running a Polyspace analysis on custom code in a C function block,
see “Run Polyspace Analysis on Custom Code in C Function Block” on page 6-45.

Once the analysis starts, Polyspace extracts the custom code from the model. To preserve the correct
design range specification and nature of the inputs, Polyspace assumes each instance of a custom
code block in a top model has a unique model context and treats the blocks as unique. When a model
containing a custom code block is referenced multiple times in another top model, the model context
of the custom code blocks remain the same. Polyspace treats the custom code block in different
instances of the referenced model as a single custom code instance.

After extracting the code and model context, Polyspace analyzes them as handwritten code. See “Bug
Finder Analysis Assumptions”.

Review Analysis Results

In the Simulink Editor, click Analysis Results. The Polyspace User Interface opens with the analysis
results. The flagged issues appear in the Results List pane. See also:

* “Interpret Bug Finder Results in Polyspace Desktop User Interface” on page 21-2

* “Bug Finder Defect Groups” on page 18-43

* “Address Results in Polyspace User Interface Through Bug Fixes or Justifications” on page 22-2

» “Filter and Group Results in Polyspace Desktop User Interface” on page 23-2

To fix the flagged issues, modify the code. For more information, see “Fix Identified Issues” on page

6-49. Alternatively, modify the Simulink model to resolve the Polyspace results. See “Fix Issues” on
page 6-38.

If a flagged issue is known or justified, then annotate that information in the custom code blocks. You

can annotate the custom code blocks directly from the Polyspace User Interface. See “Annotate
Blocks to Justify Results” on page 6-23.

See Also
pslinkoptions | pslinkrun

6-33

6 Run Polyspace Analysis in Simulink

6-34

More About

“Run Polyspace Analysis on Code Generated with Embedded Coder” on page 6-2
“Run Polyspace Analysis on S-Function Code” on page 6-35

“Run Polyspace Analysis on Custom Code in C Caller Blocks and Stateflow Charts” on page 6-
37

“Run Polyspace Analysis on Custom Code in C Function Block” on page 6-45
“Complete List of Polyspace Bug Finder Results”

Run Polyspace Analysis on S-Function Code

Run Polyspace Analysis on S-Function Code

If you want to check your S-function code for bugs or errors, you can run Polyspace directly from
your S-function block in Simulink.

Prerequisites

Before you run Polyspace from MATLAB, you must link your Polyspace and MATLAB installations. See
“Integrate Polyspace with MATLAB and Simulink” on page 5-2.

S-Function Analysis Workflow

To verify an S-function with Polyspace, follow this recommended workflow:

Compile your S-function to be compatible with Polyspace.

Select your Polyspace options.

Run a Polyspace Bug Finder analysis or a Polyspace Code Prover verification using one of the two

analysis modes:

* This Occurrence — Analyzes the specified occurrence of the S-function with the input for that
block.

» All Occurrences — Analyzes the S-function with input values from every occurrence of the S-
function.

4 Review results in the Polyspace interface.
* For information about navigating through your results, see “Filter and Group Results in
Polyspace Desktop User Interface” on page 23-2.

* For help reviewing and understanding the results, see “Complete List of Polyspace Bug Finder
Results”.

Compile S-Functions to Be Compatible with Polyspace

Before you analyze your S-function with Polyspace Bug Finder , you must compile your S-function
with one of following tools:

* The Legacy Code Tool with the def.0Options.supportCoverageAndDesignVerifier setto
true. See legacy_ code.

* The S-Function Builder block, with Enable support for Design Verifier selected on the Build
Info tab of the S-Function Builder dialog box.

* The Simulink Coverage™ function slcovmex, with the option - sldv.

Example S-Function Analysis

This example shows the workflow for analyzing S-functions with Polyspace. You use the model
psdemo_model link sl and the S-function Command Strategy.

1 Open the model and use the Legacy Code Tool to compile the S-function Command Strategy.

% Open Model
psdemo model link sl

6-35

6 Run Polyspace Analysis in Simulink

6-36

% Compile S-function Command Strategy

def = legacy code('initialize');

def.SourceFiles = { 'command strategy file.c' };

def.HeaderFiles = { 'command strategy file.h' };

def.SFunctionName = 'Command Strategy';

def.OutputFcnSpec = 'intl6 yl = command strategy(uintl6 ul, uintl6 u2)';
def.IncPaths = { fullfile(polyspaceroot,

"toolbox', 'polyspace’, 'pslink', 'pslinkdemos', 'psdemo model link sl') };
def.SrcPaths = def.IncPaths;
def.Options.supportCoverageAndDesignVerifier = true;
legacy code('compile’,def);

Open the model psdemo_model link sl/controller.
Specify the code analysis options. On the Apps tab, select Polyspace Code Verifier. Then, on
the Polyspace tab:

* Select the product to run: Bug Finder or Code Prover. A Code Prover analysis detects run-
time errors while a Bug Finder analysis detects coding defects and coding rule violations.

* Select Settings. In the Configuration Parameters dialog box, make sure that the following
parameters are set:

* Settings from — Select Project configuration. Other values in the drop down menu
enables checking different coding rules, which require using Bug Finder as the Mode.

Open results automatically after verification — [¥/ On

Apply your settings and close the Configuration Parameters.

Right-click the Command Strategy block and select Polyspace > Verify S-Function > This
Occurrence.

Follow the analysis in the MATLAB Command Window. When the analysis is finished, your results
open in the Polyspace interface.

See Also

More About

“Run Polyspace Analysis on Code Generated with Embedded Coder” on page 6-2

“Run Polyspace Analysis on Custom Code in C Caller Blocks and Stateflow Charts” on page 6-
37

Run Polyspace Analysis on Custom Code in C Caller Blocks and Stateflow Charts

Run Polyspace Analysis on Custom Code in C Caller Blocks and
Stateflow Charts

You can check for bugs and run-time errors in the custom C/C++ code used in your Simulink model.
The Polyspace analysis checks functions called from C Caller blocks and Stateflow charts with inputs
from the model.

Prerequisites

Before you run Polyspace from Simulink, you must link your Polyspace and MATLAB installations. See
“Integrate Polyspace with MATLAB and Simulink” on page 5-2.

To open the models used in this example, look for this example in the MATLAB Help browser and
click the Open Model buttons.

C/C++ Function Called Once in Model

This example uses a function called only once in the model from a C Caller block. The analysis checks
the function using inputs to the C Caller block.

Open Model for Running Analysis on Custom Code

Open the model mS1ccBusDemo for analyzing custom code with Polyspace. The model contains a C
Caller block that calls a function counterbusFcn defined in a file hCounterBus. c (declared in file
hCounterBus.h). The model uses variables saved in a MAT file dLctData.mat, which is loaded in
the model using a callback.

input EISIGNALEIUS

>
-

0 COUNTERBUS Creato C Function Caller
wer_saturation_limitint32

upper_saturation_limit

int3z I nputsignal

SIGNALELS.
SIGMALBUSCreatol
reatar COUNTERBLUS »lui . o o l:l
U L Ll
COUNTERBUS ¥ <upper_saturation_limit=

int3z2

counterbusFen

LIMITBUS LIMITEUS »uz y2 r“@ N

imits <lower_saturation_Emit=

LIMITBUS Creator

o

Copyright 2018 The Math\Works, Inc.

Run Analysis
Configure analysis options and run Polyspace.

1 On the Apps tab, select Polyspace Code Verifier to open the Polyspace tab.
2 Specify the type of analysis:

6-37

6 Run Polyspace Analysis in Simulink

6-38

* Select the product to run, Bug Finder or Code Prover. A Code Prover analysis detects run-
time errors while a Bug Finder analysis detects coding defects and coding rule violations.

* Specify that the analysis must run on custom code in the model instead of generated code.

The Analyze Code from field shows the model name. Below the field, instead of Code
Generated as Top Model, select Custom Code Used in Model.

3 Select Run Analysis.

Analyze Code from [‘)

mSlccBusDemao * Run

Customn Code Used in Model - Analysis
AMALYZE

Follow the progress of analysis in the MATLAB Command Window. After the analysis, on the
Polyspace tab, select Analysis Results. The results open in the Polyspace user interface.

You can also run the same analysis from MATLAB as follows. The script includes commands to load
the model and the .mat file containing variables used in the model.

openExample('polyspace code prover/OpenModelForRunningAnalysisOnCustomCodeExample');
load_system('mSlccBusDemo');
load('dLctData.mat');

mlopts = pslinkoptions('mSlccBusDemo');
mlopts.VerificationMode = 'CodeProver"';
pslinkrun('-slcc', 'mSlccBusDemo',mlopts);

Fix Issues

The analysis results appear on the Results List pane in the Polyspace user interface. Select each
result and see further details on the Result Details pane and the corresponding source code on the
Source pane.

The rest of this tutorial shows how to investigate and fix issues found in a Code Prover analysis.
Similar steps can be followed for issues found with Bug Finder.

If you run a Code Prover analysis, the results contain an orange Overflow check.

All results v | TeMNew [E]+ <@ 5» showing42/42

Family = File =F Function = Status
[=-Run-time Check 37

B

T e e

! [-Green Check

The check highlights an addition operation in the counterbusFcn function that can overflow:

limit = ul->inputsignal.input + u2;

Run Polyspace Analysis on Custom Code in C Caller Blocks and Stateflow Charts

The operands come from inputs to counterbusFcn, which in turn come from these inputs to the C
Caller block:

* The bus COUNTERBUS, which combines the signals input, upper saturation limit, and
lower saturation limit. The signal input is unbounded.

» The feedback from the C Caller block itself through a Delay block.

You can constrain the signal named input in several ways. For instance, you can constrain the
Simulink.Bus object named SIGNALBUS that contains input:

1 In the Simulink Toolstrip, on the Modeling tab, in the Design gallery, click Type Editor.

The base workspace contains a Simulink.Bus object named SIGNALBUS.

Contents of 'Base Workspace® |F ter contents |
= COUMNTERBUS
= LIMITBUS
¥ = SIGMALBUS
= input int32 rea 1 Fixed [1 [1

2 Specify a minimum and maximum value for the input element of SIGNALBUS.
3 Save the bus object in a MAT file. You can overwrite the file dLctData.mat or create a file.

You can also constrain the feedback from the C Caller block in several ways. For instance, you can
saturate the feedback signal:

1 Add a Saturation block immediately before the feedback signal is input to the C Caller block.

COUNTERBUS COUNTERBLUS
= EETCECoen DT .. |_|‘| '5'1

COUNTERBUS

counterbusFon
I double int32
— P _/_ — L1 W
dauple int32
RBUSCreator C Function Caller
'

Ntz

2 On the Signal Attributes tab, specify a minimum and maximum value for the Saturation block
output.

6-39

6 Run Polyspace Analysis in Simulink

Block Parameters: Saturation pod
Saturation

Limit input signal to the upper and lower saturation values.

Main Signal Attributes

Output minimum: Output maximum:
1-100 5] [100
Output data type: | Inherit: Same as input ~ >

[] Lock output data type setting against changes by the fixed-point tools

Integer rounding mode: | Floor -

,\) Cancel Help Apply

Note that specifying a lower and upper limit on the Main tab of the Saturation block is not
sufficient to constrain the signal for the Polyspace analysis. The analysis uses the design ranges
specified on the Signal Attributes tab.

Rerun the analysis. The Overflow check in the new set of results is green.

C/C++ Function Called Multiple Times in Model

This example uses a function called from multiple C Caller blocks in the model. The function simply
returns the product of its two arguments.

The example runs a Code Prover analysis and shows how to determine the function call context
starting from Code Prover results. Typically, in a Bug Finder analysis, you do not need to distinguish
between different call contexts.

Open Model for Analyzing All Custom Code

Open the model multiCCallerBlocks for running Polyspace analysis.

openExample('polyspace bf/OpenModelForAnalyzingAllCustomCodeExample');
open_system('multiCCallerBlocks');

6-40

Run Polyspace Analysis on Custom Code in C Caller Blocks and Stateflow Charts

¥
]

times_n 54

@
Y
=

L
Y

times_n 54

¥

CoO—

Inspect Model

The model contains two C Caller blocks calling the same function times n. The inputs to one C
Caller block come from two Inport blocks that have unbounded input. The inputs to the other C Caller
block come from a Constant block and an Inport block that has the input bounded by a Saturation
block.

To see the design ranges for the C Caller block that has bounded inputs:

* Double-click the Constant block or the Saturation block.
* On the Signal Attributes tab, note the design range.

For instance, although the Constant block has the constant value set to 3, the design range for
verification is 2.5 to 3.5.

Block Parameters: Constant et

Constant

Output the constant specified by the 'Constant value' parameter. If
'Constant value' is a vector and 'Interpret vector parameters as 1-D' is on,
treat the constant value as a 1-D array. Otherwise, output a matrix with the
same dimensions as the constant value.

Main Signal Attributes

Qutput minimum: Output maximurm:
2.5 IHRES
Output data type: | double ~ >

[] Lock output data type setting against changes by the fixed-point tools

J- Cancel Help Apply

6-41

6 Run Polyspace Analysis in Simulink

6-42

The design range for the Saturation block is [-1,1].
Run Analysis and Review Results
Run analysis as in the previous example and open the results.

The Results List pane shows an orange Overflow check. The product in the times n function
overflows.

#include "file.h"

double times n(double x, double n) {
return x * n;
}

Because the times n function is called from two contexts, the orange color combines both contexts
and might indicate two possible situations:

* The overflow occurs in both call contexts.

* The overflow is proven to not occur in one context (green check) and might occur in the other
context (orange check).

To determine which call context leads to the overflow:

1 See all the callers of times n.

Select the orange Overflow check. On the Result Details pane, click fx . The Call Hierarchy
pane shows the callers of times n.

2 On the Call Hierarchy pane, you see two wrapper functions as callers. Each wrapper function
represents a C Caller block in the model.

B o

Calls File

(- 4 _pslink_step_C_Caller() customcode_wrappers.c
- 4 _psiink_step_C_Caller 10 customcode_wrappers.c

Select one of the wrapper functions to open the source code for customcode wrappers.c.

3 On the Source pane, inspect the code for the wrapper functions. To determine which inputs lead

to the overflow, use tooltips on underlined inputs.

For instance, the wrapper function for the C Caller block that has bounded inputs looks similar to
this code:

/* Go to model '<Root>/C Callerl' */

/* Variables corresponding to inputs for block C Callerl */
reale4 T pslink C Callerl Inl;

reale4 T pslink C Callerl In2;

/* Variables corresponding to outputs for block C Callerl */

Run Polyspace Analysis on Custom Code in C Caller Blocks and Stateflow Charts

reale4 T pslink C Callerl Outl;
/* Wrapper functions for code in block C Callerl */
void pslink step C Callerl(void) {
/* See tooltips on function inputs for input ranges */
_pslink C Callerl Outl = times n(pslink C Callerl Inl, pslink C Callerl In2);

}

Use tooltips on the variables to determine their ranges. For instance, the tooltip on the variable
_pslink C Callerl Inl shows that it is in the range [2.5, 3.5] and the tooltip on
_pslink C Callerl In2 shows that it isin the range [-1,1]. Therefore, the product of the two
inputs cannot overflow. The overflow must come from the other call context. You can see the
tooltips on the inputs to the other call and confirm that the variables are unbounded.

To locate the C Caller block corresponding to a wrapper function, on the Source pane, click the
blue block name link above the wrapper function (on the line starting with Go to model). The C
Caller block is highlighted in the model.

Enable Context Sensitivity and Rerun Analysis

In this example, the function is simple enough that you can determine which call context leads to the
overflow from the function inputs themselves. For more complex functions, you can configure the
analysis to show results from the two contexts separately.

Because distinguishing call contexts involves a deeper analysis, the analysis might take longer.
Therefore, enable context sensitivity only for specific functions and only if you are not able to
distinguish the call contexts by inspection.

In this example, to enable context sensitivity for the times n function:
1 Inyour model, on the Polyspace tab, select Settings > Project Settings.

Alternatively, in the Polyspace user interface, select the Project Browser. Open the
configuration of the project created for the analysis.

2 On the Code Prover Verification > Precision node, select custom for the option Sensitivity

context. In the Procedure field, click ar and enter times n.
See also Sensitivity context (-context-sensitivity).
Rerun the analysis from the model and reopen the results. Select the orange Overflow check.

The Result Details pane shows the call contexts separately. You can see that the overflow occurs
only for the call with unbounded inputs (row with orange text) and does not occur for the other call
(row with green text).

Click the row with orange text to directly navigate to the wrapper function leading to the orange
check. From the wrapper function, you can navigate to the C Caller block with unbounded inputs.

overflow 2/
Warning: operation [*] on float may overflow (on MIN or MAX bounds of FLOATS4)

Calling context File Scope Line
customcode_wrappers.c _pslink_step_C_Caller 25
operator * on type float 64 left: [2.5.. 3.5] right: [-1.0 .. 1.0] result: [-3.5.. 3.5] customcode_wrappers.c _pslink_step_C_Caller1 33

6-43

6 Run Polyspace Analysis in Simulink

See Also
pslinkoptions | pslinkrun

More About

. “Run Polyspace Analysis on Code Generated with Embedded Coder” on page 6-2
. “Run Polyspace Analysis on S-Function Code” on page 6-35

6-44

Run Polyspace Analysis on Custom Code in C Function Block

Run Polyspace Analysis on Custom Code in C Function Block

You can run a Polyspace analysis on the custom C code in a C Function block from Simulink.
Polyspace checks the custom C code for errors and bugs while keeping the model specific information
such as design range specification, nature and number of inputs that are specified in the Simulink
model.

Prerequisites

Before you run Polyspace from Simulink, you must link your Polyspace and MATLAB installations. See
“Integrate Polyspace with MATLAB and Simulink” on page 5-2.

To open the model used in this example, in the MATLAB Command Window, run:

openExample('polyspace code prover/CScriptDemoExample')
open_system('psdemo model link sl cscript');

Open Model for Running Polyspace Analysis on Custom Code in C
Function Block

The model contains a C Function block called Command Strategy inside the controller

subsystem.
pos_im]
fbk_pos pos_cmd
pos cmd
sl
S strategy [
in_pressure Reduced precision
i 2
@ in_prassura " 1 o
Ren _p fault P faultt Pressura
Proseure , PreesureThd
a (O
faultz P fauli2
: i 3 t@
in_rotation
Rotation Fault Management FauliTable "(4)
P indax FaultTable
® synch_and_asynch_monitoring
C result
4)= - -y
in_battary_info
Battery
info Command strategy
» 7 1 La]
anghe_cmd -%)
5 ™ 3
in_rate
(Raq} ¥ crmid

Full precizion
rate

Controller Subsystem

6-45

6 Run Polyspace Analysis in Simulink

6-46

The Command Strategy block implements a look-up table using custom C code and outputs a value
result based on two inputs x and y.

Run Polyspace Analysis

Run Polyspace Analysis from Simulink Editor

Click the Apps tab and select Polyspace Code Verifier to open the Polyspace tab.

1

Select Bug Finder or Code Prover in the Mode section of the Polyspace tab. A Code Prover
analysis detects run-time errors while a Bug Finder analysis detects coding defects and coding
rule violations.

To run a Polyspace analysis on the custom C code in the C Function block, select Custom Code
Used in Model from the drop-down list in the Analyze section.

Analyze Code from [)
psdemo_model_link_s|_cscript ! Run
Custom Code Used in Model - Analysis

AMALYZE

To start the Polyspace analysis, click the Run Analysis button. The MATLAB Command Window
displays the progress of the analysis.

After the analysis, the Polyspace user interface opens with the results. You can choose to not
open the results automatically after the analysis by unselecting Open results automatically
after verification in Settings. To open the results after the analysis is finished, click the
Analysis Results button.

To see all results of the Polyspace analysis, click Clear active filters from the Showing drop-
down list in the Results List pane. If you run a Code Prover analysis, the results for the
controller subsystem contain two red checks and an orange check.

To organize the results by family, click = and select Family.

BResdbstiet .

All results v | TeNew [E]+ <@ 5> Showing29/29 w

Family < Information + File o
[E-Run-time Checdk 2 23

El-Red Check 2

--Illegall'y' dereferenced pointer 1

--Out of bounds array index 1

[=)-Global Variable
[H-Mot shared

To switch between a Bug Finder and Code Prover analysis, return to the Simulink Editor from the
Polyspace user interface. Switch between Bug Finder and Code Prover in the Mode section and
run the analysis again.

Run Polyspace Analysis on Custom Code in C Function Block

Run Polyspace Analysis from MATLAB

You can run a Polyspace Code Prover analysis on the custom code for this model from MATLAB Editor
or the Command Window using this code:

% Load the model 'psdemo model link sl cscript’
load system('psdemo model link sl cscript');
% Create a 'pslinkoptions' object

mlopts = pslinkoptions('psdemo model link sl cscript');

% Specify whether to run 'CodeProver' or 'BugFinder' Analysis
mlopts.VerificationMode = 'CodeProver';

% Specify custom code as analysis target and run the analysis
pslinkrun('-slcc', 'psdemo model link sl cscript',mlopts);

Identify Issues in C Code

To identify issues in the custom C code, use the information in the Result Details pane and the
Source pane of the Polyspace user interface. If you do not see these panes, go to Window > Show/
Hide View and select the missing pane. For details on the panes, see “Result Details in Polyspace
Desktop User Interface” on page 21-22 and “Source Code in Polyspace Desktop User Interface” on
page 21-17.

Identify C Function Block Inputs and Outputs in Source Pane

Polyspace wraps the code in the C Function block in a custom code wrapper. The inputs and outputs
of the C Function block are declared as global variables. The custom C code is called as a function.

/* Variables corresponding to inputs ..*/
// global In...
/* Variables corresponding to outputs*/
// global Out...
/* Wrapper functions for code in block */
// void ... (void){
/...
}

» The global variables corresponding to inputs start with In, such as
Inl psdemo_model link sl cscript 98 Command strategy.

* The global variables corresponding to outputs start with Out, such as
Outl psdemo model link sl cscript 98 Command strategy.

* The void-void function contains the custom C code with the input and output variables replaced
by the global variables. If you have multiple C Function blocks, then the code in each block is
wrapped in separate functions.

The global variables reflect all properties of the input and output of the C Function block, including
their data range, data type, and size. If you have multiple inputs, then the order of the global
variables is the same as the order of the input defined in the C Function block. This table shows the
input and output variables of the block in this example and their corresponding global variables in the
Source pane.

6-47

6 Run Polyspace Analysis in Simulink

6-48

Global Variable Name in Source Pane Scope Variable Name
in C Function
Block
Inl psdemo model link sl cscript 98 Command strat Input X
egy
In2 psdemo model link sl cscript 98 Command strat Input y
egy
OQutl psdemo model link sl cscript 98 Command stra Output result
tegy

Identify issues in the custom code by reviewing the wrapped code in the Source pane. Use the tooltip
in the Source pane and the information in the Result Details pane to fix the issues. This workflow
applies to Code Prover and Bug Finder analyses.

lllegally dereferenced pointer

The red check Illegally dereferenced pointer highlights the dereferencing operation after the for
loop.

tmp = *p + 5;

The Result Details pane states that the pointer *p is outside its bounds. To find the root cause of the
check, follow the life cycle of the pointer leading to the illegal dereferencing.

1 At the start of its life cycle, the pointer *p points to the first element of array which has 100
elements.
Then p is incremented 100 times, pointing *p to the nonexistent location array[100].
The dereferencing operation in tmp = *p+5; becomes illegal, causing a red check.

Out of Bounds array index

The red check Out of Bounds array index highlights the array indexing operation in the if
condition.

if (another_array[return val - i + 9] != 0)

The Result Details pane states that the size of another _array is 2 while the index value
return_val-i+9 ranges from 2 to 18. To find the root cause of the check, track the values of the
variables return_val and i using the tooltip. When you hover over any instance of the variables in
the Source pane, the tooltip is displayed.

The value of i is 100.

The value of return_val ranges from 93 to 109 because of the prevailing condition: if
((return_val > 92) && (return_val < 110)).

3 The index value (return_val-i+9) evaluates to a range of 2 to 18.
The index values are out of bounds for the array another array, causing a red check.

Overflow

The orange Overflow check highlights the assignment to return_val. The Result Details pane
states that the check is related to bounded input values. To find the root cause of the check, check the
data type and corresponding range of the variables by using the tooltip.

Run Polyspace Analysis on Custom Code in C Function Block

* The input values x and y correspond to these respective global variables

* Inl psdemo _model link sl cscript 98 Command strategy
* In2 psdemo model link sl cscript 98 Command strategy

» The first input x is an unbound unsigned integer. Because x is unbound, it has the full range of an
unsigned integer, which is from 0 to 65535.

* The second input y is a bounded unsigned integer ranging from 0 to 1023.

* X-y is assigned to the unbound signed integer return_val. Because return_val is unbound, it
has full range from -32768 to 32767.

* The range of x-y is 1023 to 65535, while the range of return_val is -32768 to 32767.
* Some possible values of x-y cannot fit into return_val, causing the orange check.

For details about interpreting results of a Polyspace Bug Finder analysis, see “Interpret Bug Finder
Results in Polyspace Desktop User Interface” on page 21-2.

Fix Identified Issues

Modify the custom C code or the model to fix the issues. You can fix a Polyspace check in several
ways. The examples here illustrate the general workflow of fixing Polyspace checks.

lllegally dereferenced pointer

You can address this check in several ways. Modify the C code so that a nonexistent memory address
is not accessed.
Return to the Simulink Editor and double-click on the C Function block to open the custom code.

2 Use the index operator on array to access a valid array index. You can access indices from 0 to
99 because array has 100 elements. Accessing indices beyond this range results in a run-time
error in Simulink.

// access any index between 0 to 99
tmp = array[50] + 5;

Alternatively, assign the address of a valid memory location to p before the dereferencing
operation. For example, *p can point to the 515 element in array.

// After the for loop, point p to a valid memory location
p = &(array[50]);

// ...

tmp = *p + 5;

Out of Bounds array index

You can address this check in several ways. Modify the code so that the size of another array[]
remains larger than or equal to the index value return val-i+9.

Return to the Simulink Editor and double-click on the C Function block to open the custom code.

2 Modify the prevailing condition on return_val so that the index value return val-i+9
always evaluates to 0 or 1.

if ((return_val > 91) && (return_val < 93))
//. ..

6-49

6 Run Polyspace Analysis in Simulink

6-50

Alternatively, declare another_ array with size 19.

int another_array[19];
Overflow

You can address this check in several ways as well. Modify the C code or the model so that the range
of the right side of the assignment operation remains equal to or larger than that of the left side.

1 Return to the Simulink Editor.

2 Saturate the input variables x and y in the model so that their difference can fit into a 16-bit
integer. The workflow for fixing Overflow by using saturation blocks is described in “Run
Polyspace Analysis on Custom Code in C Caller Blocks and Stateflow Charts” on page 6-37.

Alternatively, increase the size of return val in the custom C code to accommodate x-y.

1 Return to the Simulink Editor and double-click on the C Function block to open the custom code.
2 Declare return_val as a 32-bit integer.

int32 T return val;
For details about addressing Polyspace results, see “Address Results in Polyspace User Interface

Through Bug Fixes or Justifications” on page 22-2.

See Also
pslinkoptions | pslinkrun

More About

. “Run Polyspace Analysis on Custom Code in C Caller Blocks and Stateflow Charts” on page 6-37
. “Complete List of Polyspace Bug Finder Results”

Recommended Model Configuration Parameters for Polyspace Analysis

Recommended Model Configuration Parameters for Polyspace

Analysis

For Polyspace analyses, set the following configuration parameters before generating code. If you do
not use the recommended value for SystemTargetFile, you get an error. For other parameters, if
you do not use the recommended value, you get a warning.

Grouping

Command-Line

Name and Location in
Configuration

Code Generation

Name: SystemTargetFile (Simulink Coder)

Value: An Embedded Coder Target Language Compiler

(TLC) file.

For example ert.tlc or autosar.tlc.

Location: Code Generation
Name: System target file

Value: Embedded Coder target
file

Name: MatFilelLogging (Simulink Coder)

Value: 'off'

Location: Code Generation >
Interface

Name: MAT-file logging

Value: [C1 Not selected

Name: GenerateReport (Simulink Coder)

Value: 'on'

Location: Code Generation >
Report

Name: Create code-generation
report

Value: [¥] Selected

Name: IncludeHyperlinkInReport (Embedded
Coder)

Value: 'on'

Location: Code Generation >
Report

Name: Code-to-model

Value: [¥] Selected

Name: GenerateSampleERTMain (Embedded
Coder)

Value: 'off'

Location: Code Generation >
Templates

Name: Generate an example
main program

Value: [l Not selected

Name: GenerateComments (Simulink Coder)

Value: 'on'

Location: Code Generation >
Comments

Name: Include comments

Value: [¥] Selected

6-51

6 Run Polyspace Analysis in Simulink

Value: 'FixedStepDiscrete'

Grouping Command-Line Name and Location in
Configuration
Name: DefaultParameterBehavior (Simulink Location: Optimization
Coder)
Name: Default parameter
Value: 'Inlined’ behavior
Value: Inlined
Name: InitFltsAndDblsToZero (Simulink Location: Optimization
Coder)
Name: Use memset to
Optimization Value: 'on' initialize floats and doubles
to 0.0
Value: ['] Not selected
Name: ZeroExternalMemoryAtStartup (Embedded |Location: Optimization
Coder)
Name: Remove root level I/0
Value: 'off' zero initialization
Value: [¥] Selected
Name: SolverType (Simulink) Location: Solver
Value: 'Fixed-Step' Name: Type
Value: Fixed-step
Solver Name: Solver (Simulink) Location: Solver

Name: Solver

Value: discrete (no
continuous states)

6-52

Configure Polyspace Options in Simulink

Configure Polyspace Options in Simulink

Configure basic and advanced Polyspace options when analyzing generated code. You can reuse
existing configuration across multiple analysis.

To get started with Polyspace analysis in Simulink, see “Run Polyspace Analysis on Code Generated
with Embedded Coder” on page 6-2.

Configure Options
Set basic options
To set the basic Polyspace options in the Simulink Configuration Parameters window, on the Apps

tab, select Polyspace Code Verifier. Then, on the Polyspace tab, select Settings or Settings >
Polyspace Settings.

&4 Configuration Parameters: psdemo_model_link_sl/Configuration2 {Active) — O >
WModel Keferencing ~ pol i
Simulation Target olyspace oplions
¥ Code Generation Product mode: |Code Prover v
Optimization Settings from: | Project configuration -
Report) _ _ :
Comments Project configuration: Configure
Symbols » Data Range Management
Custom Code
Interface » Model reference
Code Style
Verification
Templates Output
Code Placement Output folder: |results_$ModelName$
Data Type Replacement _ . .
Make output folder name unique by adding a suffix
» Coverage
» HDL Code Generation
) . Results
» Design Verifier
Polyspace +| Open results automatically after verification -

OK Cancel Help Apply

Set advanced options

The advanced options appear on the Configuration pane that also appears in the Polyspace user
interface when you manually create a project for handwritten code.

To open the advanced options, on the Polyspace tab, select Settings > Project Settings.

6-53

6 Run Polyspace Analysis in Simulink

A" Polyspace

— O X
File Edit Tools Window Help
F1EY - |
_
psdemo_meodel_link_sl_config x 4 F B

Target & Compiler

Envircnment Settings
----- Inputs & Stubbing

----- Multitasking Target Language
----- Coding Standards & Code Metrics
----- Bug Finder Analysis

El- Cade Prover Verification C standard version defined-by-compiler ~

Source code language | C ~

Verification Assumptions T T

Check Behavior
Precision Compiler aeneric ~
“5ealing Target processor type | 32-bit Generic ~ || Edit
----- Reporting
----- Run Settings Compiler Behavior

----- Advanced Settings
g [] Division round dawn

Pack alignment value | defined-by-compiler ~

[] 1gnore pragma pack directives

Enum type definition defined-by-compiler v
Signed right shift Arithmetical ~
Management of size_t | defined-by-compiler i
Management of wchar_t | defined-by-compiler e

On this pane, you can specify advanced settings.

* In the Run Settings pane, select options to run the code analysis on a remote cluster.
Alternatively, in the Advanced Settings pane, use the option Run Bug Finder or Code
Prover analysis on a remote cluster (-batch) in the Other field.

If you use this option, after starting the analysis, you can follow the analysis progress on the

remote cluster through the Job Monitor window. On the Polyspace tab, select Remote Job
Monitor.

* In the Inputs & Stubbing pane, specify options to stub certain functions for the analysis and
then constrain the function output. Alternatively, in the Advanced Settings pane, use the options
Functions to stub (-functions-to-stub) and Constraint setup (-data-range-
specifications) in the Other field.

If a basic option in the Configuration Parameters window directly conflicts with an advanced option in
the Polyspace window, the former prevails. For instance, say you specify these options:

* “Settings from (C)”: You select this basic option Project configuration and MISRA C 2012
checking for generated code.

* Check MISRA (C:2012 (-misra3): You disable this advanced option.

Polyspace ignores the advanced option and checks for violations of MISRA C:2012 rules.

6-54

Configure Polyspace Options in Simulink

By default, the advanced options are saved in the project file modelname config.psprj in the
pslink config subfolder of the results folder. Use this project file to reuse the options associated
with the project..

Share and Reuse Configuration

Share the basic or advanced options across multiple models.

* Basic options — Share and reuse the options set in the Configuration Parameters window. See
“Share a Configuration with Multiple Models” (Simulink).

* Advanced options — Share and reuse the advanced options that are in a separate Polyspace
project. Share this project across multiple models. When reusing advanced Polyspace options that
are saved in a Polyspace project file, use a project file that is configured by using the Polyspace
App in the Simulink Editor, as shown in “Set advanced options” on page 6-53. Reusing a project
file that is not generated from the Simulink Editor can result in unexpected results.

You can specify the advanced options once, and then reuse the advanced options across multiple
models. Set the basic options in each model individually.

Set options from model

Set the advanced options as needed. To see where the associated project file is stored or to change

the file name, on the Polyspace window toolbar, click the 13 jcon.
Reuse options in another model

To reuse the advanced options in another model, open the open the model and open the Configuration
Parameters window. On the Polyspace tab, select Settings.

* Select Use custom project file. Provide the path to the *.psprj project file that you previously
created.

» To use the project settings, select Project configuration under Settings from.

If you want to check for additional issues, such as MISRA C: 2012 violations, select the options
Project configuration and MISRA C 2012 checking for generated code.

If you run an analysis from the command line, you can set these options with the pslinkoptions
function. See also pslinkoptions Properties.

See Also

More About

. “Run Polyspace Analysis on Code Generated with Embedded Coder” on page 6-2

. “Run Polyspace Analysis on Code Generated with TargetLink” on page 6-62

. “Default Polyspace Options for Code Generated with Embedded Coder” on page 6-57
. “Default Polyspace Options for Code Generated with TargetLink” on page 6-64

6-55

6 Run Polyspace Analysis in Simulink

How Polyspace Analysis of Generated Code Works

6-56

When you generate code from a Simulink model, the generated code can contain these components:

* initialize() functions that run before the simulation starts.

* terminate() functions that run after the simulation ends.

* step() functions that run in a loop to perform the simulation.

Additionally, the generated code might have a placeholder main () function that contains calls to the

above. You might edit the placeholder main () to fit your deployment purposes. For more information
about the main generated by Embedded Coder, see “Main Program” (Embedded Coder).

When you run Polyspace on generated code, Polyspace gathers this information from your code:

* initialize() functions
* terminate() functions

+ step() functions

» List of parameter variables
» List of input variables

When you run Code Prover, the software uses this information to generate a separate main()
function to facilitate the analysis. Regardless of the presence of the generated placeholder main(),
Polyspace uses its own main () function that performs these tasks:

1 [Initializes parameters by using the Polyspace option Parameters (-variables-written-
before-1loop).

2 Calls initialization functions by using the option Initialization functions (-functions-
called-before-loop).
3 Initializes inputs using the option Inputs (-variables-written-in-loop).

Calls the step function in a loop by using the option Step functions (-functions-called-
in-loop). By default, Polyspace assumes that the step function might be called an arbitrary
number of times in the loop. To specify the number of iterations in the loop for a more precise
Code Prover analysis, use the option -main-generator-bounded-1loop.

5 Calls the terminate function by using the option Termination functions (-functions-
called-after-loop).

The Polyspace generated main function might have this structure:

init parameters \\ -variables-written-before-loop

init fct() \\ -functions-called-before-loop
while(random) { \\ start main loop with one or more iterations
init inputs \\ -variables-written-in-loop
step fct() \\ -functions-called-in-loop

}

terminate fct() \\ -functions-called-after-loop

For C++ code generated with Embedded Coder, the initialize(), step(), and terminate()
functions and associated variables are either class members or have global scope.

Default Polyspace Options for Code Generated with Embedded Coder

Default Polyspace Options for Code Generated with Embedded
Coder

In this section...

“Default Options” on page 6-57

“Constraint Specification” on page 6-57

“Recommended Polyspace options for Verifying Generated Code” on page 6-58
“Hardware Mapping Between Simulink and Polyspace” on page 6-58

Default Options

For Embedded Coder code, the software sets the following verification options by default:

-sources path to source code

-D PST_ERRNO

-D main=main_rtwec

-I matlabroot\polyspace\include

-1 matlabroot\extern\include

-I matlabroot\rtw\c\libsrc

-1 matlabroot\simulink\include

-I matlabroot\sys\lcc\include
-functions-to-stub=[rtIsNaN, rtIsInf,rtIsNaNF,rtIsInfF]
-results-dir results

Note matlabroot is the MATLAB installation folder.

Constraint Specification

You can constrain inputs, parameters, and outputs to lie within specified ranges. Use these
configuration parameters:

° llInputH

* “Tunable parameters”

e “Output”

The software automatically creates a Polyspace constraints file using information from the MATLAB
workspace and block parameters.

You can also manually define a constraints file in the Polyspace user interface. See “Specify External
Constraints for Polyspace Analysis” on page 14-2. If you define a constraints file, the software
appends the automatically generated information to the constraints file you create. Manually defined
constraint information overrides automatically generated information for all variables.

The software supports the automatic generation of constraint specifications for the following kinds of
generated code:

* Code from standalone models
* Code from configured function prototypes

6-57

6 Run Polyspace Analysis in Simulink

6-58

* Reusable code
* Code generated from referenced models and submodels

Additional Information

See also “External Constraints on Polyspace Analysis of Generated Code” on page 6-59.

Recommended Polyspace options for Verifying Generated Code

For Embedded Coder code, the software automatically specifies values for the following verification
options:

* -main-generator

 -functions-called-in-loop

 -functions-called-before-loop

* -functions-called-after-loop

* -variables-written-in-loop

* -variables-written-before-loop

Embedded Coder performs a wraparound of the variables in the generated code that might overflow.
When running a Code Prover analysis of code generated by Embedded Coder, Polyspace uses these
options:

*+ -signed-integer-overflows warn-with-wrap-around

* -unsigned-integer-overflows allow

These options might have different default values when analyzing code that is not generated by

Embedded Coder. See Overflow mode for signed integer (-signed-integer-overflows)
and Overflow mode for unsigned integer (-unsigned-integer-overflows).

In addition, for the option - server, the software uses the value specified in the Send to Polyspace
server check box on the Polyspace pane. These values override the corresponding option values in
the Configuration pane of the Polyspace user interface.

You can specify other verification options for your Polyspace Project through the Polyspace
Configuration pane. See “Configure Polyspace Options in Simulink” on page 6-53.

Hardware Mapping Between Simulink and Polyspace

The software automatically imports target word lengths and byte ordering (endianness) from
Simulink model hardware configuration settings. The software maps Device vendor and Device type
settings on the Simulink Configuration Parameters > Hardware Implementation pane to Target
processor type settings on the Polyspace Configuration pane.

The software creates a generic target for the verification.

External Constraints on Polyspace Analysis of Generated Code

External Constraints on Polyspace Analysis of Generated Code

When you check generated code for bugs or run-time errors, you can choose whether to perform the
check for all values of an input or a specific range of values. You can extract the input range from the
Simulink model, or specify your own external constraints.

Likewise, you can use a fixed value for tunable parameters or a range of values. You can also check
whether output values fall within a specific range.

Extract External Constraints from Model

Consider this simple model with an Inport block, a Gain block, and an Outport block. Suppose the
signal in the Inport and Outport blocks and the gain parameter of the Gain block have a minimum and
maximum value.

1 o> > 1
@ o[> "D

You can analyze the code generated from this model with these minimum and maximum values. On
the Apps tab, select Polyspace Code Verifier. Then, on the Polyspace tab, select Settings. Specify
these configuration parameters:

* “Input” : Select Use specified minimum and maximum values. The Code Prover analysis
checks the generated code within the specified range of values from the Inport block. The Bug
Finder analysis uses this information to exclude false positives.

Default: This option is selected.
* “Tunable parameters”: Select Use specified minimum and maximum values.

Default: This option is not selected. The analysis uses the fixed gain value of the Gain block (the
value 2 in the example).

For the analysis to consider a range instead of a fixed value, the parameters must be tunable and
not inlined. See Default parameter behavior.

* “Output”: Select Verify outputs are within minimum and maximum values. The Code
Prover analysis creates a red check if the outputs exceed the range specified on the Outport block.
See also Correctness condition.

Default: This option is not selected. The Code Prover analysis does not check output values.
After analysis, to check if a constrained range value is used, see one of these files:

* Constraint specification XML file modelname _drs.xml in the folder results modelname
\modelname.

» Polyspace project file modelname.prpsj in the folder results _modelname.

Open this file in the Polyspace user interface. In the project configuration, see the extracted
constraints specified for the option Constraint setup (-data-range-specifications).

6-59

6 Run Polyspace Analysis in Simulink

Storage Classes Supported for Constraint Extraction From Simulink
Model

To allow constraint extraction from the Simulink model, the signals and parameters must have data
types in specific storage classes. For details on storage classes, see “Choose Storage Class for
Controlling Data Representation in Generated Code” (Embedded Coder).

Common Storage Classes

Storage Class Signal Constraint Supported |Parameter Constraint
Supported

Auto Yes Yes

ExportedGlobal Yes Yes

ImportedExtern Yes Yes

ImportedExternPointer Yes Yes

Model default Yes Yes

Other Storage Classes

Storage Class Signal Constraint Supported |Parameter Constraint
Supported
BitField Yes Yes
CompilerFlag No No
Const No Yes
ConstVolatile No Yes
Define No No
ExportToFile Yes Yes
FileScope Yes No
GetSet No No
ImportedDefine No No
ImportFromFile No No
Struct No No
Volatile Yes Yes

Specify Custom External Constraints

In some instances, you might need to specify a custom set of constraints on your generated code. For
instance, you might be integrating the generated code with an existing code base, which imposes a
set of custom constraints.

When analyzing the generated code, specify custom external constraints through the Polyspace
Configuration window:

1 In the Simulink Configuration Parameters window, locate the Polyspace tab, and then click
Configure to open the Polyspace Configuration window.

6-60

External Constraints on Polyspace Analysis of Generated Code

2 In the Constraint Setup field, located in the Inputs & Stubbing node, specify the custom
external specification XML file.

¥ Polyspace
File Edit Tools Window Help
CIEY Q]
simple_gain_config x|
& Target & Compiler Inputs & Stubbing
- Macros
- Environment Settings
- Multitasking LB
- Coding Standards & Code Metrics Constraint setup
Bug Finder Analysis
=-Code Prover Verification
Verification Assumptions Stubbing
Check Behavior
- Precision
“Sealing
Reporting
-~ Run Settings
- Advanced Settings

4 p B

Edit
[1gnore default intialization of global variables

Functions to stub Function =

I+
«l
)

Generate stubs for Embedded Coder lookup tables

Filtering
Generate results for sources and | source-headers ~
Do not generate results for include-folders ~

You can create and edit a custom external constraint template through the Polyspace user interface.
See “Specify External Constraints for Polyspace Analysis” on page 14-2.

See Also

More About

. “Default Polyspace Options for Code Generated with Embedded Coder” on page 6-57

. “Choose Storage Class for Controlling Data Representation in Generated Code” (Embedded
Coder)

. “Specify External Constraints for Polyspace Analysis” on page 14-2
. “External Constraints for Polyspace Analysis” on page 14-6

6-61

6 Run Polyspace Analysis in Simulink

Run Polyspace Analysis on Code Generated with TargetLink

To detect bugs and runtime errors, run a Polyspace analysis after generating code from Simulink
models by using TargetLink. Run the analysis from the Simulink Editor window. Manually setting up a
Polyspace project is not necessary. If you use Embedded Coder to generate code, see “Run Polyspace
Analysis on Code Generated from Simulink Model” on page 6-15.

Configure and Run Analysis

Configure code analysis

On the Apps tab, select Polyspace Code Verifier. Then, on the Polyspace tab:

* Select the product to run: Bug Finder or Code Prover. A Code Prover analysis detects run-time
errors while a Bug Finder analysis detects coding defects and coding rule violations.

* Select Settings. Change default values of these options if needed.
» “Settings from (C)”: Enable checking of MISRA or JSF® coding rules in addition to the default

checks.

* “Output folder”: Specify a dedicated folder for results. The default analysis runs Code Prover
on generated code and saves the results in a folder results modelName in the current
working folder.

* “Enable additional file list”: Add C files that are not part of the generated code.
* “Open results automatically after verification”

Analyze code
To analyze generated code:

1 Choose to analyze code generated from a TargetLink Subsystem. You cannot analyze code
generated from the entire model.

The Analyze Code from field shows the top model. Unpin the content of this field and then
select the TargetLink Subsystem.

2 Select Settings > Analyze TargetLink Code. Then, select Run Analysis.

bﬁ testToolstrips * - Simulink prerelease use

POLYSPAGE x

= Analyze Code from - = &
EC > B 8 X
Targetlink Subsystem < i i -
Code Setfings Run Analysis Open Earlier Access Remove Add i
Fraver » - Code Generated as Top Model Analysis Results Results Highlighting Annotation {i]f Delete Annotation
MODE i ; REVIEW RESULTS ANNOTATE BLOCKS
— Polyspace Settings
a test] Polyspace-specific setfings for this medel
: ®
2 ~= Project Settings
E Polyspace project configuration
il S
% = Analyze TargetLink Code
= El Analyze C code generated from TargetLink model
o
=Hh] ;
Remove Polyspace Configuration from Model
Allow sharing of models with users who do not have Polyspace license

You can follow the progress of the analysis in the MATLAB command window.

6-62

Run Polyspace Analysis on Code Generated with TargetLink

The results open automatically unless explicitly disabled. By default, the results are saved in a folder
results ModelName in the current folder. Each new run overwrites previous results. You can
change these behaviors or save the results to a Simulink project using appropriate configuration
parameters.

Review Analysis Results
Review result in code

The results appear on the Results List pane. Click each result to see the source code and details on
the Result Details pane.

Navigate from code to model

Links in code comments show blocks that generate the subsequent lines of code. To see the blocks in
the model, click the block names.

Fix issue
Investigate whether the issues in your code are related to design flaws in the model.

For instance, you might need to constrain the range of signal from Inport blocks. See “Work with
Signal Ranges in Blocks” (Simulink). If a flagged issue is known or justified, then annotate that
information in the relevant blocks. To annotate a block in Simulink Editor, right-click the block and
use the contextual menu.

6-63

6 Run Polyspace Analysis in Simulink

Default Polyspace Options for Code Generated with TargetLink

In this section...

“TargetLink Support” on page 6-64
“Default Options” on page 6-64

“Lookup Tables” on page 6-64

“Data Range Specification” on page 6-65
“Code Generation Options” on page 6-65

TargetLink Support

The Windows version of Polyspace Bug Finder is compatible with dSPACE® Data Dictionary and
TargetLink Code Generator.

Polyspace Bug Finder does support CTO generated code. However, for better results, MathWorks
recommends that you disable the CTO option in TargetLink before generating code. For more
information, see the dSPACE documentation.

Because Polyspace Bug Finder extracts information from the dSPACE Data Dictionary, you must
regenerate the code before performing an analysis.

Default Options

Polyspace sets the following options by default:

-sources path to source_code
-results-dir results folder name

-I path _to source code

-D PST_ERRNO

-I dspaceroot\matlab\TL\SimFiles\Generic
-I dspaceroot\matlab\TL\srcfiles\Generic
-I dspaceroot\matlab\TL\srcfiles\i86\LCC
-I matlabroot\polyspace\include

-I matlabroot\extern\include

-I matlabroot\rtw\c\libsrc

-I matlabroot\simulink\include

-I matlabroot\sys\lcc\include
-functions-to-stub=[rtIsNaN, rtIsInf, rtIsNaNF,rtIsInfF]
-scalar-overflows-behavior wrap-around
-boolean-types Bool

Note dspaceroot and matlabroot are the dSPACE and MATLAB tool installation directories
respectively.

Lookup Tables

By default, Polyspace provides stubs for the lookup table functions. The dSPACE data dictionary is
used to define the range of their return values. A lookup table that uses extrapolation returns full
range for the type of variable that it returns. You can disable this behavior from the Polyspace
configuration menu.

6-64

Default Polyspace Options for Code Generated with TargetLink

Data Range Specification

You can constrain inputs, parameters, and outputs to lie within specified data ranges. See “Work with
Signal Ranges in Blocks” (Simulink).

The software automatically creates a Polyspace constraints file using the dSPACE Data Dictionary for
each global variable. The constraint information is used to initialize each global variable to the range
of valid values as defined by the min..max information in the data dictionary. This information allows
Polyspace software to model real values for the system during analysis. Carefully defining the min-
max information in the model allows the analysis to be more precise, because only the range of real
values is analyzed.

Note Boolean types are modeled having a minimum value of 0 and a maximum of 1.

You can also manually define a constraint file in the Polyspace user interface. See “Specify External
Constraints for Polyspace Analysis” on page 14-2. If you define a constraint file, the software
appends the automatically generated information to the constraint file you create. Manually defined
constraint information overrides automatically generated information for all variables.

Constraints cannot be applied to static variables. Therefore, the compilation flags -D static=is set
automatically. It has the effect of removing the static keyword from the code. If you have a problem
with name clashes in the global name space, either rename the variables or disable this option in
Polyspace configuration.

Code Generation Options

From the TargetLink Main Dialog, it is recommended to:

» Set the option Clean code
* Unset the option Enable sections/pragmas/inline/ISR/user attributes

* Turn off the compute to overflow (CTO) generation. Polyspace can analyze code generated with
CTO, but the results may not be as precise.

When you install Polyspace, the tlcgOptions variable is updated with 'PolyspaceSupport’,
‘on' (see variable in 'C:\dSPACE\Matlab\Tl\config\codegen\tl pre codegen hook.m'
file).

See Also

Related Examples
. “Run Polyspace Analysis on Code Generated with TargetLink” on page 6-62

External Websites
. dSPACE - TargetLink

6-65

https://www.dspace.com/en/inc/home/products/sw/pcgs/targetlink.cfm

6 Run Polyspace Analysis in Simulink

Troubleshoot Navigation from Code to Model

When you run Polyspace on generated code, in the analysis results, you see links in code comments.
The links show names of blocks that generate the subsequent lines of code. To see the blocks in the
model, you click the block names in the links.

f* Sum: "<56>/Sum' incorporates:
* TnitDelay: '«S6>/Unit Delay'
*/

N Code with

S5um = (intlé T) (in_pressure - psdemo model link s]1 DWork.UnitDelay DSTATE b)r—— p .,
e ——— e possible overflow

(orange)

nt16 Block
int16 () »| responsible for
B fault1 Code

|

nt16

nt16
N
sf16_E1 nt16
wnt16

: A€
(G Tl

This topic shows the issues that can happen in navigation from code to model.

Links from Code to Model Do Not Appear

See if you are looking at source files (. c or . cpp) or header files. Header files are not directly
associated with blocks in the model and do not have links back to the model.

Links from Code to Model Do Not Work

You may encounter issues with the back-to-model feature if:

* Your operating system is Windows Vista® or Windows 7; and User Account Control (UAC) is
enabled or you do not have administrator privileges.

* You have multiple versions of MATLAB installed.
To reconnect MATLAB and Polyspace:

1 Close Polyspace.
2 At the MATLAB command-line, enter pslinkfun('enablebacktomodel').

6-66

Troubleshoot Navigation from Code to Model

When you open your Polyspace results, the hyper-links will highlight the relevant blocks in your
model.

Your Model Already Uses Highlighting

If your model extensively uses block coloring, the coloring from this feature may interfere with the
colors already in your model. You can change the color of blocks when they are linked to Polyspace
results. For instance, to change the color to magenta, use this command:

color = 'magenta’;

HILITE DATA = struct('HiliteType', 'find', 'ForegroundColor', 'black',
'BackgroundColor', color);

set param(0, 'HiliteAncestorsData', HILITE DATA)

The color can be one of the following:

« ‘'cyan'
* 'magenta’

* 'orange'

* 'lightBlue’
* 'red'

* 'green'

* 'blue'

 ‘'darkGreen'

6-67

6 Run Polyspace Analysis in Simulink

Polyspace Support of MATLAB and Simulink from Different
Releases

Polyspace support of MATLAB or Simulink varies depending on their respective releases. Polyspace
fully supports MATLAB and Simulink from the same release, offering complete integration with these
software. Polyspace supports MATLAB and Simulink from earlier releases with cross-release
integration. See the table.

Polysp |Polysp [Polysp |Polysp |Polysp |Polysp |Polysp |Polysp |Polysp |Polysp |Polysp
ace ace ace ace ace ace ace ace ace ace ace
Releas |Releas |Releas |Releas |Releas |Releas |Releas |Releas |Releas |Releas |Releas

e e e e e e e e e e e
R2018 |R2018 [R2019 |R2019 [R2020 |R2020 |[R2021 |R2021 |R2022 |R2022 |R2023
a b a b a b a b a b a

MATL |Compl |“Partia |“Partia |“Partia |“Partia |* on|* on|* onf* on|* onl* on

AB or|ete 1 1 1 1 page |page |page |page |page |page

Simuli |Integr |Integr |Integr |Integr |Integr [6-71 |6-71 [6-71 |6-71 |[6-71 |6-71

nk ation |ation” |ation” |ation” |ation”

Releas |on on on on on

e page |page |page |page |page

R2018 |6-70 |6-71 [6-71 |6-71 |[6-71

a

MATL |* on|Compl|“Partia | “Partia | “Partia | “Partia [* on|* on|* on|* on(* on

AB or|page |ete 1 1 1 1 page |page |page |page |page

Simuli (6-71 |Integr |Integr |Integr |Integr |Integr [6-71 |6-71 |6-71 |6-71 |6-71

nk ation |ation” |ation” |ation” |ation”

Releas on on on on on

e page |page |page |page |page

R2018 6-70 |6-71 |6-71 |6-71 |6-71

b

MATL (* on|* on|Compl|“Partia |“Partia |“Partia |* on|* on|* onl* on(* on

AB or|page |page |ete 1 1 1 page |page |page |page |page

Simuli [6-71 |6-71 |Integr |Integr |Integr |Integr |6-71 [6-71 |6-71 |[6-71 |6-71

nk ation |ation” |ation” |ation”

Releas on on on on

e page |page |page |page

R2019 6-70 |6-71 |6-71 [6-71

a

MATL |* on|* on(* on|Compl{* on|* on[* on|* onf* on|* onl* on
AB or|page |page |page |ete page |page |page |page |page |page |page
Simuli {6-71 |6-71 |[6-71 |Integr|6-71 |6-71 |6-71 |[6-71 |6-71 |[6-71 |6-71

nk ation
Releas on

e page
R2019 6-70
b

6-68

Polyspace Support of MATLAB and Simulink from Different Releases

MATL (* on|* on|* on|* on|Compli* on|* on|* on|* onl* on{* on
AB or|page |page |page |page |ete page |page |page |page |page |page
Simuli [6-71 |6-71 |[6-71 |6-71 |Integr|6-71 |6-71 |[6-71 |6-71 |[6-71 |6-71
nk ation

Releas on

e page
R2020 6-70
a

MATL (* on|* on|* on|* onl* on|{Compl|“Cross |“Cross |“Cross |“Cross |“Cross
AB or|page |page |page |page |page |ete - - - - -
Simuli [6-71 [6-71 |6-71 |6-71 |6-71 |Integr |Releas |Releas |Releas |Releas |Releas

nk ation |e e e e e
Releas on Integr |Integr |[Integr |[Integr |Integr
e page |ation” |ation” |ation” |ation” |ation”
R2020 6-70 |on on on on on

b page |page |page |page |page

6-70 |6-70 |6-70 [6-70 |6-70

MATL (* on|* on|* on|* onl* on[* on|Compl|“Cross |“Cross |“Cross |“Cross
AB or|page |page |page |page |page |page |ete - - - -
Simuli (6-71 [6-71 |6-71 |6-71 |6-71 |6-71 |Integr |Releas |Releas |Releas |Releas

nk ation |e e e e
Releas on Integr |Integr |Integr |Integr
e page |ation” |ation” |ation” |ation”
R2021 6-70 |on on on on

a page |page |page |page

6-70 |6-70 |6-70 [6-70

MATL [* on|* on|* onl* onl* onl* onl* on|Compl|“Cross |“Cross |“Cross
AB or|page |page |page |page |page |page |page |ete - - -
Simuli (6-71 [6-71 |6-71 |6-71 |6-71 |6-71 [6-71 |Integr |Releas |Releas |Releas

nk ation |e e e
Releas on Integr |Integr |Integr
e page |ation” |ation” |ation”
R2021 6-70 |on on on
b page |page |page

6-70 |6-70 |6-70

MATL [* on|* on|* onl* onl* onl* onl* onl* on|Compl|“Cross |“Cross

AB or|page |page |page |page |page |page |page |page |ete - -
Simuli (6-71 [6-71 |6-71 |6-71 |6-71 |6-71 [6-71 |6-71 |Integr |Releas |Releas

nk ation |e e

Releas on Integr |Integr

e page |ation” |ation”

R2022 6-70 |on on

a page |page
6-70 |6-70

6-69

6 Run Polyspace Analysis in Simulink

6-70

MATL (* on|* on|* on|* onl* on(* on|* on|* on|* on|Compl|“Cross

AB or|page |page |page |page |page |page |page |page |page |ete -
Simuli (6-71 [6-71 |6-71 |6-71 |6-71 |6-71 [6-71 |6-71 |6-71 |Integr |Releas

nk ation |e

Releas on Integr

e page |ation”

R2022 6-70 |on

b page
6-70

MATL |* on|* on|* on|* on[* on|* on[* on|* on* on|* on|Compl
AB or|page |page |page |page |page |page |page |page |page |page |ete
Simuli {6-71 |6-71 |[6-71 |6-71 |6-71 |6-71 |6-71 [6-71 |6-71 |6-71 |Integr

nk ation
Releas on

e page
R2023 6-70
a

Note The empty cells (*) in the preceding table represent MATLAB and Simulink support without
integration. See “Navigate Back to Model” on page 6-71.

Complete Integration

If MATLAB and Polyspace are from the same release, you can integrate them after installation by
calling polyspacesetup. See “Same Release of Polyspace and MATLAB” on page 5-2.

You can:

* Run a Polyspace analysis from the Simulink Editor or from the MATLAB Command Window on C/C
++ code that is generated from a model or included as custom code in a model. Annotate Simulink
blocks and navigate back-to-model from the Polyspace user interface.

See “Bug Finder Analysis in Simulink”.

* Run a Polyspace analysis on C/C++ code that is generated from MATLAB code by using the
MATLAB Coder App (if you have Embedded Coder).

See “Bug Finder Analysis in MATLAB Coder”.
* Run a Polyspace analysis on handwritten C/C++ code by using MATLAB scripts.

See “Bug Finder Analysis with MATLAB Scripts”.

Cross-Release Integration

You can integrate Polyspace with MATLAB or Simulink from a release after R2020b. See “MATLAB
Release Earlier Than Polyspace” on page 5-3.

This cross-release integration offers limited functionalities. In a cross-release workflow, you can:

» To run a Polyspace analysis on C/C++ code generated by using Embedded Coder, in the MATLAB
Command Window, call these functions:

Polyspace Support of MATLAB and Simulink from Different Releases

* pslinkrunCrossRelease
* pslinkfun
* pslinkoptions
* Navigate back to your Simulink model from the Polyspace user interface.

You cannot:

» Start a Polyspace analysis of generated code from the Simulink Editor or MATLAB Coder App.

» Start a Polyspace analysis of the custom code included in models or handwritten C/C++ code in
the MATLAB Command Window.

» Start a Polyspace analysis of C/C++code generated from MATLAB code in the MATLAB Command
Window.

See “Run Polyspace on Code Generated by Using Previous Releases of Simulink” on page 6-12.

Partial Integration

You can partially integrate Polyspace with MATLAB or Simulink from a release earlier than R2020b.
See “MATLAB Release Earlier Than Polyspace” on page 5-3.

This cross-release integration offers limited functionalities. In a cross-release workflow, you can:

* To run a Polyspace analysis on C/C++ code generated by using Embedded Coder, in the MATLAB
Command Window, call these functions:
* pslinkrun
o pslinkfun
* pslinkoptions
* Navigate back to your Simulink model from the Polyspace user interface.

You cannot:

» Start a Polyspace analysis of generated code from the Simulink Editor or MATLAB Coder App.

» Start a Polyspace analysis of the custom code included in models or handwritten C/C++ code in
the MATLAB Command Window.

» Start a Polyspace analysis of C/C++code generated from MATLAB code in the MATLAB Command
Window.

Navigate Back to Model

You can navigate back to your Simulink model from the Polyspace user interface without integrating
Polyspace into your MATLAB or Simulink. Polyspace does not integrate with MATLAB and Simulink if:

* Your MATLAB or Simulink is from a more recent release than your Polyspace.
* Your MATLAB or Simulink is more than four releases behind your Polyspace.

Some specific releases of MATLAB or Simulink do not integrate with Polyspace. See the table.

To navigate back to your model from the Polyspace user interface without integrating Polyspace and
MATLAB or Simulink:

6-71

6 Run Polyspace Analysis in Simulink

6-72

+ Identify the comments in your code that act as links to the Simulink model. In the Tools >
Preferences > Miscellaneous tab, select your code generation tool from the context menu Code
comments that act as code-to-model links. Polyspace recognizes Embedded Coder, MATLAB
Coder, and TargetLink. If you use a different code generating tool, select User Defined. In the
field Comments beginning with, specify prefixes of the code comments that act as links.

* In the Source pane of the Polyspace user interface, click the code comments that appear as
hyperlinks.

See Also
polyspacesetup | pslinkrunCrossRelease

More About

. “Integrate Polyspace with MATLAB and Simulink” on page 5-2

. “Run Polyspace on Code Generated by Using Previous Releases of Simulink” on page 6-12
. “Fix Issues When when Integrating Polyspace with MATLAB and Simulink” on page 32-65

Run Polyspace Analysis in MATLAB
Coder

7 rRun Polyspace Analysis in MATLAB Coder

Run Polyspace on C/C++ Code Generated from MATLAB Code

7-2

After generating C/C++ code from MATLAB code, you can independently check the generated code
for:

* Bugs or defects and coding rule violations: Use Polyspace Bug Finder.

* Run-time errors: Use Polyspace Code Prover.

Whether you generate code in the MATLAB Coder app or use codegen, you can follow the same
workflow for checking the generated code.

This tutorial uses the MATLAB Coder example averaging filterin polyspaceroot\help
\toolbox\codeprover\examples\matlab coder. Here, polyspacroot is the Polyspace
installation folder, for instance, C:\Program Files\Polyspace\R2023a. The example shows a
Code Prover analysis. You can follow a similar workflow for Bug Finder.

Prerequisites
To run this tutorial:
* You must have an Embedded Coder license. The MATLAB Coder app does not show options for

running Polyspace unless you have an Embedded Coder license.

* You must be familiar with how to open and use the MATLAB Coder app or the codegen command.
Otherwise, see the MATLAB Coder Getting Started.

* You must link your Polyspace and MATLAB installations. See “Integrate Polyspace with MATLAB
and Simulink” on page 5-2.

Run Polyspace Analysis

In the MATLAB Coder app, generate code from the file averaging filter.m and analyze the
generated code.

1 Generate code.

From the entry-point function in the file, generate standalone C/C++ code (a static library,
dynamically linked library, or executable program) in the MATLAB Coder app. The function has
one input. Explicitly specify a data type for the input, for instance, a 1 X 100 vector of type
double, or provide a file for deriving data types.

2 Analyze the generated code.

After code generation, open the Polyspace pane and click Run.

Run Polyspace on C/C++ Code Generated from MATLAB Code

E] MATLABE Coder - averaging_filter.prj

2 Generate Code GENERATE v VERIFY CODE

Product mode: | Code Prover ~
Results type: | Based on Polyspace configuration ~

Output folder: | results_averaging_filter

P Advanced Settings

v ol W R
[A ave
[5 ave
[£]

[main.c 1
[& rt_nonfinite.c

El siGetinf.c Target Build Log | Variables
[rtGethaM.c Variable
averaging_filter_initialize.h
averaging_filter_terminate.h

=3

Type Size

=

=

averaging_filter_types.h * double 1

averaging_filter.h =

B main.h ¥ double 15

rt_nonfinite.h =

:gzt::::lh buffer double Tex1

e b v = v
(Next)

If the analysis is completed without errors, the Polyspace results open automatically. If you close
the results, you can reopen them from the final page in the app, under the section Generated
Output. The results are stored in a subfolder results averaging filter in the folder
containing the MATLAB file.

To script the preceding workflow, run:

% Generate code
matlabFileName = fullfile(polyspaceroot, 'help',...
‘toolbox', 'codeprover', 'examples', 'matlab_coder', 'averaging filter.m');
codegenFolder = fullfile(pwd, 'codegenFolder');
codegen(matlabFileName, '-config:lib', '-c', '-args',
{zeros (1,100, 'double')}, '-d', codegenFolder);

% Configure Polyspace analysis

opts = pslinkoptions('ec');
opts.ResultDir = [tempdir 'results'];
opts.OpenProjectManager = 1;

% Run Polyspace
[polyspaceFolder, resultsFolder] = pslinkrun('-codegenfolder', codegenFolder, opts);

7 rRrun Polyspace Analysis in MATLAB Coder

Review Analysis Results

After analysis, the Results List pane shows a list of run-time checks. For an explanation of the result
colors, see “Code Prover Result and Source Code Colors” (Polyspace Code Prover).

Review the results and determine whether to fix the issues.

1

Filter out results that you do not want to review. For instance, you might not want to see the
green checks.

See an overview of the results on the Dashboard pane. Click the orange section of the pie chart
to filter the list of results on the Results List pane to the one orange check. Click this orange
Overflow check and see the source code for the operation that can overflow.

If results are grouped by family, to see a flat list, on the Results List pane, from the E-
dropdown, select None.

Green (82)

Check distribution
Proven: 99%

Orange (1)

v | JeNew [E]v <@ 5> Showing 1/50 v
Family:... ¥ Group o Check < File ~1 ¥ Function

T i e P

f* Compute the current average value of the window and */
/* write result */
b_y = buffer[0];

buffer[l + k] = dv0[k];

b_y = buffer[k + 1];

Find the root cause of each run-time error.

On the Source pane, use right-click navigation tools and tooltips to identify the root cause of the
check. In this case, you see that the + operation overflows because Polyspace makes an
assumption about the input array to the function. The assumption is that the array elements can
have any value allowed by their double data type. The tooltip on the line buffer[0] = x[i]
shows the assumed range.

Run Polyspace on C/C++ Code Generated from MATLAB Code

f* Rdd a new sample wvalue to the buffer */
buffer[0] = x[i]*

/¢ Con| Assignment to element of static array (float 64): [-1.7977E 08 _1.7977E 0]
S* owri

b_y = bj aray size: 16

for (k |array index value: 0

""]:-}uf-tle Press "F2" for foous

by #= buffer[k + 1];

}

With an Embedded Coder license, you can easily trace back from the generated C code to the
original MATLAB code. See “Interactively Trace Between MATLAB Code and Generated C/C++

Code” (Embedded Coder).

Run Analysis for Specific Design Range

You can check the generated code for a specific range of inputs. Range specification helps narrow
down the default assumption that inputs are full-range.

To specify a range for inputs:
1 Open the analysis configuration.

In the Polyspace user interface, switch to the Polyspace project created for the analysis. Select
Window > Reset Layout > Project Setup. On the Project Browser pane, click the project

configuration.

VSE|

+AO W% LT HE
=13 averaging_filter
--|_E| Project Source Files
E Project Indude Folders
=3 averaging_filter
EIE Module Source Files
[averaging_filter
EIE Configuration
L T
=- 3 Result
averaging_filter [Completed]

lﬁj Project Browser J Results List

7-5

Run Polyspace Analysis in MATLAB Coder

2 Specify a design range for the inputs.

In the Configuration pane, on the Inputs & Stubbing node, set up your constraints. Click Edit
beside Constraint setup. Constrain the range of the first input to [-100..100].

=3

Mame File

Main Generator Called Init Mode Init Range

El---L.Iser Defined Functions

E---aueraging_ﬁlt&r{}l averaging_filter.c |MAIM GEMERATOR ..
E---averaging_ﬁlter.argl averaging_filter.c INIT W
i..averaging_filter. * arg1 averaging_filter.c INIT s -100..100
[#-averaging_filter.arg2 averaging_filter.c INIT

You can overwrite the default constraint template or save the constraints elsewhere. For
information on the columns in this window, see “External Constraints for Polyspace Analysis” on

page 14-6.
3 Rerun the analysis from the Coder app (or at the MATLAB command line) and see the results.
On the Dashboard pane, you do not see the previous orange overflow anymore.
Check distribution
Proven: 100%:
Green (83)
See Also
pslinkrun
More About

L]

“Configure Advanced Polyspace Options in MATLAB Coder App” on page 7-7

Configure Advanced Polyspace Options in MATLAB Coder App

Configure Advanced Polyspace Options in MATLAB Coder App

Before analyzing generated code with Polyspace in the MATLAB Coder App, you can change some of
the default options. This topic shows how to configure the options and save this configuration.

For getting started with Polyspace analysis in the MATLAB Coder App, see “Run Polyspace on C/C++
Code Generated from MATLAB Code” on page 7-2.

Configure Options

['2] MATLAB Coder - averaging_filter.prj - O >
P2 Generate Code GENERATE » VERIFY CODE
¥ So
avel
Product mode: | Code Prover ~
Results type: | Based on Polyspace configuration -

Output folder: | results_averaging_filter

* Advanced Settings

Polyspace Configuration

Reuse existing configuration

F Temnplate configuration file: | ging_filter\averaging_filter.psprj |
ave

[ave Update configuration: Configure

=]

B ma Check code generation options: | On (proceed with warnings) ~

[rr

B nG Results

B e

ave Make output folder name unique by adding a suffix

B ave Open results automatically

B ave

ave o

ma ’v Run
r_r

B G

nG

rtwtypes.h

4| report midat buffer doukle 16%1

rtw_proj trmw

The default analysis runs Code Prover based on a default project configuration. The results are stored
in a folder result_project name in the current working folder.

You can change these options in the MATLAB Coder App itself:

* Product mode: Select Code Prover or Bug Finder.

* Results type: Check for MISRA C:2004 (MISRA AC AGC) or MISRA C:2012 rule violations, in
addition to or instead of the default checkers.

7-7

7 rRun Polyspace Analysis in MATLAB Coder

* Output folder: Choose an output folder name. To save the results of each run in a new folder,
under Advanced Settings, select Make output folder name unique by adding a suffix.

* Check code generation options: Choose to see warnings or errors if the code generation uses
options that can result in imprecise Code Prover analysis.

For instance, if the code generation setting Use memset to initialize floats and doubles to 0.0
is disabled, Code Prover can show imprecise orange checks because of approximations. See
“Orange Checks in Polyspace Code Prover” (Polyspace Code Prover).

To see the other default options or update them, under Advanced Settings, click the Configure
button. You see the options on a Configuration pane.

For more information on the options, see Bug Finder Analysis Options or Code Prover Analysis
Options (Polyspace Code Prover).

Share and Reuse Configuration

If you change some of the default options in the Configuration pane, your updated configuration is
saved as a .psprj file in the results folder. Using this file, you can reuse your configuration across
multiple MATLAB Coder projects.

Reuse Configuration in Coder App

To reuse a previous configuration in the current project opened in the MATLAB Coder App, under
Advanced Settings, select Reuse existing configuration. For Template configuration file,
provide the .psprj file that stores the previous configuration.

The Results type option in the MATLAB Coder app still shows Based on Polyspace configuration
but the configuration used is the one that you provided.

Reuse Configuration on Command Line

At the MATLAB command line, you create an options object with the pslinkoptions function. You
modify the analysis options by using the properties of this object and then run analysis with the
pslinkrun function.

opts = pslinkoptions('ec');
pslinkrun('-codegenfolder', codegenFolder, opts);

You can associate advanced analysis options set in a . psprj file with the options object. Use the
properties EnablePrjConfigFile and PrjConfigFile.

opts.EnablePrjConfigFile = true;
opts.PrjConfigFile = 'C:\Polyspace\config.psprj';

For more information, see pslinkoptions Properties.

See Also
pslinkoptions

Configure Advanced Polyspace Options in MATLAB Coder App

More About
. “Run Polyspace on C/C++ Code Generated from MATLAB Code” on page 7-2

Configure Analysis on Servers

11

Run Polyspace Analysis on Servers

8 =Run Polyspace Analysis on Servers

Run Polyspace Bug Finder on Server and Upload Results to
Polyspace Access Web Interface

Polyspace Bug Finder Server checks C/C++ code for defects and coding standard violations, and then
uploads findings to a web interface for code review.

You can run Bug Finder as part of continuous integration. Set up scripts that run a Bug Finder
analysis at regular intervals or based on new code submissions. The scripts can upload the analysis
results for review in the Polyspace Access web interface and optionally send emails to owners of
source files with Polyspace findings. The owners can open the web interface to review only the new
findings from their submission, and then fix or justify the issues.

In a typical project or team, Polyspace Bug Finder Server runs periodically on a few testing servers
and uploads the results for review. Each developer and quality engineer in the team has a Polyspace
Bug Finder Access license to view the results in the web interface for investigation and bug fixing.

ay &y &
Developer Team Lead/ QA
Manager Engineer

oy €cceo

I
I
i
I
:
Developer !
I
I
I
I
i
|

Build Engineer
Developer Chcoge' Web Browser
ecK-Ins
- S |

~. ! [Bulld automation 1 tool | T S
e B ! ' : : !
~ | ! | |
o> ~_! v 7 E Results ! Code Prover |
ﬂ \‘I\\ f _ Results !

S 1
SN Source code PR . i . !
Developer | = polyspace-bug-finder-server ! | |
P P Repository | | Bug Finder !
P ~ polyspace-access -upload : | Results :

~] 1
-~ 1
o - ! |
-~ 1 !
ﬁ | ! !
| Server1l: Product Installed: ! | Server2: Product Installed: !
| Runs Analysis Polyspace Bug Finder Server I I Hosts Results Polyspace Access !

| |
I I i
| I |
| |
| I i
| I I
| |
| I i
| | i

Note: Depending on the specifications, the same computer can serve as both Server 1 and Server 2.

Prerequisites

To run a Bug Finder analysis on a server and review the results in the Polyspace Access web
interface, perform this one-time setup:

* To run the analysis, install one instance of the Polyspace Bug Finder Server product.
* To upload results, set up the components required to host the web interface of Polyspace Access.

» To view the uploaded results, you and each developer reviewing the results must have a Polyspace
Bug Finder Access license.

See “Install Polyspace Server and Access Products”.

8-2

Run Polyspace Bug Finder on Server and Upload Results to Polyspace Access Web Interface

Check Polyspace Installation

To check if Polyspace Bug Finder Server is installed:

1 Open a command window. Navigate to polyspaceserverroot\polyspace\bin. Here,
polyspaceserverroot is the Polyspace Bug Finder Server installation folder, for instance,
C:\Program Files\Polyspace Server\R2023a. See also “Installation Folder”.

2 Enter:

polyspace-bug-finder-server -help

You should see the list of options allowed for a Bug Finder analysis.
To check if the Polyspace Access web interface is set up for upload:

1 Navigate again to polyspaceserverroot\polyspace\bin.
2 Enter:

polyspace-access -host hostName -port portNumber -create-project testProject

Here, hostName is the name of the server hosting the Polyspace Bug Finder Access web server.
For a locally hosted server, use Localhost. The portNumber is the optional port number of the
server. If you omit the port number, 9443 is used.

If the setup was complete, a project called testProject is created in the Polyspace Access web
interface.

You are prompted for your login and password each time that you use the polyspace-access
command. To avoid entering login information each time, provide the login and an encrypted
version of your password with the command. To create an encrypted password, enter:

polyspace-access -encrypt-password

Enter your login and password. Copy the encrypted password and provide this encrypted
password with the -encrypted-password option when using the polyspace-access
command.

3 In a web browser, open this URL:

https://hostName:portNumber/metrics/index.html

Here, hostName and portNumber are the host name and port number from the previous step.
In the Project Explorer pane on the Polyspace Access web interface, you see the newly created

project testProject.

Run Bug Finder on Sample Files

To run Bug Finder, in your operating system, open a command window.

1 Torun a Bug Finder analysis, use the polyspace-bug-finder-server command.

2 To upload the results to the Polyspace Access web interface, use the polyspace-access
command.

8-3

8 Run Polyspace Analysis on Servers

8-4

To avoid typing the full path to the command, add the path polyspaceserverroot\polyspace
\bin to the Path environment variable on your operating system.

Try out the commands on sample files provided with your Polyspace installation.

1 Copy the sample source files from polyspaceserverroot\polyspace\examples\cxx
\Bug Finder Example\sources to another folder where you have write permissions.
Navigate to this folder at the command line.

2 Enter:

polyspace-bug-finder-server -sources numerical.c,dataflow.c -I .
-checkers numerical,data flow -results-dir .
polyspace-access -host hostName -port portNumber
-login username -encrypted-password pwd
-create-project testProject
polyspace-access -host hostName -port portNumber
-login username -encrypted-password pwd
-upload . -project myFirstProject -parent-project testProject

Here, username is your login name and pwd is the encrypted password that you created
previously. See “Check Polyspace Installation” on page 8-3.

Refresh the Polyspace Access web interface. You see a folder testProject on the Project Explorer
pane. The folder contains one project myFirstProject.

Ly

Project Defect
Overview

DASHEOARDS
PROJECT EXPLORER
¢ 13 public
» | 3 testProject
myFirstProject

To see the results in the project, click Review. For more information, see “Review Polyspace Bug

Finder Results in Web Browser”. You can also access the documentation using the “ button
in the upper right of the Polyspace Access interface.

The analysis options used with the polyspace-bug-finder-server command are:

* -sources: Specify comma-separated source files.

» -I: Specify path to include folder. Use the -1I flag each time you want to add a separate include
folder.

* Find defects (-checkers): Specify the defects (bugs) to check for.

Run Polyspace Bug Finder on Server and Upload Results to Polyspace Access Web Interface

* -results-dir: Specify the path to the folder where Polyspace Bug Finder results will be saved.

Note that the results folder is cleaned up and repopulated at each run. To avoid accidental
removal of files during the cleanup, instead of using an existing folder that contains other files,
specify a dedicated folder for the Polyspace results.

For the full list of options available for a Bug Finder analysis, see “Complete List of Polyspace Bug
Finder Analysis Engine Options”. To open the Bug Finder documentation in a help browser, enter:

polyspace-bug-finder-server -doc

Sample Scripts for Bug Finder Analysis on Servers

To run the analysis, instead of typing the commands at the command line, you can use scripts. The
scripts can execute each time that you add or modify source files.

A sample Windows batch file is shown below. Here, the path to the Polyspace installation is specified
in the script. To use this script, replace polyspaceserverroot with the path to your installation.
You must have already generated the encrypted password for use in the scripts. See “Check
Polyspace Installation” on page 8-3.

echo off

set POLYSPACE PATH=polyspaceserverroot\polyspace\bin

set LOGIN=-host hostName -port portNumber -login username -encrypted-password pwd
"%POLYSPACE_PATHS\polyspace-bug-finder-server" -sources numerical.c,dataflow.c -I .”
-checkers numerical,data flow -results-dir .

"%POLYSPACE_PATHS\polyspace-access" %LOGIN% -create-project testProject
"%POLYSPACE_PATHS\polyspace-access" %LOGIN% -upload . -project myFirstProject

-parent-project testProject

pause

A sample Linux shell script is shown below.

POLYSPACE_PATH=polyspaceserverroot/polyspace/bin
LOGIN=-host hostName -port portNumber -login username -encrypted-password pwd
${POLYSPACE PATH}/polyspace-bug-finder-server -sources numerical.c,dataflow.c -I .\
-checkers numberical,data flow -results-dir .
${POLYSPACE PATH}/polyspace-access $LOGIN -create-project testProject
${POLYSPACE PATH}/polyspace-access $LOGIN -upload . -project myFirstProject
-parent-project testProject

Specify Sources and Options in Separate Files from Launching Scripts

Instead of listing the source files and analysis options within the launching scripts, you can list them
in separate text files.

» Specify the text file listing the sources by using the option -sources-list-file.

» Specify the text file listing the analysis options by using the option -options-file.

By removing the source files and analysis option specifications from the launching scripts, you can

modify these specifications as required with new code submissions while leaving the launching script
untouched.

Consider the script in the preceding example. You can modify the polyspace-bug-finder-server
command to use text files with sources and options. Instead of:

8 Run Polyspace Analysis on Servers

8-6

polyspace-bug-finder-server -sources numerical.c,dataflow.c
-I . -checkers numerical,data flow -results-dir .

use:

polyspace-bug-finder-server -sources numerical.c,dataflow.c
-I . -checkers numerical,data flow -results-dir .

Here:
* sources.txt lists the source files in separate lines:

numerical.c
dataflow.c

* polyspace opts.txt lists the analysis options in separate lines:

-1 .
-checkers numerical,data flow

Typically, your source files are specified in a build command (makefile). Instead of specifying the

source files directly, you can trace the build command to create a list of source specifications. See
polyspace-configure.

Complete Workflow
In a typical continuous integration workflow, you run a script that executes these steps:
1 Extract Polyspace options from your build command.

For instance, if you use makefiles to build your source code, you can extract analysis options
from the makefile.

polyspace-configure -output-options-file compile opts make

See also:

* polyspace-configure
* “Create Polyspace Analysis Configuration from Build Command (Makefile)” on page 13-22

2 Run the analysis with the previously created options file. Append a second options file that
contains the remaining options required for the analysis.

polyspace-bug-finder-server -options-file compile opts -options-file run opts

3 Upload the results to Polyspace Bug Finder Access.

polyspace-access login -upload resultsFolder -project projName
-parent-project parentProjName

Here, login is the combination of options required to communicate with the web server that is
hosting Polyspace Bug Finder Access:

-host hostName -port portNumber -login username -encrypted-password pwd

Run Polyspace Bug Finder on Server and Upload Results to Polyspace Access Web Interface

resultsFolder is the folder containing the Polyspace results. projName and parentProjName
are names of the project and parent folder as they would appear in the Polyspace Access web
interface.

4 Optionally, send email notifications to developers with new results from their code submission.
The email contains attachments with links to the results in the Polyspace Access web interface.

See “Send Email Notifications with Polyspace Bug Finder Server Results”.
See examples of scripts executing these steps in “Sample Scripts for Polyspace Analysis with Jenkins”

on page 8-17.

See Also
polyspace-access | polyspace-bug-finder-server

More About

. “Send Email Notifications with Polyspace Bug Finder Server Results”
. “Complete List of Polyspace Bug Finder Analysis Engine Options”

8

Run Polyspace Analysis on Servers

Send Email Notifications with Polyspace Bug Finder Server
Results

If you run a Polyspace analysis as part of continuous integration, each new code submission produces
new results. You not only see new results in components that were modified but also in components
that depended on the modified components. You can set up e-mail alerts so that component owners
get notified when new Polyspace results appear in their components.

Jenkins General Report - Bug_Finder_Example #51
To John Smith
H report.csv

459 KB

The attached file contains 127 findings from Bug_Finder_Example #51 that are assigned to you.
Mumber of findings: 127
Types of findings:

Defects (Impact: High)
MISRA C:2012 violations (Category: Required)

View findings in Polyspace Bug Finder Access: http:my-host-name:9443/metrics/index.html?a=review&p=1878&r=1235

8-8

Creating E-mail Notifications
To create e-mail notifications:

1 Export new analysis results to a tab-delimited text file (. tsv format). For each result, the file
contains links to open the result in the Polyspace Access web interface.

Apply filters to export specific types of results, for instance, defects with high impact. If required,
you can also apply additional filters to the exported files using search and replace utilities. See
“Export Results for E-mail Attachments” on page 8-10.

2 Send an email with the results file in attachment.

For instance, if you use an e-mail plugin in Jenkins, you can create a post-build step to send an e-
mail after the analysis is complete.

If you use the Polyspace plugin in Jenkins, you can use Polyspace helper utilities for the entire e-mail
notification process. See “Sample Scripts for Polyspace Analysis with Jenkins” on page 8-17.

Alternatively, results can be directly assigned to owners based on their file paths. You can set up
email notifications that exports a separate results file per owner and sends an email to each owner

Send Email Notifications with Polyspace Bug Finder Server Results

with the corresponding results file in attachment. See “Assign Owners and Export Assigned Results”
on page 8-10.

Prerequisites

To run this tutorial:

You must have uploaded some result in the Polyspace Bug Finder Access interface. If you complete
the tutorial “Run Polyspace Bug Finder on Server and Upload Results to Web Interface”, you
should see a folder testProject on the Project Explorer pane. The folder contains one project
myFirstProject.

i

Project RTE Check CQuality

Overview Objectives
DASHBEOARDS
PROJECT EXPLORER
¢ 3 public

« | 7 testProject
myFirstProject

To see the results in the project, with myFirstProject selected, click the Review button. You
see a list of defects. The Information column shows the impact of the defects. In this tutorial,
only high-impact defects will be exported for e-mail attachments.

You must be able to interact with the Polyspace Bug Finder Access interface from the command
line. For instance, navigate to polyspaceserverroot\polyspace\bin and enter:

polyspace-access login -list-project

Here. polyspaceserverroot is the Polyspace Bug Finder Server installation folder, for instance,
C:\Program Files\Polyspace Server\R2023a.The variable login refers to the following
combination of options. You provide these options with every use of the polyspace-access
command.

-host hostName -port portNumber -login username -encrypted-password pwd

Here, hostName is the name of the Polyspace Bug Finder Access web server. For a locally hosted
server, use Localhost. portNumber is the optional port number of the server. If you omit the
port number, 9443 is used. username and pwd refer to the login and an encrypted version of your
password. To create an encrypted password, enter:

polyspace-access -encrypt-password

Copy the encrypted password and provide this password with later uses of the polyspace-
access command.

8-9

8 Run Polyspace Analysis on Servers

Export Results for E-mail Attachments
You can export all results in a project or only certain types of results.

Open a command window. Navigate to the folder where you want to export the results.

* To export all results, enter the following:

polyspace-access login -export testProject/myFirstProject -output .\result.txt

* To export only defects with high impact, enter the following:

polyspace-access login -export testProject/myFirstProject -defects High
-output .\result high impact.txt

Open each text file in a spreadsheet viewing utility such as Microsoft® Excel®. In the first file, you see
all defects but in the second file, you only see the defects with high impact. Instead of -defects
High, you can apply other filters. For instance:

» To see only new defects compared to the previous analysis of the same project, use the option -
new-findings.

* To apply a more fine-grained set of filters, you can use software quality objectives (SQOs). The
software quality objectives are specified through a progressively stricter set of SQO levels,
numbered from 1 to 6. You can customize the requirements of each level in the Polyspace Access
web interface, and then use the option -open-findings-for-sqo with the level number to
export only those results that must be reviewed to meet the requirements. See also “Evaluate
Polyspace Bug Finder Results Against Bug Finder Quality Objectives” on page 31-2.

To see all filtering options, enter:

polyspace-access -h -export

You can configure your e-mail utility to send these exported files in attachment.

If required, you can also apply additional filters to the exported files using search and replace
utilities. For instance, use search and replace utilities on the results file to include results only from
specific files and functions. In Linux, you can use grep and sed to retain only results in specific files.

Assign Owners and Export Assigned Results

You can assign owners to results in specific files or folders. You can then export one result file per
owner and send an email to each owner with the corresponding file in attachment.

You can assign owners in the Polyspace Access web interface or at the command line.

In this tutorial, assign all results in the file numerical. c to jsmith and all results in the file
dataflow.c to jboyd.

polyspace-access login
-set-unassigned-findings testProject/myFirstProject
-owner jsmith -source-contains numerical.c
polyspace-access login
-set-unassigned-findings testProject/myFirstProject
-owner jboyd -source-contains dataflow.c

8-10

Send Email Notifications with Polyspace Bug Finder Server Results

After assignment, export one results file per owner.

polyspace-access login
-export testProject/myFirstProject -output .\results.txt -output-per-owner

These files contain the exported results:

* results.txt contains all results.

* results jsmith.txt and results jboyd.txt contains results assigned to jsmith and
jboyd respectively.

* results.txt.owners.list contains the list of owners, in this case:
jsmith
jboyd

Before assigning owners to results, use the option -dryrun to perform a dry run of the assignments.
Without performing the assignment, the option shows the files with results that are assigned and the
owner that the results are assigned to.

See Also
polyspace-access

8-11

8 Run Polyspace Analysis on Servers

Offload Polyspace Analysis from Continuous Integration Server
to Another Server

When running static code analysis with Polyspace as part of continuous integration, you might want
the analysis to run on a server that is different from the server running your continuous integration
(CI) scripts. For instance:

* You might want to perform the analysis on a server that has more processing power. You can
offload the analysis from your CI server to the other server.

* You might want to submit analysis jobs from several CI servers to a dedicated analysis server, hold
the jobs in queue, and execute them as Polyspace Server instances become available.

When you offload an analysis, the compilation phase of the analysis runs on the CI server. After
compilation, the analysis job is submitted to the other server and continues on this server. On
completion, the analysis results are downloaded back to the CI server. You can then upload the
results to Polyspace Access for review, or report the results in some other format.

Server 2 (Analysis Server): T
Runs Analysis. i
One server or multiple. If multiple, has head node and workers. {
i
i
|
i

Products Installed:

Polyspace Bug Finder Server |
Polyspace Code Prover Server f
MATLAB Parallel Server !

Developer COde
- Check-ins o Analysis Job e Results

| Build automation tool E
i

| i
| | |
. | (e.g., Jenkins) | |
e D : - iResults Code Prover !
ﬂ \w\“\.\ i - Results |
e . Source code Pl . e !

H 1 -bug-finder- -batch
Developer .\ /./ Rep05I|°ry polyspace-bug-finder-server atc :
i

polyspace-access -upload

|
I

i

! Bug Finder

I Results

I

I

P o~ !
oy | |
- I |
I |
| |
Developer Server 1 [Cl Server): Product Installed: I Server 3: Product Installe_d: !
Submits Analysis Polyspace Bug Finder Server | Hosts Results Polyspace Bug Finder Access !
Polyspace Code Prover Server | I Polyspace Code Prover Access !

-
<)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

{No license required) i | |
| ! !
I | !
i i i

Install Products

A typical distributed network for offloading an analysis consists of these parts:

* Client node(s): Each CI server acts as a client node that submits Polyspace analysis jobs to a
cluster.

The cluster consists of a head node and one or more worker nodes. In this example, we use the
same computer as the head node and one worker node.

8-12

Offload Polyspace Analysis from Continuous Integration Server to Another Server

* Head node: The head node distributes the submitted jobs to worker nodes.
* Worker node(s): Each worker node executes one Polyspace analysis at a time.

Note The versions of Polyspace on the client and worker nodes must match.

4‘\ MATLAB
Parallel Server

MATLAB MATLAB

%, J Polyspace

BF Server

Client node

Parallel Server

Y, J Polyspace
BFICP Server

Parallel Server

Y, J Polyspace
BF/CP Server

—_——*
-’-—

Analysis Server = Head + Worker Nodes

Install these products:

* Client nodes: Polyspace Bug Finder Server or Polyspace Code Prover Server to submit jobs from
the Continuous Integration server. Note that you do not require licenses for the Polyspace Server
products if you use them only for job submission (with the -batch option).

* Head node: MATLAB Parallel Server™ to manage submissions from multiple clients. An analysis
job is created for each submission and placed in a queue. As soon as a worker node is available,
the next analysis job from the queue is run on the worker.

* Worker node(s): MATLAB Parallel Server and Polyspace Bug Finder Server or Polyspace Code
Prover Server on the worker nodes to run a Bug Finder or Code Prover analysis.

In the simplest configuration, where the same computer serves as the head node and one worker
node, you install MATLAB Parallel Server and one or both Polyspace Bug Finder Server and Polyspace

8-13

8 Run Polyspace Analysis on Servers

8-14

Code Prover Server on this computer. This example describes the simple configuration but you can
generalize the steps to multiple workers on separate computers.

Configure and Start Job Scheduler Services on Head Node and Worker
Node

Start a job scheduler service (the MATLAB Job Scheduler or mj s service) on the computer that acts
as the head node and worker node. Before starting the service, you must perform an initial setup.

Specify Polyspace Installation Paths

MATLAB Parallel Server and Polyspace Server products are installed in two separate folders. The
MATLAB Parallel Server installation routes the Polyspace analysis to the Polyspace Server products.
To link the two installations, specify the path to the root folder of the Polyspace Server products in
your MATLAB Parallel Server installation.

1 Navigate to matlabroot\toolbox\parallel\bin\. Here, matlabroot is the MATLAB
Parallel Server installation folder, for instance, C:\Program Files\MATLAB\R2023a.

2 Uncomment and modify the following line in the file mjs _polyspace.conf. To edit and save the
file, open your editor in administrator mode.

POLYSPACE SERVER RO0T=polyspaceserverroot
Here, polyspaceserverroot is the installation path of the server products, for instance:
C:\Program Files\Polyspace Server\R2023a

The Polyspace Server product offloading the analysis must belong to the same release as the
Polyspace Server product running the analysis. If you offload an analysis from an R2023a Polyspace
Server product, the analysis must run using another R2023a Polyspace Server product.

Configure mjs Service Settings

Before starting MATLAB Parallel Server (the mj s service), you must perform a minimum
configuration.

1 Navigate to matlabroot\toolbox\parallel\bin, where matlabroot is the MATLAB
Parallel Server installation folder, for instance, C:\Program Files\MATLAB\R2023a.

2 Modify the file mjs_def.bat (Windows) ormjs def.sh (Linux). To edit and save the file, open
your editor in administrator mode.

Read the instructions in the file and uncomment the lines as needed. At a minimum, uncomment
these lines that specify:

* Host name.
Windows:
REM set HOSTNAME=%strHostname%.%strDomain%
Linux:
#HOSTNAME="hostname -f°

Explicitly specify your computer host name.

Offload Polyspace Analysis from Continuous Integration Server to Another Server

* Security level.
Windows:
REM set SECURITY LEVEL=
Linux:
#SECURITY LEVEL=""
Explicitly specify a security level to avoid future errors when starting the job scheduler.

For security levels 2 and higher, you have to provide a password in a graphical window at the
time of job submission.

Start mjs Service and One Worker

In a command-line terminal, cd to matlabroot\toolbox\parallel\bin, where matlabroot is
the MATLAB Parallel Server installation folder, for instance, C:\Program Files\MATLAB\R2023a.
Run these commands (directly at the command line or by using scripts):

mjs install

mjs start

startjobmanager -name JobScheduler -remotehost hostname -v

startworker -jobmanagerhost hostname -jobmanager JobScheduler
-remotehost hostname -v

Here, hostname is the host name of your computer. This name is the host name that you specified in
the file mjs_def.bat (Windows) ormjs_def.sh (Linux).

For more details and configuring services with multiple workers, see:

* “Install and Configure MATLAB Parallel Server for MATLAB Job Scheduler and Network License
Manager” (MATLAB Parallel Server)

* mjs

Offload Analysis from Client Node

Once you have set up the computer that acts as the head node and worker node, you are ready to
offload a Polyspace analysis from the client node (the CI server running scripts on Jenkins on another
CI system).

To offload an analysis, enter:

polyspaceserverroot\polyspace\bin\polyspace-bug-finder-server
-batch -scheduler hostname|MJSName@hostname [options] [-mjs-username name]

where:

* polyspaceserverroot is the installation folder of Polyspace Server products on the client node,
for instance, C:\Program Files\Polyspace Server\R2023a.

* hostname is the host name of the computer that hosts the head node of the MATLAB Parallel
Server cluster.

MJSName is the name of the MATLAB Job Scheduler on the head node host.

8-15

8 Run Polyspace Analysis on Servers

8-16

If you use the startjobmanager command to start the MATLAB Job Scheduler, MJSName is the
argument of the option -name.

* options are the Polyspace analysis options. These options are the same as that of a local
analysis. For instance, you can use these options:
* -sources-list-file: Specify a text file that has one source file name per line.
* -options-file: Specify a text file that has one option per line.
* -results-dir: Specify a download folder for storing results after analysis.

For the full list of options, see “Complete List of Polyspace Bug Finder Analysis Engine Options”.

* name is the user name required for job submissions using MATLAB Parallel Server. This credential
is required only if you use a security level of 1 or higher for MATLAB Parallel Server submissions.
See “Set MATLAB Job Scheduler Cluster Security” (MATLAB Parallel Server).

For security levels 2 and higher, you have to provide a password in a graphical window at the time of
job submission. To avoid this prompt in the future, you can specify that the password be remembered
on the computer.

The analysis executes locally on the CI server up to the end of the compilation phase. After
compilation, the analysis job is submitted to the other server. On completion, the analysis results are
downloaded back to the CI server. You can then upload the results to Polyspace Access for review, or
report the results in some other format.

See Also
polyspace-access

More About

. “Run Polyspace Bug Finder on Server and Upload Results to Web Interface”

Sample Scripts for Polyspace Analysis with Jenkins

Sample Scripts for Polyspace Analysis with Jenkins

In a continuous integration process, developers submit code to a shared repository. An automated
build system using a tool such as Jenkins builds and tests each submission at regular intervals or
based on predefined triggers and integrates the code. You can run a Polyspace analysis as part of this

process.
. - 2.
[% - 1 [%
Developer Teamlead/ QA
Manager Engineer
A p- é ‘
I eee@
Chcoge Build Engineer Web Browser
Ar eck-ms
Mol | v sotonaion o

.

~ i i
. ~.. Y | Results | Code Prover
|- D & (A ——] Results
I ~ i |
o = [N S Source code PR X bueefind 1 '
v : polyspace-bug-finder-server ! !
Develuper | -~ Reposﬂ.ory polyspace-code- prover-server ! | Bug Finder
“ i i Results

Developer . | le.g., Jenkins) |—vL ! 7T SmTmmmssssmssssoooososoooooooooos |
™~ I ! ! i

e ' polyspace-access -upload
#!— -

Server1: Installed Products: | | Serverl: Installed Products:
Developer i i | | HostsResults * Polyspace Access

Runs Analysis * Polyspace BugFinderServer | | ysp

* Polyspace Code ProverServer ‘ .

E (CP Serverreguires BF Server) | | E

Note:

* Depending onthe specifications, the same computer can serve asboth Server 1 and Server2.
* Thougha server hoststhe components for Polyspace web interface, each reviewer requires a Polyspace Access licenseto login to the interface.

This topic provides sample Shell scripts that run a Polyspace analysis using Polyspace Bug Finder
Server and upload the results for review in the Polyspace Access web interface. The script also sends
e-mail notifications to potential reviewers. Notified reviewers can login to the Polyspace Access web
interface (if they have a Polyspace Access license) and review the results.

Extending Sample Scripts to Your Development Process

The scripts are written for a specific development toolchain but can be easily extended to the
processes used in your project, team or organization. The scripts are also meant to be run in a
Jenkins freestyle project. If you are using Jenkins Pipelines, see “Sample Jenkins Pipeline Scripts for
Polyspace Analysis” on page 8-31.

In particular, the scripts:
* Run on Linux only.

The scripts use some Linux-specific commands such as export. However, these commands are
not an integral part of the Polyspace workflow. If you write Windows scripts (. bat files), use the
equivalent Windows commands instead.

8-17

8 Run Polyspace Analysis on Servers

8-18

Work only with Jenkins after you install the Polyspace plugin.

The scripts are designed for the Jenkins plugin in these two ways:

* The scripts uses helper functions $ps_helper and $ps_helper _access for simpler
scripting. The helper functions export Polyspace results for e-mail attachments and use
command-line utilities to filter the results.

These helper functions are available only with the Jenkins plugin. However, the underlying
commands come with a Polyspace Bug Finder Server installation. On build automation tools
other than Jenkins, you can create these helper functions using the polyspace-report-
generator command or polyspace-access command (with the -export option). See “Send
Email Notifications with Polyspace Bug Finder Server Results”.

If you perform a distributed build in Jenkins, the plugin must be installed in the same folder in
the same operating system on both the master node and the agent node executing the
Polyspace analysis. Otherwise, you cannot use the helper functions.

* The scripts create text files for e-mail attachments and mail subjects and bodies for
personalized e-mails. If you install the Polyspace plugin in Jenkins, an extension of an e-mail
plugin is available for use in your Jenkins projects. The e-mail plugin allows you to easily send
the personalized e-mails with the previously created subjects, bodies and attachments. Without
the Polyspace plugin, you have to find an alternative way to send the e-mails.

Run a Bug Finder analysis.

The scripts run Bug Finder on the demo example Bug Finder Example. If you install the
product Polyspace Bug Finder Server, the folder containing the demo example is
polyspaceserverroot/polyspace/examples/cxx/Bug Finder Example. Here,
polyspaceserverroot is the installation folder for Polyspace Server products, for
instance, /usr/local/Polyspace Server/R2019a/.

You can easily adapt the script to run Code Prover. Replace polyspace-bug-finder-server
with polyspace-code-prover-server. You can use the demo example
Code Prover Example specifically meant for Code Prover.

Prerequisites

To run a Polyspace analysis on a server and review the results in the Polyspace Access web interface,
you must perform a one-time setup.

To run the analysis, you must install one instance of the Polyspace Server product.

To upload results, you must set up the components required to host the web interface of Polyspace
Access.

To view the uploaded results, you (and each developer reviewing the results) must have one
Polyspace license.

Similar requirements apply to a Polyspace Code Prover analysis on a server.

See “Install Polyspace Server and Access Products”.

To install the Polyspace plugin, in the Jenkins interface, select Manage Jenkins on the left. Select
Manage Plugin. Search for the Polyspace plugin and then download and install the plugin.

Sample Scripts for Polyspace Analysis with Jenkins

Set Up Polyspace Plugin in Jenkins

The following steps outline how to set up a Polyspace analysis in Jenkins after installing the Polyspace
plugin. Note that the steps refer to Jenkins version 2.150.1. The steps in your Jenkins version and
your Polyspace plugin installation might be slightly different.

If you use a different build automation tool, you can perform similar setup steps.

Specify Paths to Polyspace Commands and Server Details for Polyspace Access Web
Interface

Specify the full paths of the folder containing the Polyspace commands and host name and port
number of the server hosting the Polyspace Access web interface. After you specify the paths, in your
scripts, you do not have to use the full paths to the commands or the server details for uploading
results.

1 In the Jenkins interface, select Manage Jenkins on the left. Select Configure System.
2 In the Polyspace section, specify the following:

* Paths to Polyspace commands.

The path refers to polyspaceserverroot/polyspace/bin, where
polyspaceserverroot is the installation folder for Polyspace Server products, for
instance, /usr/local/Polyspace Server/R2019a/.

Polyspace Bin

Mame .
Server_install

Binary Path {usrflocal/Polyspace Server/R2019a/polyspace/bin|

Correct Configuration

Delete

* The host name, port number and protocol (http or https) used by the server hosting the
Polyspace Access web interface.

Folyspace Access

Name Polyspace_Access
Protocol hitps

Host doc-server

Port ' g443

Delete

8-19

8 Run Polyspace Analysis on Servers

The Name field allows you to define a convenient shorthand that you use later in Jenkins
projects.

3 Inthe E-mail Notification section, specify your company's SMTP server (and other details
needed for sending e-mails).

E-mail Notification
SMTP server mail.companyname.com

Default user e-mail suffix

Use SMTP Authentication
Use S5L

SMTP Port 25
Reply-To Address

Charset UTF-8

Test configuration by sending test e-mail

8-20

Create Jenkins Project for Running Polyspace

When you create a Jenkins project (for instance, a Freestyle project), you can refer to the Polyspace
paths by the global shorthands that you defined earlier.

To create a Jenkins project for running Polyspace:

In the Jenkins interface, select New Item on the left. Select Freestyle Project.
2 In the Build Environment section of the project, enter the two shorthand names you defined
earlier:
* The name for the path to the folder containing the Polyspace commands
* The name for the details of the server hosting the Polyspace Access web interface.

Also, enter a login and password that can be used to upload to the Polyspace Access web
interface. The login and password must be associated with a Polyspace Access license.

Sample Scripts for Polyspace Analysis with Jenkins

Build Environment

#| Polyspace - Configuration to use

Polyspace Bin Configuration Server_install v ©B
Polyspace Access Configuration | Polyspace Access v @B
Polyspace Access Credentials docserver™** (test user) ¥ @ &= Add

Check Polyspace Access Configuration

3 In the Build section of the project, you can enter scripts that use the Polyspace commands and
details of the server hosting the Polyspace Access web interface. The scripts run a Polyspace
analysis and upload results to the Polyspace Access web interface.

Build

Execute shell

Command | set -e
export RESULT=ResultBF
export PROG=Bug Finder Example 2
export PARENT PROJECT=testProject
rm -rf Notification && mkdir -p Notification

build cmd="gcc -c sources/*.c"
polyspace-configure 3
-allow-overwrite %\
-allow-build-error %
-prog $PROG
-author jenkins 3
-output-options-file $PROG.psopts
$build_cmd

polyspace-bug-finder-server -options-file $PROG.psopts -results-dir $RESULT

4

In the Post-build Actions section of the project, configure e-mail addresses and attachments to
be sent after the analysis.

8-21

8 Run Polyspace Analysis on Servers

Post-build Actions

Polyspace MNotification

¥| Send to Recipients (7]

Recipients johndos@email com, janedoa@email com
Filz to attach | Results Alltsv
Mail Subject Polyspace results from current run

Mail Body See attached Polyspace resulis.

8-22

Script to Run Bug Finder, Upload Results and Send Common
Notification

This script runs a Bug Finder analysis, uploads the results and exports defects with high impact for a
common notification email to all recipients.

The script assumes that the current folder contains a folder sources with . c files. Otherwise modify
the line gcc -c sources/*.c with the full path to the sources.

Sample Scripts for Polyspace Analysis with Jenkins

set -e

export RESULT=ResultBF

export PROG=Bug Finder Example

export PARENT PROJECT=/public/BugFinderExample PRS 01

#
Trace build command and create an options file

build cmd="gcc -c sources/*.c"
polyspace-configure \
-allow-overwrite \
-allow-build-error \
-prog $PROG \
-author jenkins \
-output-options-file $PROG.psopts \
$build cmd

#
Run Bug Finder on the options file

polyspace-bug-finder-server -options-file $PROG.psopts -results-dir $RESULT

#
Upload results to Polyspace Access web interface

$ps_helper access -create-project $PARENT PROJECT
$ps_helper _access \

-upload $RESULT \

-parent-project $PARENT PROJECT \

-project $PROG

#
Export results filtered for defects with "High" impact

$ps_helper _access \
-export $PARENT PROJECT/$PROG \
-output Results All.tsv \
-defects High

#
Finalize Jenkins status

exit 0

After the script is run, you can create a post-build action to send an e-mail to all recipients with the
exported file Results All.tsv.

8-23

8 Run Polyspace Analysis on Servers

Post-build Actions

Polyspace Notification

¥| Send to Recipients ®

Recipients johndoa@email com, janedos@email.com
File to attach Results Alltsv
Mail Subject | Polyspace results from current run

Mail Body See attached Polyspace results.

In this script, $ps_helper access is a shorthand for the polyspace-access command with the
options specifying host name, port, login and encrypted password included. The other polyspace-
access options are explicitly written in the script.

Script to Run Bug Finder, Upload Results and Send Personalized
Notification

This script runs the previous Bug Finder analysis and uploads the results. However, the script differs
from the previous script in these ways:

* The script uses a run_command function that prints a message when running a command. The
function helps determine from the console output which part of the script is running.
* When exporting the results, the script creates a separate results file for different owners.

* A main file Results All.tsv contains all results. This file is sent in e-mail attachment to a
manager. The manager email is configured in the post-build step.

If the file contains more than 10 defects, the build status is considered as a failure. The script
sends a status UNSTABLE in the e-mail notification.

* The results file Results Users userA.tsv exported for userA contains defects from the
group Programming and with impact High.
This result file is sent in e-mail attachment to userA.

* The results file Results Users userB.tsv exported for userB contains defects from the
function bug memstdlib().
This result file is sent in e-mail attachment to userB.

* A separate mail subject is created for the manager in the file mailsubject manager.txt and
for users userA and userB in the files mailsubject user userA.txt and
mailsubject user userB.txt respectively.

A mail body is created for the email to the manager in the file mailbody manager.txt.

8-24

Sample Scripts for Polyspace Analysis with Jenkins

The script:
* Assumes that the current folder contains a folder sources with . c files.

Otherwise, modify the line gcc -c sources/*.c with the full path to the sources.

* Assumes users named userA and userB. In particular, the email addresses

userA@companyname.com and userB@companyname. com (determined from the user name and
SMTP server configured earlier) must be real e-mail addresses.

Replace the names with real user names.

8-25

8 Run Polyspace Analysis on Servers

set -e

export RESULT=ResultBF

export PROG=Bug Finder Example
export REPORT=Results List.tsv

#
Define function to print message while running command
run_command ()

{

$1 is a message

$2 $3 ... is the command to dump and to run
message=$1

shift

cat >> mailbody manager.txt << EOF
$(date): $message

EOF
n $@II
}

#
Initialize mail body

cat > mailbody manager.txt << EOF
Dear Manager(s)

Here is the report of the Jenkins Job ${JOB NAME} #${BUILD NUMBER}
It contains all Red Defect found in Bug Finder Example project

EOF

#
Trace build command and create options file

build cmd="gcc -c sources/*.c"
run_command "Tracing build command", \
polyspace-configure
-allow-overwrite
-allow-build-error
-prog $PROG
-author jenkins
-output-options-file $PROG.psopts
$build cmd

\
\
\
\
\
\

#
Run Bug Finder on the options file

run_command "Running Bug finder" \
polyspace-bug-finder-server -options-file $PROG.psopts\
-results-dir $RESULT

#
Upload results to Polyspace Access web interface

run_command "Creating Project $PARENT PROJECT" \

8-26

Sample Scripts for Polyspace Analysis with Jenkins

$ps_helper access -create-project $PARENT PROJECT

run_command "Uploading on $PARENT_ PROJECT/$PROG" \
$ps_helper access \

-upload $RESULT \
-parent-project $PARENT PROJECT \
-project $PROG \
-output upload.output

PROJECT RUNID=$($ps helper prs print runid upload.output)

PROJECT URL=$($ps _helper prs print projecturl upload.output $POLYSPACE ACCESS URL)

#
Export report

run_command "Exporting report from $PARENT PROJECT/$PROG" \
$ps_helper access \
-export $PROJECT RUNID \
-output $REPORT \
-defects High

#
Filter Reports

run_command "Filtering reports for defects" \
$ps_helper report filter \
$REPORT \
Results All.tsv \
Family Defect \

#
Filter Reports for userA and userB

run_command "Filtering Reports for userA based on Group and Information" \
$ps_helper report filter \
$REPORT \
Results Users.tsv \
userA \
Group Programming \
Information "Impact: High"
run_command "Filtering Reports for userB based on Function" \
$ps_helper report filter \
$REPORT \
Results Users.tsv \
userB \
Function "bug memstdlib()"

#
Update Jenkins status
Jenkins build status is unstable when there are more than 10 Defects

BUILD STATUS=$($ps helper report status Results All.tsv 10)

#
Update mail body and mail subject

8-27

8 Run Polyspace Analysis on Servers

8-28

NB_ FINDINGS ALL=$($ps helper report count findings Results All.tsv)
NB_FINDINGS USERA=$($ps helper report count findings Results Users userA.tsv)
NB_FINDINGS USERB=$%($ps helper report count findings Results Users userB.tsv)
cat >> mailbody manager.txt << EOF

Number of defects: $NB FINDINGS ALL
Number of findings owned by userA: $NB FINDINGS USERA
Number of findings owned by userB: $NB FINDINGS USERB

All results are uploaded in: $PROJECT URL

Build Status: $BUILD STATUS

EOF

cat >> mailsubject manager.txt << EOF

Polyspace run completed with status $BUILD STATUS and $NB FINDINGS ALL findings
EOF

for user in userA userB

do

echo "$user - $($ps_helper report count findings Results Users $user.tsv)) findings"\
> mailsubject user $user.txt

done

#

Exit with correct build status

["$BUILD STATUS" != "SUCCESS"] && exit 129
exit 0

After the script is run, you can create a post-build action to send an e-mail to a manager with the
exported file Results All.tsv. Specify the e-mail address in the Recipients field, the email
subject in the Mail Subject field and the email body in the Mail Body field.

In addition, a separate e-mail is sent to userA and userB with the files Results Users userA.tsv
and Results Users userB.tsv in attachment (and the content of

mailsubject user userA.txt and mailsubject user userB.txt as mail subjects). The e-
mail addresses are userA@companyname. com and userB@companyname. com (determined from the
user name and SMTP server configured earlier).

Sample Scripts for Polyspace Analysis with Jenkins

Post-build Actions

Polyspace Notification

¥| Send to Recipiants @
Recipients manager@@companynames.com
File to attach Results_All tsv
Mail Subject mailsubject_manager. txt
Mail Body mailbody_manager txt

¥ Send to Owners @
Query Base Name Reasults_Users.tav
Mail Subject Base Name mailsubject_usertxt

Mail Body Base Name

Unigue recipients - Debug only

Add post-build action -

The script uses the helper function $ps _helper to filter the results based on group, impact and
function. The helper function uses command-line utilities to filter the main file for results and perform
actions such as create a separate results file for each owner. The function takes these actions as
arguments:

* report filter: Filters results from exported text file based on contents of the text file.

For instance:

$ps_helper report filter \
Results List.tsv \
Results Users.tsv \
userA \
Group Programming \
Information "Impact: High"

reads the file Results List.tsv and writes to the file Results Users userA.tsv. The text
file Results List.tsv contains columns for Group and Information. Only those rows where
the Group column contains Programming and the Information column contains Impact:
High are written to the file Results Users userA.tsv.

* report_status: Returns UNSTABLE or SUCCESS based on the number of results in a file.

8-29

8 Run Polyspace Analysis on Servers

8-30

For instance:
BUILD STATUS=$($ps_helper report status Results All.tsv 10))

returns UNSTABLE if the file Results_AlLl.tsv contains more than 10 results (10 rows).
report count findings: Reports number of results in a file.

For instance:
NB_FINDINGS ALL=$($ps helper report count findings Results All.tsv)

returns the number of results (rows) in the file Results All.tsv.

prs_print projecturl: Uses the host name and port number to create the URL of the
Polyspace Access web interface.

For instance:
PROJECT URL=$($ps _helper prs print projecturl Results All.tsv $POLYSPACE ACCESS URL)

reads the file Results All.tsv (exported by the polyspace-access command) and extracts
the URL of the Polyspace Access web interface in $POLYSPACE ACCESS URL and the URL of the
current project in $PROJECT URL.

See Also
polyspace-bug-finder-server | polyspace-code-prover-server | polyspace-report-
generator | polyspace-access | polyspace-configure

More About

“Run Polyspace Bug Finder on Server and Upload Results to Web Interface”
“Send Email Notifications with Polyspace Bug Finder Server Results”
“Sample Jenkins Pipeline Scripts for Polyspace Analysis” on page 8-31

“Offload Polyspace Analysis from Continuous Integration Server to Another Server” on page 8-
12

Sample Jenkins Pipeline Scripts for Polyspace Analysis

Sample Jenkins Pipeline Scripts for Polyspace Analysis

Jenkins Pipelines enable automating the workflow of a continuous delivery pipeline through scripts in
Jenkins. You can write Pipeline scripts that build projects, run test suites and perform all necessary
checks before your code is ready for shipping. You can check in these scripts as part of a version
control system and subject them to the same review and versioning as the code itself.

You can run a Polyspace analysis in a Jenkins Pipeline script. If you are using Freestyle Projects
instead of Pipelines in Jenkins, use the Polyspace plugin for scripting conveniences. See “Sample
Scripts for Polyspace Analysis with Jenkins” on page 8-17. If you are using Pipelines, modify the script
provided below to run a Polyspace analysis.

Prerequisites

To run a Polyspace analysis on a server and review the results in the Polyspace Access web interface,
you must perform a one-time setup.
* To run the analysis, you must install one instance of the Polyspace Server product.

* To upload results, you must set up the components required to host the web interface of Polyspace
Access.

+ To view the uploaded results, you and each developer reviewing the results must have one
Polyspace license.

See “Install Polyspace Server and Access Products”.

Run Polyspace Analysis in Stages in a Pipeline Script
To create a Jenkins Pipeline script:

1 In the Jenkins interface, select New Item on the left. Select Pipeline.
2 In the Pipeline section of the project, select Pipeline script for Definition. Enter this
script.

The parts in bold indicate places where you have to modify the script for your source code and
Polyspace installation.

The script is not available in the PDF documentation. Search for Polyspace Jenkins
Pipelines in the MathWorks online documentation and copy the script from the online version
of this page.

When you build this project, you can see the various stages of the analysis like this:

Prepare Checkout Configure Analyze Upload MNotification
15 145 4min 225 1min 325 359ms
4min 22s 1min 32s

8-31

8 Run Polyspace Analysis on Servers

8-32

This script can be part of a larger script that you save in a Jenkinsfile and commit to your version
control system. See Using a Jenkinsfile.

You can modify the script as needed:
» The script runs each step of the Polyspace analysis workflow in a separate stage section. You can

combine several steps together in one stage.

* The script runs Linux Shell commands by using the sh directive. You can run Windows commands
by using the bat directive instead.

* The script uses data from the Credentials plugin to extract user name and password. If you save
credentials in some other form, you can replace the withCredentials command that binds user
credentials to variables.

* The script builds source code using a makefile on a Git sandbox with this make command:
make -C $git sandbox
If you use a different build command, you can replace this line with your build command.
For more information on the Pipeline-specific syntax in this script, see:

» Pipeline Syntax: Describes node, stage, label.
* Pipeline Steps Reference: Describes sh, mail.
* Credentials Binding Plugin: Describes withCredentials.

For more information on the Polyspace commands in this script, see:

* polyspace-configure
* polyspace-bug-finder-server (also polyspace-code-prover-server)
* polyspace-access

See Also
“Sample Scripts for Polyspace Analysis with Jenkins” on page 8-17

https://www.jenkins.io/doc/book/pipeline/jenkinsfile/
https://www.jenkins.io/doc/book/pipeline/syntax/
https://www.jenkins.io/doc/pipeline/steps/
https://www.jenkins.io/doc/pipeline/steps/credentials-binding/

Integrate Polyspace Server Products with MATLAB

Integrate Polyspace Server Products with MATLAB

You can install Polyspace Bug Finder Server and Polyspace Code Prover Server as standalone
products and analyze C/C++ code.

When installing Polyspace server products and MATLAB, you cannot install MATLAB and Polyspace

server products together in a single run of the installer. First install MATLAB by running the MATLAB

installer. Then install the Polyspace server product in a different root folder by running the installer

separately. For instance, in Windows:

* Your default MATLAB root folder is C:\Program Files\MATLAB\R2023a.

* Your default Polyspace root folder is C:\Program Files\Polyspace Server\R2023a for the
Polyspace server products.

To automate the Polyspace analysis by using MATLAB scripts, integrate the Polyspace server products
and MATLAB by running a post-installation step.

Integrate Polyspace Server Products with MATLAB

You can integrate your Polyspace server product with MATLAB only if both installations are from the
same release. After the integration, you can use all MATLAB functions and classes available for
running Polyspace.

To link your MATLAB and Polyspace installations:

Open MATLAB with administrator privileges.
2 At the MATLAB command prompt, enter:

polyspacesetup('install');

By default, Polyspace is installed in the folder C:\Program Files\Polyspace\R2023a. If you
install Polyspace in the default folder, the command integrates Polyspace with MATLAB. If a
Polyspace installation is not detected at the default location, provide the path to the Polyspace
installation folder when prompted. The process might take a few minutes to complete.

To avoid the prompt during installation, enter:

polyspacesetup('install', 'polyspaceFolder', Folder, 'silent', true);

3 Restart MATLAB. You can now use all functions and classes available for running Polyspace
server products.

A MATLAB installation can be integrated with only one Polyspace installation. To integrate to a new
Polyspace installation, any previous integration must be removed. To remove the integration between
a Polyspace and MATLAB installation, open MATLAB with administrator privilege and at the MATLAB
command prompt, enter:

polyspacesetup('uninstall")

Check Integration Between MATLAB and Polyspace

To check if a MATLAB installation is already integrated with a Polyspace installation, open MATLAB
and at the command prompt, enter:

8-33

8 Run Polyspace Analysis on Servers

ver

You see the list of products installed. If Polyspace is integrated with MATLAB, you can see the
Polyspace products in the list.

The MATLAB-Polyspace integration adds some Polyspace installation subfolders to the MATLAB
search path. To see which paths were added, enter:

polyspacesetup('showpolyspacefolders"')

Run Polyspace Server Products with MATLAB Scripts

In a continuous integration process, you can execute MATLAB scripts that run a Polyspace analysis on
new code submissions and compares the results against predefined criteria. Use these functions/
classes:

* Create a polyspace.Project object to configure Polyspace analysis options, run an analysis and
read results to MATLAB tables. You can use other MATLAB functions for comparing results
against predefined criteria.

To only read existing results without running an analysis, use the
polyspace.BugFinderResults class with the path to a results folder.

» If you want a more granular selection of checkers for:

* Coding rules, create a polyspace.CodingRulesOptions object.
* Bug Finder defects, create a polyspace.DefectsOptions object.

To create a custom target for the analysis and explicitly specify sizes of data types, create a
polyspace.GenericTargetOptions object.

You can also use the polyspaceBugFinderServer function to run the analysis and then read
results with the polyspace.BugFinderResults class. If you use build commands to build your
source code, you can create a Polyspace configuration from the build command using the
polyspaceConfigure function.

See Also
polyspacesetup

8-34

Configure Job Submissions from
Desktop to Server

35

Offload Polyspace Analysis to Remote
Servers from Desktop

* “Send Polyspace Analysis from Desktop to Remote Servers” on page 9-2
* “Send Polyspace Analysis from Desktop to Remote Servers Using Scripts” on page 9-5

9 offload Polyspace Analysis to Remote Servers from Desktop

Send Polyspace Analysis from Desktop to Remote Servers

9-2

In this section...

“Client-Server Workflow for Running Analysis” on page 9-2
“Prerequisites” on page 9-3

“Offload Analysis in Polyspace User Interface” on page 9-3

You can perform a Polyspace analysis locally on your desktop or offload the analysis to one or more
dedicated servers. You offload a Polyspace analysis from a Polyspace desktop product such as
Polyspace Bug Finder but the analysis runs on the server using a Polyspace server product such as
Polyspace Bug Finder Server.

This topic shows how to send a Polyspace analysis from the user interface of the Polyspace desktop
products.

* To offload an analysis with scripts, see “Send Polyspace Analysis from Desktop to Remote Servers
Using Scripts” on page 9-5.

» For a simple tutorial that walks through all the steps for offloading a Polyspace analysis, see “Send
Bug Finder Analysis from Desktop to Locally Hosted Server”. In the tutorial, the same computer
acts as the client and the server.

Client-Server Workflow for Running Analysis

After the initial setup, you can submit a Polyspace analysis from a client desktop to a server. The
client-server workflow happens in three steps. All three steps can be performed on the same
computer or three different computers.

1 Client node: You specify Polyspace analysis options and start the analysis on the client desktop.
The initial phase of analysis up to compilation runs on the desktop. After compilation, the
analysis job is submitted to the server.

You require the Polyspace desktop product, Polyspace Bug Finder on the computer that acts as
the client node.

2 Head node: The server consists of a head node and several worker nodes. The head node uses a
job scheduler to manage submissions from multiple client desktops. The jobs are then distributed
to the worker nodes as they become available.

You require the product MATLAB Parallel Server on the computer that acts as the head node.

3 Worker nodes: When a worker becomes available, the job scheduler assigns the analysis to the
worker. The Polyspace analysis runs on the worker and the results are downloaded back to the
client desktop for review.

You require the product MATLAB Parallel Server on the computers that act as worker nodes. You
also require the Polyspace server products, Polyspace Bug Finder Server and/or Polyspace Code
Prover Server, to run the analysis.

Note The versions of Polyspace on the client and worker nodes must match.

Send Polyspace Analysis from Desktop to Remote Servers

DOS/Linux x A)
K4

Job Queue
| JobQueue | gy

Compilation.. -HEEH
I1HI

W, 4 polyspace-bug-finder-server
Desktnp Analysis results polyspace-code-prover-server

., polyspace-bug-finder -batch
polyspace-code-prover -batch

Prerequisites

Before offloading an analysis from the user interface of the Polyspace desktop products, you must set

up your project’s source files, analysis options, and remote analysis settings. If you have not done so,
for more information on:

* How to add source files, see “Add Source Files for Analysis in Polyspace Desktop User Interface”
on page 2-2.

How to set up communication between client and server, see “Install Products for Submitting
Polyspace Analysis from Desktops to Remote Server”.

Once you have set up a Polyspace project and established communicated between a desktop and a
remote server, you are ready to offload a Polyspace analysis.

Offload Analysis in Polyspace User Interface

To start a remote analysis:

1 Select a project to analyze.
2 On the Configuration pane, select Run Settings.

Select Run Bug Finder analysis on a remote cluster and/or Run Code Prover analysis on a
remote cluster.

9-3

9 offload Polyspace Analysis to Remote Servers from Desktop

9-4

%

Bug_Finder_Example X
[~ Target & Compiler
> Macros

Run Settings

“ Environment Settings
----- Inputs & Stubbing
..... Multitasking Distributed Computing
----- Coding Rules & Code Metrics
----- Bug Finder Analysis

Run Bug Finder analysis on a remote duster

= C_l:n:le Prover Verification [] Upload resulis to Polyspace Metrics

- Verification Assumptions] Run Code Prover analysis on a remote duster
- Check Behavior
.. Upload results to Polyspace Metrics
i Precision
+ Sealing Analysis Mode

----- Reporting

® Run Settings [] Use fast analysis mode for Bug Finder

----- Advanced Settings

3 Start the analysis. For instance, to start a Bug Finder analysis, click the Run Bug Finder button.
The compilation part of the analysis takes place on the desktop product. After compilation, the
analysis is offloaded to the server.

4 To monitor the analysis, select Tools > Open Job Monitor. In the Polyspace Job Monitor, follow
your queued job to monitor progress.

Once the analysis is complete, the results are downloaded back to the user interface of the
Polyspace desktop products. You can open the results directly in the user interface.

If the analysis stops after compilation and you have to restart the analysis, to avoid restarting
from the compilation phase, use the option -submit-job-from-previous-compilation-
results.

See Also
Run Bug Finder or Code Prover analysis on a remote cluster (-batch)

More About
. “Install Products for Submitting Polyspace Analysis from Desktops to Remote Server”
. “Send Polyspace Analysis from Desktop to Remote Servers Using Scripts” on page 9-5

Send Polyspace Analysis from Desktop to Remote Servers Using Scripts

Send Polyspace Analysis from Desktop to Remote Servers
Using Scripts

Instead of running a Polyspace analysis on your local desktop, you can send the analysis to a remote
cluster. You can use a dedicated cluster for running Polyspace to free up memory on your local
desktop.

This topic shows how to use Windows or Linux scripts to send the analysis to a remote cluster and
download the results to your desktop after analysis.

To offload an analysis from the Polyspace user interface, see “Send Polyspace Analysis from
Desktop to Remote Servers” on page 9-2.

For a simple tutorial that walks through all the steps for offloading a Polyspace analysis, see “Send
Bug Finder Analysis from Desktop to Locally Hosted Server”. In the tutorial, the same computer
acts as the client and the server.

Client-Server Workflow for Running Analysis

After the initial setup, you can submit a Polyspace analysis from a client desktop to a server. The
client-server workflow happens in three steps. All three steps can be performed on the same
computer or three different computers.

1

Client node: You specify Polyspace analysis options and start the analysis on the client desktop.
The initial phase of analysis up to compilation runs on the desktop. After compilation, the
analysis job is submitted to the server.

You require the Polyspace desktop product, Polyspace Bug Finder on the computer that acts as
the client node.

Head node: The server consists of a head node and several worker nodes. The head node uses a
job scheduler to manage submissions from multiple client desktops. The jobs are then distributed
to the worker nodes as they become available.

You require the product MATLAB Parallel Server on the computer that acts as the head node.

Worker nodes: When a worker becomes available, the job scheduler assigns the analysis to the
worker. The Polyspace analysis runs on the worker and the results are downloaded back to the
client desktop for review.

You require the product MATLAB Parallel Server on the computers that act as worker nodes. You
also require the Polyspace server products, Polyspace Bug Finder Server and/or Polyspace Code
Prover Server to run the analysis.

Note The versions of Polyspace on the client and worker nodes must match.

9 offload Polyspace Analysis to Remote Servers from Desktop

9-6

- | Server |
Job Queue
| JobQueue | gy

Compilation.. -HEEH
I1HI

e=3 W, 4 polyspace-bug-finder-server
Desktnp Analysis results polyspace-code-prover-server

», polyspace-bug-finder -batch
polyspace-code-prover -batch

Prerequisites

Before you run a remote analysis by using scripts, you must set up communication between a desktop
and a remote server. See “Install Products for Submitting Polyspace Analysis from Desktops to
Remote Server”.

Run Remote Analysis

To run a remote analysis, use the following command. Here, [] indicates optional flags.

polyspaceroot\polyspace\bin\polyspace-bug-finder
-batch -scheduler NodeHost|MJISName@NodeHost [-wait -download]
[options] [-mjs-username name]

where:

* polyspaceroot is the installation folder of Polyspace desktop products, for instance,
C:\Program Files\Polyspace\R2023a.

NodeHost is the name of the computer that hosts the head node of the MATLAB Parallel Server
cluster.

MJSName is the name of the MATLAB Job Scheduler on the head node host.

If you set up communications with a cluster from the Polyspace user interface, you can determine
NodeHost and MJSName from the user interface.

Select Tools > Preferences, and then click Settings on the Server Configuration tab to open
the Cluster Profile Manager. Select the cluster profile in the left pane, and see the MJSName
and Host fields on the Properties tab for MJSName and NodeHost.

Send Polyspace Analysis from Desktop to Remote Servers Using Scripts

If you use the startjobmanager command to start the MATLAB Job Scheduler, MJSName is the
argument of the option -name. For details, see “Configure Advanced Options for MATLAB Job
Scheduler Integration” (MATLAB Parallel Server).

options are the analysis options. These options are the same as that of a local analysis. For
instance, you can use these options:

* -sources-list-file: Specify a text file with one source file name per line.
* -options-file: Specify a text file with one option per line.
* -results-dir: Specify a download folder for storing results after analysis.

For the full list of options, see “Complete List of Polyspace Bug Finder Analysis Engine Options”.
Alternatively, you can:

« Start an analysis in the user interface and stop after compilation. You can obtain the text files
and scripts for running the analysis at the command line. See “Configure Polyspace Analysis
Options in User Interface and Generate Scripts” on page 4-15.

* Enter polyspace-bug-finder -h. The list of available options with a brief description are
displayed.

* Place your cursor over each option on the Configuration pane in the Polyspace user interface.
Click the More Help button for information on the option syntax and when the option is
required.

name is the username required for job submissions using MATLAB Parallel Server. These
credentials are required only if you use a security level of 1 or higher for MATLAB Parallel Server
submissions. See “Set MATLAB Job Scheduler Cluster Security” (MATLAB Parallel Server).

For security levels 2 and higher, you have to provide a password in a graphical window at the time
of job submission. To avoid this prompt in the future, you can specify that the password be
remembered on the computer.

The analysis happens in two parts:

1

The first part of the analysis up to the end of the compilation phase executes locally on your
desktop. After compilation, the software submits the analysis job to the cluster and provides a job
ID. You can also read the ID from the file ID. txt, which is stored in the .status subfolder of
the results folder. To monitor your analysis, use the polyspace-jobs-manager command with
the job ID.

The remaining part of the analysis continues on the cluster. The command waits till the analysis
is completed and the results automatically downloaded back to the desktop. If you want to free
up the console and download results later using the polyspace-jobs-manager command, omit
the options -wait -download.

If the analysis stops after compilation and you have to restart the analysis, to avoid rerunning the
compilation phase, use the option -submit-job-from-previous-compilation-results.

Manage Remote Analysis

To manage multiple remote analyses, use the option -batch. For instance:

polyspaceroot\polyspace\bin\polyspace-jobs-manager action

-scheduler schedulerName

9 offload Polyspace Analysis to Remote Servers from Desktop

9-8

See also Run Bug Finder or Code Prover analysis on a remote cluster (-batch).

Here:

polyspaceroot is your MATLAB installation folder.
schedulerName is one of the following:

Name of the computer that hosts the head node of your MATLAB Parallel Server cluster
(NodeHos't).

Name of the MATLAB Job Scheduler on the head node host (MJSName@NodeHost).
Name of a MATLAB cluster profile (ClusterProfile).

For more information about clusters, see “Discover Clusters and Use Cluster Profiles” (Parallel
Computing Toolbox)

If you do not specify a job scheduler, polyspace-job-manager uses the scheduler specified in
the Polyspace preferences. To see the scheduler name, select Tools > Preferences. On the
Server Configuration tab, see the Job scheduler host name.

action refers to the possible action commands to manage jobs on the scheduler:

listjobs:

Generate a list of Polyspace jobs on the scheduler. For each job, the software produces this
information:

* ID — Verification or analysis identifier.

* AUTHOR — Name of user that submitted job.

* APPLICATION — Name of Polyspace product, for example, Polyspace Code Prover or
Polyspace Bug Finder.

* LOCAL RESULTS DIR — Results folder on local computer, specified through the Tools >
Preferences > Server Configuration tab.

* WORKER — Local computer from which job was submitted.

* STATUS — Status of job, for example, running and completed.

* DATE — Date on which job was submitted.

* LANG — Language of submitted source code.

download -job ID -results-folder FolderPath:

Download results of analysis with specified ID to folder specified by FolderPath. If you use
the option -wait -download when sending the analysis job to a server, the results are

automatically downloaded after analysis. Only when you want to explicitly download results do
you need to use the polyspace-jobs-manager command with the download action.

When the analysis job is queued on the server, the command polyspace-bug-finder returns
a job id. In addition, a file ID. txt that is stored in the . status subfolder of the results folder
contains the job ID in this format:

job _id;server name:project name version_number
For instance, 92; localhost:Demo 1.0.

If you do not use the -results-folder option, the software downloads the result to the
folder that you specified when starting analysis, using the -results-dir option.

Send Polyspace Analysis from Desktop to Remote Servers Using Scripts

After downloading results, use the Polyspace user interface to view the results.
*+ getlog -job ID:

Open log for job with specified ID.
* remove -job ID:

Remove job with specified ID.
* promote -job ID:

Promote job with specified ID in the queue.
demote -job ID

Demote job with specified ID in the queue.

Sample Scripts for Remote Analysis

In Windows, to avoid typing the commands each time, you can save the commands in a batch file. In
Linux, you can relaunch the analysis by using a shell script. To create a batch file for running
analysis:

Save your analysis options in a file lListofoptions.txt. See -options-file.
Create a file launcher.bat in a text editor like Notepad.

In the file, enter these commands:

echo off

set POLYSPACE PATH=polyspaceroot\polyspace\bin

set RESULTS PATH=C:\Results

set OPTIONS FILE=C:\Options\listofoptions.txt

"%POLYSPACE_PATHS\polyspace-bug-finder.exe" -batch -scheduler hostname
-results-dir "%RESULTS PATH%" -options-file "S%OPTIONS FILES%"

pause

polyspaceroot is the Polyspace installation folder. hostname is the name of the computer that
hosts the head node of your MATLAB Parallel Server cluster.
Replace the definitions of these variables in the file:

* POLYSPACE_PATH: Enter the actual location of the .exe file.

* RESULTS PATH: Enter the path to a folder. The files generated during compilation are saved
in the folder.

* OPTIONS FILE: Enter the path to the file listofoptions.txt.
Double-click launcher.bat to run the analysis.

Tip If you run a Polyspace analysis, a Windows .bat or Linux . sh file is generated. The file is in
the .settings subfolder in your results folder. Instead of writing a script from scratch, you can
relaunch the analysis using this file.

See Also
Run Bug Finder or Code Prover analysis on a remote cluster (-batch)

9-9

9 offload Polyspace Analysis to Remote Servers from Desktop

More About
. “Install Products for Submitting Polyspace Analysis from Desktops to Remote Server”
. “Send Polyspace Analysis from Desktop to Remote Servers” on page 9-2

9-10

Configure Analysis in IDEs

11

Run Polyspace Analysis in IDE Plugins

10 run Polyspace Analysis in IDE Plugins

Run Polyspace Analysis on Eclipse Projects

This topic describes how to run a Polyspace analysis on complete Eclipse projects using Polyspace
Bug Finder or Polyspace Code Prover. For the Polyspace as You Code plugin, see “Run Polyspace as
You Code in Eclipse and Review Results”.

If you develop code in Eclipse or an Eclipse-based IDE, you can install the Polyspace plugin and run a
Polyspace analysis on the source files in an Eclipse project. You can check for bugs each time you
save your code, or explicitly run an analysis.

This topic describes how to set up a Polyspace analysis in Eclipse and review analysis results.

& Polyspace - My_project/src/My_project.c - Eclipse — O bt

File Edit Source Refactor Mavigate Search Project Run Polyspace Window Help

i |m'¥'@@ CiNE B2 [B B - @|%C!C++ ¥ Polyspace

[Project Explorer 32 [<fg>| @ ¥ = O [i£] My_project.c 22 = 0
v [My_project 1 ginclude <stdlib.nh> .
v [src #include <stdio.h>
W @ My_project.c int increment content of address(int base_wval, int shift)

B stdio.h €

B stdlibh int 3;

@ increment_content_of_address(int, i int* pi = (int*)malloc(sizeof (int));

if (pi == NULL) return 0;

*pi = base_val;
free(pi): =

i = fpi + shife: =
/* Defect: Reading a freed pointer #*/

return j;

£ >
¥ Result Details 5% = 8 &1 Problems ¥ Polyspace Run - Bug Finder | " Results List - Bug Finder £3 > v = B
[] Variable trace My_project.c [increment_content_o | | All results w Tf‘ Mew v Showing 2/2 +
12 4 = *pi + shift; ... Chedk Information File Class Fi
Result Review Use of previously freed pointer Impact: High My_project.c Global Scope
Missing reset of freed pointer Impact: Low My_project.c Global Scope ing
Status Unreviewed w | |Bter af
Severity Unset ~

Use of previously freed pointer (Impact: High)
Pointer is deallocated.
It cannot be dereferenced.

Event File
1 Call to 'free' My_project.c i

2 Use of previously freed pointer My_project.c i

After you install the Polyspace plugin, you see a Polyspace menu and right-click options in the
Project Explorer to run a Polyspace analysis.

10-2

Run Polyspace Analysis on Eclipse Projects

Configure and Run Analysis

Configure analysis

The analysis progress bar, quick run buttons and analysis results appear on specific panes. To avoid
cluttering your window, you can confine these panes to the Polyspace perspective. Select Window >
Open Perspective > Other. In the Open Perspective dialog box, select Polyspace. You can switch
back to other perspectives using tabs on the upper right.

Polyspace analyzes the source files in your Eclipse project. In addition to sources, the analysis uses
the following information:

Compiler: The compiler toolchain can be extracted from your Eclipse project. If the project
directly refers to a compilation toolchain such as MinGW GCC, the Polyspace analysis can use the

information.
@ C++ Project I ———— [
C++ Project —

Create C++ project of selected type

Project name: HelloWorld

[¥] Use default location

| Chedt\workspace\HelloWorld

| Project type:
| 4 (= Executable
& Empty Project
& Hello World C++ Project
(= Shared Library

Toolchains:

MinGW GCC

If your Eclipse project uses a build command (makefile) that has the compiler information, you
must perform some additional steps to extract this information for the Polyspace analysis.

If Polyspace cannot extract the compiler information from your build command, you can also
explicitly specify your compiler options explicitly like other analysis options.

See “Specify Polyspace Compiler Options Through Eclipse Project” on page 10-7.

Other analysis options: You can retain the default analysis options or adjust them to your
requirements. Select Polyspace > Configure Project.

10-3

10 run Polyspace Analysis in IDE Plugins

" Polyspace >
File Edit Tools Window Help
| Ec} | «|Q |
My _project X |
) Target & Compiler Bug Finder Analysis
o~ Macros
‘- Environment Settings
----- Inputs & Stubbing Find defects | custom v
----- Multitasking 5 & Numericl -
----- Coding Rules & Code Metrics o
B Eug Fider Analysis [| N S Integer division by zero (Impact: High)
Bl Code Prover Verification || Float division by zero {Impact: High)
L Verification Assumptions || Integer conversion overflow (Impact: High)
Check Behavior |l Unsigned integer conversion overflow (Impact: Low)
Precision Il Sign change integer conversion overflow (Impact: Medium)
Sealing | Float conwversion averflow {Impact: High)
_____ Reporting -] Integer overflow (Impact: Medium)
_____ Run Settings -] Unsigned integer overflow (Impact: Low)
_____ Advanced Settings -] Float overflow (Impact: Low)
----- Absorption of float operand (Impact: High) W

10-4

The key options are:

* Target & Compiler: If you have not specified your compiler information through your Eclipse
project, use these options.

* Bug Finder Analysis: Specify which defects to check for in a Bug Finder analysis.

* Code Prover Verification, Check Behavior, Precision: Modify the behavior of checkers in a
Code Prover verification.

Note that you cannot run a remote analysis using the Polyspace plugin for Eclipse. To send the
analysis job to a remote cluster, start the analysis from the Polyspace user interface or using scripts.
See “Bug Finder Analysis on Clusters”.

Run analysis

After configuration, you can start and stop a Polyspace analysis explicitly from the Polyspace menu,
right-click options on your Eclipse project or quick run buttons in the Polyspace panes. You can

switch between Bug Finder and Code Prover using the ¥ icon on the Polyspace Run pane.
Run analysis when saving code

In the Polyspace perspective, you can set up a Bug Finder analysis that runs each time you save your
code. To enable this analysis, select Polyspace > Run Fast Analysis on Save. The analysis runs
quickly but looks for a reduced set of defects. You get the same results as if you had specified the
analysis option Use fast analysis mode for Bug Finder (-fast-analysis).

Run Polyspace Analysis on Eclipse Projects

Review Analysis Results
View results after analysis

After analysis, the results appear on the Results List pane. Click each result to see the source code
and details on the Result Details pane.

¥ Result Details 57

= O |31 problems ¥’ Polyspace Run - Bug Finder *¥/ Results List - Bug Finder 33 PENM=0

g | |varisble trace. My_project.c /increment_content_of_address() | [Allresults o Fanew =lv showng 272 v
10 ree(pi); Check Information Fie Class Function status Severity
=] Result Re Use of previously freed pointer Impact: High My_project.c Global Scope increment_conte... Unreviewed Unset
Fising et o feedporter———npecislon b e
Status. No action planned ~ ter comment here...
Severity Unset ®

O HMissing res:

Missing reset of freed pointer
After free(), local varisble 'pi st holds
Top

{

mg

View results as available

Some results of a Bug Finder analysis are often available before the analysis is complete. If so, the

iy
icon in the Polyspace Run - Bug Finder pane turns to =. To load available results, click this icon.
The icon shows up again when more results are available.

Address results

Based on the result details, fix your code or justify the result. To justify a result, set its Status to
Justified, No Action Planned or Not a Defect. To hide a justified result in the next run, add
the status as annotation to your source code. See “Annotate Code and Hide Known or Acceptable
Results” on page 30-2.

For quick annotation, right-click the result and select Annotate Code and Hide Result. The option
adds annotations in this format and hides the result from the results list:

line of code; /* polyspace Family:Result name */

For details of the format, see “Annotate Code and Hide Known or Acceptable Results” on page 30-
2. To unhide the hidden results, from the Showing menu, clear the box Hide results justified in
code.

Showing 2,699/2,639 w

Review Scope: All results
New results onhy: Off

Showing 2,699 out of 2,699 possible results
Filtered results: 0
Hidden results: 0

[] Hide results justified in code

Columns with active filters:
Mo filtered columns

Clear active filters

10-5

10 run Polyspace Analysis in IDE Plugins

See Also

Related Examples

. “Specify Polyspace Compiler Options Through Eclipse Project” on page 10-7
. “Interpret Bug Finder Results in Polyspace Desktop User Interface” on page 21-2

. “Address Results in Polyspace User Interface Through Bug Fixes or Justifications” on page 22-
2

. “Filter and Group Results in Polyspace Desktop User Interface” on page 23-2

10-6

Specify Polyspace Compiler Options Through Eclipse Project

Specify Polyspace Compiler Options Through Eclipse Project

This topic describes how to configure a Polyspace analysis of Eclipse projects using Polyspace Bug
Finder or Polyspace Code Prover. For the Polyspace as You Code plugin, see “Run Polyspace as You
Code in Eclipse and Review Results”.

Polyspace analysis in Eclipse uses a set of default analysis options preconfigured for your coding
language and operating system. For each project, you can customize the analysis options further.

* Compiler options: You specify the compiler that you use, the libraries that you include and the
macros that are defined for your compilation.

» Ifyour Eclipse project directly refers to a compilation toolchain, the analysis reads the
compiler options from the project.

See “Eclipse Refers Directly to Your Compilation Toolchain” on page 10-7.

+ If the project refers to your compilation toolchain through a build command, the analysis
cannot read the compiler options directly. Trace the build command to extract the options.
Tracing a build command involves first executing the command and extracting required
information from the processes executed.

See “Eclipse Uses Your Compilation Toolchain Through Build Command” on page 10-8.

* Other options: Through the other options, you specify which analysis results you want and how
precise you want them to be.To specify these options in Eclipse, select Polyspace > Configure
Project.

For information on how to run Polyspace from Eclipse, see “Run Polyspace Analysis on Eclipse
Projects” on page 10-2.

Eclipse Refers Directly to Your Compilation Toolchain
When setting up your Eclipse project, you might be directly referring to your compilation toolchain

without using a build command. For instance, you might refer to the MinGW GCC toolchain in the
project setup wizard as below.

10-7

10 run Polyspace Analysis in IDE Plugins

10-8

C++ Project —>

Create C++ project of selected type

Project name: HelloWorld

[¥] Use default location

Chedt\workspace\HelloWorld Browse
Project type: Toolchains:
4 (= Executable [MinGW GCC

@ Empty Project
& Hello World C++ Project

(= Shared Library _ !
The compiler options from your Eclipse project, such as include paths and preprocessor macros, are
reused for the analysis.

You cannot view the options directly in the Polyspace configuration but you can view them in your
Eclipse editor. In your project properties (Project > Properties), in the Paths and Symbols node:

* See the include paths under the Includes tab.

During analysis, the paths are implicitly used with the analysis option -I.
* See the preprocessor macros under the Symbols tab.

During analysis, the macros are implicitly used with the analysis option Preprocessor
definitions (-D).

Eclipse Uses Your Compilation Toolchain Through Build Command

When setting up your Eclipse project, instead of specifying your compilation toolchain directly, you
might be specifying it through a build command. For instance, in the Wind River Workbench IDE (an
Eclipse-based IDE), you might specify your build command as shown in the following figure.

Specify Polyspace Compiler Options Through Eclipse Project

{3 Properties for testWR -_— l (5] &J
Build Properties w7 NS

> R
B?::r:rr;’:rser Specify all build properties,

» Build Properties ## Build Support and Specs |::;§:‘ Toolsl [=- Paths | # Defines | = Libraries | $ VYariables
Builders Build support

» C/C++ General @ Managed build {makefiles generated by the IDE)
Code Coverage Analyzer I

. () Disabled

Project Info

Project References
Refactoring History
Run/Debug Settings =
Task Tags
+ Validation

Build command: s¢makeprefix?% make --no-print-directory -

If you use a build command for compilation, the analysis cannot automatically extract the compiler
options. You must trace your build command.

1

Replace your build command with:

polyspaceroot\polyspace\bin\polyspace-configure.exe
-no-sources -output-project
PolyspaceWorkspace\EclipseProjects\Name\Name.psprj buildCommand

Here:

* polyspaceroot is the Polyspace installation folder.

* polyspacelWorkspace is the folder where your Polyspace files are stored. You specify this
location on the Project and Results Folder tab in your Polyspace preferences (Tools >
Preferences in the Polyspace user interface).

* Name is the name of your Eclipse project.

* buildCommand is the original build command that you want to trace.

For instance, in the preceding example, buildCommand is the following:
%makeprefix%s make --no-print-directory

For information on the options -output-project and -no-sources, see polyspace-
configure.

Build your Eclipse project. Perform a clean build so that files are recompiled.

For instance, select the option Project > Clean. Normally, the option runs your build command.
With your replacement in the previous step, the option also traces the build to extract the
compiler options.

Restore the original build command and restart Eclipse.

You can now run analysis on your Eclipse project. The analysis uses the compiler options that it
has extracted.

10-9

10 run Polyspace Analysis in IDE Plugins

See Also

Related Examples
. “Run Polyspace Analysis on Eclipse Projects” on page 10-2

10-10

Configure Polyspace as You Code

11 Configure Polyspace as You Code

Configure Polyspace as You Code Extension in Visual Studio

Polyspace as You Code allows you to find bugs and coding rule violations while you work in your
Visual Studio IDE.

After you install the Polyspace as You Code analysis engine and Visual Studio extension, configure the
extension so that a Polyspace analysis runs smoothly when you save your code or explicitly start an
analysis. An analysis has run smoothly if results appear as expected, either as source code markers
with tooltips or in a list on the Results List pane.

To configure the extension, in Visual Studio:

* Select Tools > Options and specify the General settings on the Polyspace node. These settings
apply to all projects in Visual Studio.

» Right-click a project in the Visual Studio Selution Explorer pane and select Polyspace
properties to specify settings that apply only to the selected project.

All settings retain their current values when you reinstall the extension.

General Settings

Setting Description
Analysis launch Select whether Polyspace as You Code runs on each file save or explicitly.
mode Select one of the following:

* Automatically(default): Analysis starts on each file save.

* Manually: User explicitly starts the analysis. To start an analysis, right-
click in the source code or the file in the Solution Explorer, and select
Run Polyspace analysis.

Polyspace as You |Polyspace as You Code installation folder. This field is read-only and set at the
Code installation |time of installation.

folder
If you see errors related to starting a Polyspace Connector, check if the folder

still exists (and contains a Polyspace as You Code installation). The errors
appear on the Output pane in Visual Studio.

Working directory |Folder where analysis results are stored. When you start an analysis, a
for extension subfolder is created in this folder for each Visual Studio solution. Within a
subfolder, a second subfolder is created per project and then another per file.

For each file, a new run overwrites results of the previous run. If the analysis
fails for a given file, you can check the failed subfolder for information
useful for troubleshooting, such as the options given to the analysis engine.

The default results folder is C: \TEMP\%USERNAME%\Polyspace.

11-2

Configure Polyspace as You Code Extension in Visual Studio

Setting

Description

Polyspace Access
URL

URL of the Polyspace Access instance from which you get a baseline.

After you obtain a baseline from Polyspace Access, subsequent runs of
Polyspace as You Code allow you to distinguish between new results and
results that were present in existing code (code previously uploaded to
Polyspace Access).

See also “Baseline Polyspace as You Code Results in Visual Studio” on page
11-44.

Polyspace Properties for Project

Build tab

Setting Description

Get from If your project configuration type is Application (.exe), Dynamic Library (.dll),
solution(default) or Static Library (.lib), Polyspace extracts the build options from your project

when you start the analysis.

Otherwise, before you start an analysis, click Generate Polyspace build
configuration to build the Visual Studio solution, trace the build, and extract
your build options. If the project configuration type is Makefile or Utility, the
label for this setting lists the project type. For instance (project type:
'Utility').

See also “Configure Polyspace as You Code to Extract Build Configuration” on
page 11-27.

Get from build
command line

Specify:

* The build command in the setting Build command line

* The folder from which the build command must be launched in the setting
Working directory.

Before you start an analysis, click Generate Polyspace build configuration
to run your build command, trace your build, and extract your build options.

See also “Configure Polyspace as You Code to Extract Build Configuration” on
page 11-27.

11-3

https://learn.microsoft.com/en-us/cpp/build/reference/general-property-page-project?view=msvc-160#configuration-type

11 Configure Polyspace as You Code

11-4

Setting Description

Get from JSON Specify the path to the JSON file (typically named compile commands. json)
compilation in the setting Path to JSON file.

database

Before you start an analysis, click Generate Polyspace build configuration
to extract the build options from the JSON compilation database that you

specify.

See also “Configure Polyspace as You Code to Extract Build Configuration” on
page 11-27.

If you use a build system generator such as CMake, you can follow this
approach to set up Polyspace as You Code. For instance, if you use CMake
projects in Visual Studio, CMake also allows you to generate a JSON
compilation database with the commands used for building the project. You
can then provide the compilation database to this setting. For an example of
how to generate this JSON file, see “Create Polyspace Options File from JSON
Compilation Database”.

Get from Polyspace
build options file

The analysis uses manually specified options. Provide these options in the
options file that you specify in the setting Build options file. See “Specify
Analysis Options Manually” on page 11-29.

Build options file
not required

You do not have to specify Polyspace options related to your building
configuration. This option applies only to simple projects.

The analysis uses the default Polyspace build options. You should typically
provide Polyspace as You Code with the specificities of your build
configuration so that the analysis runs without errors.

Analysis tab

Setting

Description

Checkers file

Path to a checkers configuration file.
To create or edit this file, open the Checkers selection window by clicking

E *. Enable the checkers that you want and save the file.

To select an existing file, open the file explorer by clicking Ld

See also “Configure Checkers for Polyspace as You Code in Visual Studio” on
page 11-63.

Configure Polyspace as You Code Extension in Visual Studio

Setting

Description

Analysis options
file

Path to an options file. The options file contains one Polyspace analysis option
per line. For example:

-D _WIN32
-termination-functions exit handler

You typically do not need to specify additional options in an options file.
However, in some situations, you might want to use an options file. For
instance, if you want to manually specify Polyspace options related to your
build command.

See also “Options Files for Polyspace Analysis” on page 12-5.

Import options
from Polyspace
Desktop project

(*.psprj)

Import the analysis options and checkers configuration file from existing
Polyspace desktop project file. See “Import Analysis Options from Polyspace
Desktop Project” on page 11-30.

Polyspace Access ta

b

Setting

Description

Use baseline from
Polyspace Access

Specify whether to use a baseline for Polyspace results.

If you enable this setting, specify a Project path and click Download
baseline from Polyspace Access to download a baseline.

After you download the baseline, subsequent runs of Polyspace as You Code
import review information from the baseline and allow you to distinguish
between new results and results that were present in existing code.

See also “Baseline Polyspace as You Code Results in Visual Studio” on page
11-44.

Show only new
findings compared
to the results
baseline

Specify whether only new results must be shown. If you select this option,
results are compared with the baseline downloaded from Polyspace Access
and only new results are shown.

See also “Baseline Polyspace as You Code Results in Visual Studio” on page

11-44.

11-5

11 Configure Polyspace as You Code

11-6

Expert tab

Setting

Description

Run analysis script

Run a script each time you save your code (or explicitly run analysis).
The extension passes these parameters to the script:

* Path to the current file as the first argument.
* Working directory for extension path as the second argument.
* Polyspace as You Code installation folder as the third argument.

For example, this simple Windows batch script analyzes the current file, uses
the default Polyspace build options, and imports the review information from a
previously downloaded baseline:

set INSTALL DIR=%3

set ANALYZE=%INSTALL_DIR%\polyspace\bin\polyspace-bug-finder-access.exe
set SOURCES=%1

set RESULTS FOLDER=%2

set BASELINE DIR=%RESULTS FOLDER%\..\..\..\baseline

"%ANALYZES%" -sources %SOURCES% -import-comments %BASELINE DIR% -results-dir %RESULTS_FOLDER%
IF %ERRORLEVELS NEQ O EXIT 1

For more on downloading a baseline and importing its review information at
the command line, see “Baseline Polyspace as You Code Results on Command
Line” on page 11-56.

Use a script if, for instance, you switch between files from components that
have different build configurations or you use a custom tool to setup your
build environment.

If you enable this setting, all other extension settings are ignored.

Note The Polyspace as You Code extension does not check the exit status of
the commands in your script. Make sure your script checks exit codes (for
instance by using %$ERRORLEVELS) and returns a meaningful exit status.

Typically, the Polyspace binaries return 0 on success and a non-zero value on
failure.

Analysis script

Enter the full path to a script that runs each time your run Polyspace as You
Code. The script can be written in any language. On Windows, the extension
supports scripting languages only for scripts that are executable from the
Command Prompt.

Depending on your Analysis launch mode setting, the script runs on each
file save, or when you right-click in the source code or the file in the Solution
Explorer and select Run Polyspace analysis.

Configure Polyspace as You Code Extension in Visual Studio

See Also

Related Examples

“Generate Build Options for Polyspace as You Code Analysis in Visual Studio” on page 11-27
“Baseline Polyspace as You Code Results in Visual Studio” on page 11-44

“Configure Checkers for Polyspace as You Code in Visual Studio” on page 11-63

“Run Polyspace as You Code in Visual Studio and Review Results” on page 29-2

11-7

11 Configure Polyspace as You Code

Configure Polyspace as You Code Extension in Visual Studio
Code

Polyspace as You Code allows you to find bugs and coding rule violations while you work in your
Visual Studio Code editor.

After you install the Polyspace as You Code analysis engine and Visual Studio Code extension,
configure the extension so that a Polyspace analysis runs smoothly when you save your code or
explicitly start an analysis. An analysis has run smoothly if results appear as expected, either as
source code markers with tooltips or in a list on the PROBLEMS pane.

To configure the extension, in Visual Studio Code, open the settings interface by pressing Ctrl +,
(comma) and type polyspace in the settings search bar.

For each setting, you can specify a value that applies globally to all workspaces or folders that you
open in the Visual Studio editor. For most of the settings, you can also override the global
specification with a workspace-specific value.

» To specify global settings, enter the settings on the User tab.

» To override the global settings for the currently open workspace or folder, enter the settings on
the Workspace tab or the Remote tab if you are using the VS Code Remote Development
feature .

Unless otherwise specified, settings that are available on the User tab are also available on the
Workspace or Remote tabs.

User Workspace

~ Extensions

Polyspace > Analysis Engine: Polyspace Installation Folder

Polyspace as Y... L - . . .
YSpe You Code installation folder. Typically, the folder name ends with 'Pol

s the release number.

CA\Program Files\Polyspace as You Code\R2021a

To reset a setting to its default value, click the % icon on the left of the setting and select Reset
Setting. All settings retain their current values when you reinstall the extension.

Tip Type the Setting ID in the settings search bar to view only the settings related to that ID.

Analysis Engine
Setting ID: polyspace.analysisEngine

These settings are mandatory. For better performance on Windows, the path that you provide for
these settings should not point to network drives.

11-8

Configure Polyspace as You Code Extension in Visual Studio Code

Setting

Description

Polyspace
Installation Folder

Root folder of the Polyspace as You Code installation, for instance,
C:\Program Files\Polyspace as You Code\R2023a.

Working Directory

Folder where analysis results are stored. Each new run overwrites results of
the previous run. If you do not specify a folder path, Polyspace creates a
Working Directory in your system's temporary folder:

* /tmp in Linux.

* C:\users\%username%\AppData\Local\Temp in Windows.

Analysis Behavior On Save

Setting ID: polyspace.analysisOptions OnSave

By default, Polyspace as You Code adds the current file to the Quality Monitoring list and runs each
time you save your code. You can choose to disable these automatic actions.

Setting

Description

Analysis Options:
Add To Quality
Monitoring On
Save

Select how you add files to the Quality Monitoring list. Polyspace as You
Code analyzes files only if they are added to that list.

By default, Polyspace adds the current file to the list on save (Ctrl + S).
Deselect this setting to add files to the Quality Monitoring list manually. To
add files manually, right-click the file in the editor, the EXPLORER panel, or
SOURCE CONTROL panel in the side bar.

Analysis Options:
Analysis Of Files
On Save

Select when Polyspace as You Code runs on files that are in the Quality
Monitoring list.

By default, Polyspace as You Code runs each time you save your code.
Deselect this setting to run the analysis manually. You can right-click the
source code or a file in the EXPLORER and select Run Polyspace Analysis
(or run the command Polyspace: Run Polyspace Analysis from the

Command Palette).

Analysis Setup

Setting ID: polyspace.analysisOptions.analysisSetup

You can set up a Polyspace as You Code analysis through extension settings or override extension
settings and run a script instead. By default, the analysis uses extension settings.

11-9

11 Configure Polyspace as You Code

11-10

Setting

Description

Analysis Options:
Analysis Setup

Select between manual setup and script.

* Manual Setup (default): Set up Polyspace as You Code through extension
settings. Specify build-related and other options through the Manual
Setup group of settings.

See “Analysis Options > Manual Setup” on page 11-10.

* Script: Run a script each time you save your code (or right-click a source

file and select Run Polyspace Analysis).

See “Analysis Options > Script” on page 11-13.

Analysis Options > Manual Setup

Setting ID: polyspace.analysisOptions.manualSetup

Manual setup of the analysis involves specifying build options, checkers and other analysis options.
Extract build options from a Visual Studio Code build task or a JSON Compilation Database file, or
specify them explicitly in a build options file. Enable or disable checkers in a checkers selection
window. Specify all remaining analysis options explicitly in an options file.

Configure Polyspace as You Code Extension in Visual Studio Code

Setting

Description

Analysis Options >
Manual Setup:
Build

Specification of build-related Polyspace analysis options. Options are:

Build options file not required (default)

You do not have to specify Polyspace options related to building your files.
This is a basic option for simple projects where the default Polyspace
analysis options are sufficient to compile the files.

Get from build command

Polyspace uses your build command to generate a build options file. Make
sure that the command builds all source files in your workspace. Specify
the build command in the setting Analysis Options > Manual Setup >
Build Setting: Build Command.

To generate the build options file, from the Command Palette, run
Polyspace: Generate Build Options.

See “Get Build Configuration from Build Command” on page 11-33
Get from build task

Polyspace uses your Visual Studio build task to generate a build options
file. Make sure that the build task performs a complete build of all the files
in your workspace. Specify the build task name in the setting Analysis
Options > Manual Setup > Build Setting: Build Task.

To generate the build options file, from the Command Palette, run
Polyspace: Generate Build Options.

See “Get Build Configuration from Build Task” on page 11-33.
Get from JSON Compilation Database file

Polyspace uses your JSON compilation database to generate a build
options file. Specify the path to the database file (typically named
compile commands.json) in the setting Analysis Options > Manual
Setup > Build Setting: JSON Compilation Database File.

To generate the build options file, from the Command Palette, run
Polyspace: Generate Build Options.

See “Get Build Configuration from JSON Compilation Database” on page
11-34.

Get from Polyspace build options file

Provide the build options in the options file that you specify in the setting

Analysis Options > Manual Setup > Build Setting: Polyspace Build
Options File.

See also “Options Files for Polyspace Analysis” on page 12-5.

11-11

11 Configure Polyspace as You Code

11-12

Setting

Description

Analysis Options >
Manual Setup >
Build Setting:
Build Command

Use this setting if you choose Get from build command for the setting
Analysis Options > Manual Setup: Build.

Specify the build command name exactly as you would enter on a command-
line terminal or console.

Use a build command that performs a complete build of all files in your
workspace and not an incremental build.

See “Get Build Configuration from Build Command” on page 11-33

Analysis Options >
Manual Setup >
Build Setting:
Build Task

Use this setting if you choose Get from build task for the setting
Analysis Options > Manual Setup: Build.

Specify the build task name. The build task name is the name of a command
that runs when you select Terminal > Run Task. For more information on
tasks, see Visual Studio Code documentation.

Use a build task that performs a complete build of all files in your workspace
and not an incremental build.

See “Get Build Configuration from Build Task” on page 11-33.

Analysis Options >
Manual Setup >
Build Setting:
JSON Compilation
Database File

Use this setting if you choose Get from JSON Compilation Database
File for the setting Analysis Options > Manual Setup: Build.

Specify the full path to a database file (typically named
compile commands.json).

See “Get Build Configuration from JSON Compilation Database” on page 11-
34.

If you use a build system generator such as CMake, you can follow this
approach to set up Polyspace as You Code. For instance, if you use CMake
projects in Visual Studio Code, CMake also allows you to generate a JSON
compilation database with the commands used for building the project. You
can then provide the compilation database to this setting. For an example of
how to generate this JSON file, see “Create Polyspace Options File from JSON
Compilation Database”.

Analysis Options >
Manual Setup >
Build Setting:
Polyspace Build
Options File

Use this setting if you choose Get from Polyspace Build Options File
for the setting Analysis Options > Manual Setup: Build.

Specify the full path to a Polyspace build options file. The options file is a text
file with one Polyspace analysis option per line.

See also “Options Files for Polyspace Analysis” on page 12-5.

Analysis Options >
Manual Setup:
Checkers File

Specify the full path to a checkers configuration file.

To create this file, in the Command Palette, run Polyspace: Configure
Checkers. Enable the checkers that you want and save the file.

See also “Configure Checkers for Polyspace as You Code in Visual Studio
Code” on page 11-66.

https://code.visualstudio.com/docs/editor/tasks

Configure Polyspace as You Code Extension in Visual Studio Code

Setting Description

Analysis Options > |Path to an options file. The options file contains one Polyspace analysis option
Manual Setup: per line. For example:

Other Analysis o . .

Options -termination-functions exit handler

-code-behavior-specifications /usr/jdoe/util/checkerModifiers.xml

You typically do not need to specify additional options in an options file.
However, in some situations,you might want to use an options file. For
instance, you might want to modify some checkers using an XML file that you
provide with the option -code-behavior-specifications.

See also “Options Files for Polyspace Analysis” on page 12-5.

Analysis Options > Script

Setting ID: polyspace.analysisOptions.scriptFile

11-13

11 Configure Polyspace as You Code

11-14

Setting

Description

Analysis Options >
Script: Script File

Use this setting if you choose Script for the setting Analysis Options:
Analysis Setup.

Enter the full path to a script that runs each time your run Polyspace as You
Code on save or explicitly. The script can be written in any language. On
Windows, the extension supports scripting languages only for scripts that are
executable from the Command Prompt.

The extension passes these parameters to the script:

* Path to the current file as the first argument.
* Working Directory path as the second argument.
* Polyspace Installation Folder path as the third argument.

For example, this simple Windows batch script analyzes the current file, uses
the default Polyspace build options, and imports the review information from a
previously downloaded baseline:

set INSTALL DIR=%3

set ANALYZE=%INSTALL_DIR%\polyspace\bin\polyspace-bug-finder-access.exe
set SOURCES=%1

set RESULTS FOLDER=%2

set BASELINE DIR=%RESULTS FOLDER%\..\..\..\baseline

"%ANALYZE%" -sources %SOURCES% -import-comments %BASELINE DIR% -results-dir %RESULTS FOLDER%
IF %ERRORLEVELS NEQ 0 EXIT 1

For more on downloading a baseline and importing its review information at
the command line, see “Baseline Polyspace as You Code Results on Command
Line” on page 11-56.

Use a script if, for instance, you switch between files from components that
have different build configurations or you use a custom tool to setup your
build environment.

If you enable this setting, all other extension settings are ignored.

Note The Polyspace as You Code extension does not check the exit status of
the commands in your script. Make sure your script checks exit codes (for
instance by using %$ERRORLEVELS) and returns a meaningful exit status.

Typically, the Polyspace binaries return 0 on success and a non-zero value on
failure.

Baseline

Setting ID: polyspace.baseline

Set these options if you want to compare your local results against a baseline from Polyspace Access.
After you obtain a baseline from Polyspace Access, subsequent runs of Polyspace as You Code allow
you to distinguish between new results and results that were present in existing code. See also
“Baseline Polyspace as You Code Results in Visual Studio Code” on page 11-48.

Configure Polyspace as You Code Extension in Visual Studio Code

Setting

Description

Baseline:
Polyspace Access
Login

Specify the user name that you use to log in to Polyspace Access.

Later, when you run Polyspace: Download Baseline in the Command
Palette, you are prompted for the password that corresponds to this user
name.

Baseline:
Polyspace Access
Url

Specify the Polyspace Access URL, for instance https://example.access-
server:9443.

Baseline: Project

Specify the path of a project on Polyspace Access that you use as baseline.

To download the baseline, from the Command Palette, run Polyspace:
Download Baseline.

See also “Baseline Polyspace as You Code Results in Visual Studio Code” on
page 11-48.

Baseline: Show
Baseline
Information

Enable or disable the use of information from the baseline run:

* Show local findings only (default)
When you run an analysis, Polyspace does not use information from the
baseline run. You see only local findings in the PROBLEMS pane.

* Show local findings and baseline info
When you run an analysis, Polyspace imports review information from the

baseline run. Results that are already justified in the baseline run are
suppressed in the PROBLEMS pane.

* Show new findings only

When you run an analysis, Polyspace imports review information from the
baseline. Results that are already present in the baseline run are
suppressed in the PROBLEMS pane.

Use this setting to focus only on new findings.

See also “Baseline Polyspace as You Code Results in Visual Studio Code” on
page 11-48.

Justification Catalog

Setting ID: polyspace. justification.catalog

Use this setting if your team or organization has a predefined set of comments that they use to justify
results. You can store these justifications in a catalog file and associate one or more justification with
a specific result or result family.

If you use the Polyspace syntax to annotate a result in the Visual Studio Code editor, justifications
that you store in the catalog for that result are available in a dropdown when you start typing the
annotation comment. For details of the Polyspace syntax, see “Annotation Syntax Details” on page 30-

4.

11-15

11 Configure Polyspace as You Code

11-16

To create a justification catalog, see “Use a Justification Catalog to Autocomplete Annotations in
Polyspace as You Code plugins” on page 29-27.

Setting Description
Justification: Specify the full file path of the JSON catalog.
Catalog

Other Settings

Setting ID: polyspace.otherSettings

Additional settings to configure the debugging mode and the port the extension uses to communicate
with the analysis engine.

Setting Description
Other Settings: Enable or disable debugging.
Debug Mode

* Disabled(default)

Show only errors, warnings, and information messages such as start and
end of analysis in the OUTPUT pane.

* Enabled

Show all debugging information in the OUTPUT pane. Enable this setting
to troubleshoot issues with the Polyspace as You Code extension.

Other Settings:
Headers
Extensions

Specify the extensions that Polyspace as You Code should treat as header files
instead of source files.

If you configure Polyspace to add files to the Quality Monitoring list on save
and you make edits to a file with one of the specified header extensions,
Polyspace does not add that file to the Quality Monitoring list on save.

Polyspace analyzes and reports findings in a header file if you analyze a file
that includes the header file or if you explicitly start an analysis of the header
file. The header file is analyzed even if you do not specify the extension of the
file in this setting.

See also “HEADERS view” on page 29-7.

Other Settings:
Help Improve
Polyspace as You
Code

Enable or disable the sharing of user experience information with MathWorks.
Polyspace uses this information to improve the Polyspace as You Code
extension.

This setting is available only on the User tab.

Configure Polyspace as You Code Extension in Visual Studio Code

Setting Description
Other Settings: Specify the port number that the Polyspace as You Code extension uses on
Port startup to establish an internal connection with the analysis engine.

Use this setting if, for instance, your machine is configured with a firewall and
you want to specify an open port in the firewall.

By default, port 0 is specified and Polyspace queries your system for an
available port and uses whichever port your system returns.

If you run multiple instances of the Polyspace as You Code extension, specify a
different port for each instance.

If you change this setting, you might need to reload Visual Studio Code. If you
let Polyspace obtain a port number automatically (port 0), the extension might
connect on a different port when you reload Visual Studio Code and you might
need to rerun the command Polyspace: Generate Build Options.

Configure Polyspace as You Code for Remote Development

The Polyspace as You Code extension supports the Visual Studio Code remote development feature.
See VS Code Remote Development.

With remote development, you can run a Polyspace as You Code analysis from your local machine on
code that you develop and edit on a remote machine. To enable remote development, see Remote
tutorials.

When you enable remote development:

The Polyspace as You Code extension is disabled on your local machine. You use the Polyspace as
You Code extension on the remote machine to run the analysis.

You see an additional Remote tab in the Polyspace extension settings. You configure the extension
on the remote machine in this tab.

If you set Analysis Options > Manual Setup: Build to Get from build task or Get from
build command, check that your build completes successfully before you run the Polyspace:
Generate Build Options command.

Note On Windows, if any of your project files or folders on the remote machine are on a network
drive, provide the UNC path for that network drive. The Polyspace as You Code extension cannot
resolve the path of a network drive that is mapped to a drive letter when you enable remote
development and the Polyspace: Generate Build Options command might fail.

See Also

Related Examples

“Generate Build Options for Polyspace as You Code Analysis in Visual Studio Code” on page 11-
32

“Baseline Polyspace as You Code Results in Visual Studio Code” on page 11-48

11-17

https://code.visualstudio.com/docs/remote/remote-overview
https://code.visualstudio.com/docs/remote/remote-overview#_remote-tutorials
https://code.visualstudio.com/docs/remote/remote-overview#_remote-tutorials

11 Configure Polyspace as You Code

. “Configure Checkers for Polyspace as You Code in Visual Studio Code” on page 11-66
. “Run Polyspace as You Code in Visual Studio Code and Review Results” on page 29-6

11-18

Configure Polyspace as You Code Plugin in Eclipse

Configure Polyspace as You Code Plugin in Eclipse

This topic describes how to configure the Polyspace as You Code plugin in Eclipse. For Polyspace
desktop products such as Polyspace Bug Finder, see “Bug Finder Analysis Based on Eclipse Projects”.

Polyspace as You Code allows you to find bugs and coding rule violations while you work in your
Eclipse-based IDE.

After you install the Polyspace as You Code analysis engine and Eclipse plugin, configure the plugin
so that a Polyspace analysis runs smoothly when you save your code or explicitly start an analysis. An
analysis has run smoothly if results appear as expected, either as source code markers with tooltips
or in a list on the Polyspace Problems view.

To configure the Eclipse plugin, go to Window > Preferences and select the Polyspace as You

Code node in the Preferences window. You can also open the Preferences window by pressing Alt

+W+P. Under the Polyspace as You Code node, select:

* Analysis to configure the analysis options for the projects.

* Baseline to configure the use of analysis results you download from Polyspace Access as a
baseline.

To save your configuration, click Apply and Close, or click Apply to save your changes and continue
making edits to the configuration. To restore default configuration values, click Restore Defaults. All
settings retain their current values when you reinstall the plugin.

Polyspace as You Code Node

Installation and results folders

Setting Description

Polyspace Root folder of the Polyspace as You Code installation, for instance,
installation folder |C:\Program Files\Polyspace as You Code\R2023a.

Working directory |Folder where analysis results are stored. Each new run overwrites results of
the previous run.

The default working directory, is stored under your system temporary folder,
and typically contains polyspace eclipse in the folder name:

* Windows: %temp% folder, for instance C:\Users\jsmith\AppData
\Local\Temp.

e Linux: /tmp folder.

Polyspace justification

Use this setting if your team or organization has a predefined set of comments that they use to justify
results. You can store these justifications in a catalog file and associate one or more justification with
a specific result or result family.

If you use the Polyspace syntax to annotate a result , the annotation comment is auto-filled with the

justifications that you store in the catalog for that result. For details of the Polyspace syntax, see
“Annotation Syntax Details” on page 30-4.

11-19

11 Configure Polyspace as You Code

To create a justification catalog, see “Use a Justification Catalog to Autocomplete Annotations in
Polyspace as You Code plugins” on page 29-27.

Setting Description

Justification Specify the full file path of the justification catalog JSON file.
catalog

Other

Setting Description

Debug Mode Enable or disable debugging.

(default) — The Console view shows only errors, warnings, and
information messages such as start and end of analysis.

#| — The Console view shows all debugging information. Enable this
setting to troubleshoot issues with the Eclipse plugin.

Help Improve
Polyspace as You

Enable (default) or disable the sharing of user experience information with
MathWorks.

Code
* |Vl (default) — Polyspaceshares user experience information with
MathWorks and uses this information to improve the Eclipse plugin.
y — Polyspace does not share user experience information.
Polyspace
Port Specify the port number that the Polyspace as You Code plugin uses on

startup to establish an internal connection with the analysis engine.

Use this setting if, for instance, your machine is configured with a firewall and
you want to specify an open port in the firewall.

By default, port 0 is specified and Polyspace queries your system for an
available port and uses whichever port your system returns.

If you run multiple instances of Eclipse which access different workspaces,
specify a different port for each instance.

If you change this setting, you might need to restart your Eclipse IDE. If you
let Polyspace obtain a port number automatically (port 0), the plugin might
connect on a different port when you restart your Eclipse IDE and you might
need to regenerate your build options.

Analysis Node

Plugin Behavior on Save

Specify whether the plugin performs certain actions when you save your edits

11-20

Configure Polyspace as You Code Plugin in Eclipse

Setting

Description

Add To Quality
Monitoring list on
save

Select how you add files to the Quality Monitoring list. Polyspace as You
Code analyzes files only if they are added to that list.

* /I (default) — Polyspace adds the current file to the list on save (Ctrl + S).

y — add files to the Quality Monitoring list manually. To add files
manually, right-click the file in the editor or the Project Explorer view.

Start analysis on
save

Select when Polyspace as You Code runs on files that are in the Quality
Monitoring list.
* ¥l — Polyspace as You Code runs each time you save your code. (Ctrl + S).

y (default) — Run the analysis manually. Right-click the source code or a
file in the Project Explorer and select Run Polyspace Analysis.

Build Configuration

Setting

Description

Analysis Setup

Select between manual setup and script.

* Manual Setup (default): Set up Polyspace as You Code through extension
settings. Specify build-related and other options through the Manual
Setup: Manual setup group of settings.

* Script: Run a script each time you save your code (or right-click a source
file and select Run Polyspace Analysis).

Analysis Setup — Script

Run a script each time you save your code or explicitly run analysis.

The plugin passes these parameters to the script:

» Path to the current file as the first argument.
* Working directory path as the second argument.
* Polyspace installation folder path as the third argument.

For example, this simple Windows batch script analyzes the current file, uses the default Polyspace
build options, and imports the review information from a previously downloaded baseline:

set INSTALL_DIR=%3

set ANALYZE=%INSTALL_DIR%\polyspace\bin\polyspace-bug-finder-access.exe

set SOURCES=%1
set RESULTS_FOLDER=%2

set BASELINE DIR=%RESULTS_FOLDER%\..\..\..\baseline

"%ANALYZE%" -sources %SOURCES% -import-comments %BASELINE DIR% -results-dir %RESULTS FOLDERS%
IF %ERRORLEVEL% NEQ 0 EXIT 1

For more on downloading a baseline and importing its review information at the command line, see
“Baseline Polyspace as You Code Results on Command Line” on page 11-56.

Use a script if, for instance, you switch between files from components that have different build
configurations or you use a custom tool to setup your build environment.

If you enable this setting, all other plugin settings are ignored.

11-21

11 Configure Polyspace as You Code

Note The Polyspace as You Code plugin does not check the exit status of the commands in your
script. Make sure your script checks exit codes (for instance by using $ERRORLEVEL%) and returns a
meaningful exit status.

Typically, the Polyspace binaries return 0 on success and a non-zero value on failure.

Setting Description

Script file Enter the full path to a script that runs each time your run Polyspace as You
Code. The script can be written in any language. On Windows, the extension
supports scripting languages only for scripts that are executable from the
Command Prompt.

Depending on how you configure the plugin behavior on save, the script runs
on each file save, or when you right-click in the source code or the file in the
Project Explorer and select Run Polyspace Analysis.

11-22

Configure Polyspace as You Code Plugin in Eclipse

Analysis Setup — Manual

Setting

Description

Build

Build options file not required (default)

You do not have to specify Polyspace options related to your build
configuration. This is a basic option for simple projects.

More...

The analysis uses the default Polyspace build options. So that the analysis
runs without errors, you typically provide Polyspace as You Code with the
specificities of your build configuration.

Get from build command

The analysis traces the build command that you specify and generates a
build options file.

More...

Specify the build command in setting Build Command, for instance make

-B and click &7 in the Configuration view of the Polyspace as You Code
perspective. See “Get Build Configuration from Build Command” on page
11-37.

Get from Eclipse C/C++ project

The analysis extracts the build configuration from the Eclipse project and
generates a build options file.

More...

Click &7 in the Configuration view of the Polyspace as You Code
perspective.

See “Get Build Configuration from Eclipse Project” on page 11-37.
Get from JSON Compilation Database file

The analysis extracts the build configuration from the JSON compilation
database that you specify and generates a build options file. See “Get Build
Configuration from JSON Compilation Database” on page 11-38.

More...

Specify the full path to the JSON file (typically named
compile commands.json)in the JSON Compilation Database file

setting and click & in the Configuration view of the Polyspace as You
Code perspective.

If you use a build system generator such as CMake, you can follow this
approach to set up Polyspace as You Code. For instance, if you use CMake
projects in Eclipse, CMake also allows you to generate a JSON compilation
database with the commands used for building the project. You can then

11-23

11 Configure Polyspace as You Code

11-24

Setting

Description

provide the compilation database to this setting. For an example of how to
generate this JSON file, see “Create Polyspace Options File from JSON
Compilation Database”.

* Get from Polyspace build options file
When you select this setting, you provide an options file that you generate

or fill in manually with all the necessary build options. Specify the full path
of the options file in the setting Polyspace Build Options File.

Build Command

Specify the build command name exactly as you would enter on a command-
line terminal or console.

Use a build command that performs a complete build of all files in your
workspace and not an incremental build.

Fill in this setting if you select Get from build command from the Build
dropdown menu. See “Get Build Configuration from Build Command” on page
11-37.

JSON Compilation
Database file

Specify the full path to a database file (typically named
compile commands.json).

Use a build command that performs a complete build of all files in your
workspace and not an incremental build.

Fill in this setting if you select Get from JSON Compilation Database
file from the Build dropdown menu. See “Create Polyspace Options File
from JSON Compilation Database”.

Polyspace Build
Options File

Specify the full path to a Polyspace build options file. The options file is a text
file with one Polyspace analysis option per line.

Fill in this setting if you select Get from Polyspace build options
file from the Build dropdown menu. See “Options Files for Polyspace
Analysis” on page 12-5.

Checkers file

Path to a checkers configuration file.

To create this file, click the Configure Checkers icon in the Configuration
view of the Polyspace as You Code perspective.. Enable the checkers that
you want and save the file.

See also “Configure Checkers for Polyspace as You Code in Eclipse” on page
11-60.

Configure Polyspace as You Code Plugin in Eclipse

Setting Description
Other Analysis Path to an options file. The options file contains one Polyspace analysis option
Options per line. For example:

-D _WIN32
-termination-functions exit handler

You typically do not need to specify additional options in an options file.
However, in some situations,you might want to use an options file. For
instance, if you want to manually specify Polyspace options related to your
build command, select Build options file not required for Build setting and
enter the options in an options file.

See also “Options Files for Polyspace Analysis” on page 12-5.

Baseline Node

Use this settings to select whether you import review information from a baseline run into your
analysis, and to configure the connection to a Polyspace Access Server from which you download the

baseline.

Setting Description

Show Baseline Enable or disable the use of information from the baseline run:
Information

* Show local findings only (default)
When you run an analysis, Polyspace does not use information from the
baseline run. You see only local findings in the Polyspace Problems view.
* Show local findings and baseline info
When you run an analysis, Polyspace imports review information from the

baseline run. Results that are already justified in the baseline run are
suppressed in the Polyspace Problems pane.

* Show new findings only

When you run an analysis, Polyspace imports review information from the
baseline. Results that are already present in the baseline run are
suppressed in the Polyspace Problems pane.

Use this setting to focus only on new findings.

See also “Baseline Polyspace as You Code Results in Eclipse” on page 11-53.

Polyspace Access
URL

URL of the Polyspace Access instance from which you get a baseline.

After you obtain a baseline from Polyspace Access, subsequent runs of
Polyspace as You Code allow you to distinguish between new results and
results that were present in existing code.

See also “Baseline Polyspace as You Code Results in Eclipse” on page 11-53.

11-25

11 Configure Polyspace as You Code

11-26

Setting

Description

Polyspace Access
Login

Specify the user name that you use to log in to Polyspace Access.

Later, when you click the Download Baseline icon in the Baseline view of
the Polyspace as You Code perspective, you are prompted for the password
that corresponds to this user name.

Project path

Path of project in Polyspace Access Project Explorer that you get the
baseline from.

See Also

Related Examples
. “Generate Build Options for Polyspace as You Code Analysis in Eclipse” on page 11-37

. “Baseline Polyspace as You Code Results in Eclipse” on page 11-53
. “Configure Checkers for Polyspace as You Code in Eclipse” on page 11-60
. “Run Polyspace as You Code in Eclipse and Review Results” on page 29-15

Generate Build Options for Polyspace as You Code Analysis in Visual Studio

Generate Build Options for Polyspace as You Code Analysis in
Visual Studio

Polyspace as You Code checks the source code file that is currently active in your Visual Studio IDE
for bugs and coding standards violations.

So that the analysis runs without errors, provide Polyspace as You Code with the specificities of your
build configuration, such as data type sizes and compiler macro definitions. To provide your build
configuration information, you can:

* Configure Polyspace as You Code to extract the build configuration information from your Visual
Studio solution, build command, or JSON compilation database. Note that running polyspace-
configure on a build command involves first executing the command and gathering information
from the processes executed. On the other hand, polyspace-configure can simply read all
required information from a JSON compilation database or even a Visual Studio solution in some
cases (see details later).

* Manually specify analysis options that emulate your build configuration in an options file. See
“Options Files for Polyspace Analysis” on page 12-5.

» Import the analysis options from a Polyspace desktop product project file.

Configure Polyspace as You Code to Extract Build Configuration

To extract your build configuration information from the Visual Studio solution, build command, or
JSON compilation database:

1 Right-click a project in the Visual Studio Solution Explorer pane and select Polyspace
properties.

2 Select the appropriate build configuration option on the Build tab. See “Configure Polyspace as
You Code Extension in Visual Studio” on page 11-2.

The build configuration option that you select applies only to the selected project.

Polyspace extracts the build information and generates an options file that the Polyspace as You Code
analysis engine uses in subsequent analyses.

* The file contains analysis options that emulate your build configuration. Make sure that the build
completes successfully before you use this file .

* The generated options file is stored in the .polyspace-configure folder under the
workingDirectory/projectName folder or one of its subfolders.

The workingDirectory path is the Working directory for extension folder path that you
specify in the General options of the Polyspace extension. The projectName is the name of the
project that contains the files you are currently analyzing.

11-27

11 Configure Polyspace as You Code

11-28

Build Option

Description

Get from solution

If your project configuration type is Application (.exe), Dynamic Library
(.dll), or Static Library (.lib), when you start an analysis, Polyspace extracts
the build options from your project and generates an options file. If you
make changes to your project, Polyspace updates the options file when you
start the next analysis.

If your project configuration type is Makefile or Utility, or if you do not use
the cl.exe compiler to compile your code, before the analysis starts,
Polyspace builds the Visual Studio solution and traces the build to extract
your build options and generate an options file. If you make changes to your
project, update the generated options file before you start the next analysis.
See “Update Generated Build Options File” on page 11-29.

Polyspace builds your solution and generates an options file only if:

* You start an analysis and Polyspace cannot find a generated options file
in the .polyspace-configure folder for the project that contains the
currently analyzed file.

* You explicitly generate an options file by selecting Generate Polyspace
build configuration from your project context menu in the Solution
Explorer.

Get from build
command line

Specify your build command in the Build command line field. The build
command that you specify must perform a full build. For instance:

cl /W1 hello.c main.c

Specify the full path of the folder where Polyspace runs the build command
in the Working directory field. For instance:

C:\Projects\HelloWorld

Before the analysis starts, Polyspace runs your build command, traces the build

to extract the configuration information, and generates an options file. If you
make changes to your project, update the generated options file before you
start the next analysis. See “Update Generated Build Options File” on page 11-
29.

Polyspace runs your build command and generates an options file only if:

* You start an analysis and Polyspace cannot find a generated options file in
the . polyspace-configure folder for the project that contains the
currently analyzed file.

* You explicitly generate an options file by selecting Generate Polyspace
build configuration from your project context menu in the Solution
Explorer.

https://learn.microsoft.com/cpp/build/reference/general-property-page-project?view=msvc-160#configuration-type
https://learn.microsoft.com/cpp/build/reference/general-property-page-project?view=msvc-160#configuration-type

Generate Build Options for Polyspace as You Code Analysis in Visual Studio

Build Option Description

Get from JSON If your build system supports the generation of a JSON compilation database
compilation file, use this setting. The file contains compiler calls for all the translation units
database in your project. See JSON compilation database.

To extract your build configuration information from the JSON compilation
database:

1 Generate a JSON compilation database file. For an example of how to
generate this file, see “Create Polyspace Options File from JSON
Compilation Database”.

If you use a JSON compilation database that was not generated on your
local machine, make sure that the paths listed in the file are accessible
from the location where you run Polyspace as You Code.

2 Specify the full path to the JSON compilation database file that you
generated in step 1 in the Path to JSON file field.

Before the analysis starts, Polyspace extracts the build configuration
information from the compilation database and generates an options file. If you
make changes to your project, update the generated options file before you
start the next analysis. See “Update Generated Build Options File” on page 11-
29.

Polyspace generates an options file only if:

* You start an analysis and Polyspace cannot find a generated options file in
the .polyspace-configure folder for the project that contains the
currently analyzed file.

* You explicitly generate an options file by selecting Generate Polyspace
build configuration from your project context menu in the Solution
Explorer.

Update Generated Build Options File

If you make changes to your build configuration, for instance if you add a source file to your project
or workspace or rename an existing file, update the generated options file to reflect those changes.
Before you update the options file, make sure that your build completes successfully with the new
configuration.

To update the options file, from the project context menu in the Solution Explorer, select Generate
Polyspace build configuration.

If you extract your build information from a JSON compilation database file, regenerate the
compilation database before you update the build options file.

See also “Troubleshoot Failed Analysis or Unexpected Results in Polyspace as You Code” on page 11-
81.

Specify Analysis Options Manually

Use this setting if:

11-29

https://clang.llvm.org/docs/JSONCompilationDatabase.html

11 Configure Polyspace as You Code

11-30

* You know the details of your build system and you want to specify the Polyspace analysis options
that emulate your build configuration in an options file. See “Options Files for Polyspace Analysis”
on page 12-5.

For a list of available analysis options, see “Complete List of Polyspace Bug Finder Analysis Engine
Options”.

* You reuse a Polyspace options file that you or someone else on your team has configured for your
build system.

If you reuse an options file that was not configured or generated on your local machine, make sure
that the paths listed in the file are accessible from the location where you run Polyspace as You
Code.

To specify an analysis options file:

1 Right-click a project in the Visual Studio Solution Explorer pane and select Polyspace
properties.

2 Select Get from build options file on the Build tab. See “Configure Polyspace as You Code
Extension in Visual Studio” on page 11-2.

3 Specify the full path to the options file in the Build options file field.
The Polyspace as You Code analysis engine uses the specified options file in subsequent analyses.
If you make changes to your build configuration, edit the options file to reflect those changes. See

“Specify Target Environment and Compiler Behavior” on page 13-2.

Import Analysis Options from Polyspace Desktop Project

If you configure an analysis in the Polyspace desktop product, you can use the information from the
resulting Polyspace desktop PSPR] file to configure your Polyspace as You Code analysis.

To import the analysis options from a Polyspace desktop PSPR] file:

1 Right-click a project in the Visual Studio Solution Explorer pane and select Polyspace
properties.
Select Build options file not required on the Build tab.
On the Analysis tab, click Import from Polyspace desktop project and select the PSPR] file
that you import from.

Polyspace generates an options file and an XML checkers activation file on page 11-63, and
populates the Checkers file and Analysis options file field on the Analysis tab. The Polyspace as
You Code analysis engine uses these files in subsequent analyses.

If you make changes to your build configuration, edit the options file to reflect those changes. See
“Specify Target Environment and Compiler Behavior” on page 13-2.

See Also

Related Examples

. “Configure Polyspace as You Code Extension in Visual Studio” on page 11-2

Generate Build Options for Polyspace as You Code Analysis in Visual Studio

“Configure Checkers for Polyspace as You Code in Visual Studio” on page 11-63
“Baseline Polyspace as You Code Results in Visual Studio” on page 11-44

11-31

11 Configure Polyspace as You Code

Generate Build Options for Polyspace as You Code Analysis in
Visual Studio Code

11-32

Polyspace as You Code checks the source code file that is currently active in your Visual Studio Code
editor for bugs and coding standards violations.

So that the analysis runs without errors, provide Polyspace as You Code with the specificities of your
build configuration, such as data type sizes and compiler macro definitions. To provide your build
configuration information, you can:

* Configure Polyspace as You Code to extract the build configuration information from your build
task or build command, or JSON compilation database. Note that running polyspace-
configure on a build task or command involves first executing the task or command and
gathering information from the processes executed. On the other hand, polyspace-configure
can simply read all required information from a JSON compilation database.

* Manually specify analysis options that emulate your build configuration in an options file. See
“Options Files for Polyspace Analysis” on page 12-5.

* Import the analysis options from a Polyspace desktop product project file.

Configure Polyspace as You Code to Extract Build Configuration

To extract your build configuration information from the build task, build command, or JSON
compilation database:

1 Open the Visual Studio Code settings by pressing Ctrl+, (comma).

Enter polyspace.analysisoptions in the settings search bar and set Polyspace > Analysis
Options: Analysis Setup to Manual setup.

2 Set the appropriate Polyspace > Analysis Options > Manual Setup: Build options and fill out
the corresponding Build Setting field.

See “Configure Polyspace as You Code Extension in Visual Studio Code” on page 11-8.

3 Open the Command Palette (Ctrl+Shift+P) and enter Polyspace: Generate Build
Options.

Note On Windows, if you enable remote development and if any of your project files or folders on the
remote machine are on a network drive, provide the UNC path for that network drive. See “Configure
Polyspace as You Code for Remote Development” on page 11-17. The Polyspace as You Code
extension cannot resolve the path of a network drive that is mapped to a drive letter when you enable
remote development and the Polyspace: Generate Build Options command might fail.

Polyspace extracts the build information and generates an options file that the Polyspace as You Code
analysis engine uses in subsequent analyses. The file contains analysis options that emulate your
build configuration.

The generated options file is stored in the .polyspace-configure folder under the
workingDirectory/projectName folder or one of its subfolders.

Generate Build Options for Polyspace as You Code Analysis in Visual Studio Code

The workingDirectory path is the Polyspace > Analysis Engine: Result Folder path that you
specify in the Polyspace as You Code extension settings. The projectName is the name of the top-
level folder in the EXPLORER that contains the files that you are currently analyzing.

Get Build Configuration from Build Task

Visual Studio Code enables you to define tasks so that you can run an external tool from your code
editor. See Integrate with External Tools via Tasks.

If you define a custom task that calls your compiler to perform a full build of your project, Polyspace
can extract your build configuration from this build task.

1 Open the Visual Studio Code settings by pressing Ctrl+, (comma).

Enter polyspace.analysisoptions in the settings search bar.
2 Set these Polyspace > Analysis Options settings to the values listed in the table.

Setting Value

Analysis Setup Manual setup

Manual Setup: Build (Get from build task

Manual Setup > Specify the name of the build task. This corresponds to the
Build Setting: Build |"label" field of the task definition in the tasks. json file. The
Task task that you specify must perform a full build.

Polyspace supports the use of only these Visual Studio Code
predefined variables in task definitions:

* ${workspaceFolder}
* ${workspaceFolderBasename}

3 Open the Command Palette (Ctrl+Shift+P) and enter Polyspace: Generate Build
Options.

Polyspace runs the build command specified by the task, traces the build to extract the configuration
information, and generates an options file.

Get Build Configuration from Build Command
To extract your build configuration information from your build command:
1 Open the Visual Studio Code settings by pressing Ctrl+, (comma).

Enter polyspace.analysisoptions in the settings search bar.
2 Set these Polyspace > Analysis Options settings to the values listed in the table.

Setting Value

Analysis Setup Manual setup

Manual Setup: Build |Get from build command

11-33

https://code.visualstudio.com/docs/editor/tasks
https://code.visualstudio.com/docs/editor/variables-reference

11 Configure Polyspace as You Code

11-34

Setting Value
Manual Setup > Specify your build command, for instance:
Build Setting: Build
Command gcc -g -o helloworld hello.c main.c
The command that you specify must perform a full build

3 Open the Command Palette (Ctrl+Shift+P) and enter Polyspace: Generate Build
Options.

Polyspace runs your build command, traces the build to extract the configuration information, and
generates an options file.

Get Build Configuration from JSON Compilation Database

If your build system supports the generation of a JSON compilation database file, use this setting. The
file contains compiler calls for all the translation units in your project. See JSON compilation
database.

To extract your build configuration information from the JSON compilation database:

1 Generate a JSON compilation database file. For an example of how to generate this file, see
“Create Polyspace Options File from JSON Compilation Database”.

If you use a JSON compilation database that was not generated on your local machine, make sure
that the paths listed in the file are accessible from the location where you run Polyspace as You
Code.

2 Open the Visual Studio Code settings by pressing Ctrl+, (comma).

Enter polyspace.analysisoptions in the settings search bar.
3 Set these Polyspace > Analysis Options settings to the values listed in the table.

Setting Value

Analysis Setup Manual setup

Manual Setup: Build |Get from JSON Compilation Database file

Manual Setup > Specify the full path to the file that you generated in step 1. The file
Build Setting: JSON |is typically named compile commands. json.

Compilation

Database File

4 Open the Command Palette (Ctrl+Shift+P) and enter Polyspace: Generate Build
Options.

Polyspace extracts the build configuration information from the compilation database and generates
an options file.

Update Generated Build Options File

If you make changes to your build configuration, for instance if you add a source file to your project
or workspace or rename an existing file, update the generated options file to reflect those changes.
Before you update the options file, make sure that your build completes successfully with the new
configuration.

https://clang.llvm.org/docs/JSONCompilationDatabase.html
https://clang.llvm.org/docs/JSONCompilationDatabase.html

Generate Build Options for Polyspace as You Code Analysis in Visual Studio Code

To update the options file, Open the Command Palette (Ctrl+Shift+P) and enter Polyspace:
Generate Build Options.

If you extract your build information from a JSON compilation database file, regenerate the
compilation database before you update the build options file.

See also “Troubleshoot Failed Analysis or Unexpected Results in Polyspace as You Code” on page 11-
81.

Specify Analysis Options Manually
Use this setting if:

* You know the details of your build system and you want to specify the Polyspace analysis options
that emulate your build configuration in an options file. See “Options Files for Polyspace Analysis”
on page 12-5.

For a list of available analysis options, see “Complete List of Polyspace Bug Finder Analysis Engine
Options”.

* You reuse a Polyspace options file that you or someone else on your team has configured for your
build system.

If you reuse an options file that was not configured or generated on your local machine, make sure
that the paths listed in the file are accessible from the location where you run Polyspace as You
Code.

To specify an analysis options file:

1 Open the Visual Studio Code settings by pressing Ctrl+, (comma).

Enter polyspace.analysisoptions in the settings search bar.
2 Set these Polyspace > Analysis Options settings to the values listed in the table.

Setting Value
Analysis Setup Manual setup

Manual Setup: Build |Get from Polyspace build options file

Manual Setup > Specify the full path to the Polyspace options file.
Build Setting:
Polyspace Build
Options File

The Polyspace as You Code analysis engine uses the specified options file in subsequent analyses.

If you make changes to your build configuration, edit the options file to reflect those changes. See
“Specify Target Environment and Compiler Behavior” on page 13-2.

Import Analysis Options from Polyspace Desktop Project

If you configure an analysis in the Polyspace desktop product, you can use the information from the
resulting Polyspace desktop PSPR] file to configure your Polyspace as You Code analysis.

11-35

11 Configure Polyspace as You Code

To import the analysis options from a Polyspace desktop PSPR] file, open a terminal in Visual Studio
Code and enter this command:

polyspace-checkers-selection -import-options-from-psprj pathToPsprjFile

The polyspace-checkers-selection binary is available under the polyspace/bin folder in
your Polyspace as You Code installation folder. If you did not add this installation folder to your PATH
environment variable, include the full path of the binary to execute this command.

The pathToPsprjFile path is the full path of the PSPR] file.

Polyspace generates an options file (analysis options.txt) and an XML checkers activation file
on page 11-66 (checkers _activation file.xml). The generated files are stored in the import
folder in the same location as the PSPR] file.

To complete the configuration of the Polyspace as You Code analysis:
1 Open the Visual Studio Code settings by pressing Ctrl+, (comma).

Enter polyspace.analysisoptions in the settings search bar.
2 Set these Polyspace > Analysis Options settings to the values listed in the table.

Setting Value

Analysis Setup Manual setup

Manual Setup: Build [Build options file not required

This setting ignores the file specified in the Build Setting:
Polyspace Build Options File field.

Manual Setup: Full file path of checkers_activation file.xml
Checkers File

Manual Setup: Full file path of analysis options.txt

Other Analysis

Options

The Polyspace as You Code analysis engine uses these files in subsequent analyses.

If you make changes to your build configuration, edit the options file to reflect those changes. See
“Specify Target Environment and Compiler Behavior” on page 13-2.

See Also

Related Examples

. “Configure Polyspace as You Code Extension in Visual Studio Code” on page 11-8
. “Configure Checkers for Polyspace as You Code in Visual Studio Code” on page 11-66
. “Baseline Polyspace as You Code Results in Visual Studio Code” on page 11-48

11-36

Generate Build Options for Polyspace as You Code Analysis in Eclipse

Generate Build Options for Polyspace as You Code Analysis in
Eclipse

This topic describes how to configure the Polyspace as You Code plugin in Eclipse. For Polyspace
desktop products such as Polyspace Bug Finder, see “Bug Finder Analysis Based on Eclipse Projects”.

Polyspace as You Code checks the source code of the file that is currently active in your Eclipse IDE
for bugs and coding standards violations.

So that the analysis runs without errors, provide Polyspace as You Code with the specificities of your
build configuration, such as data type sizes and compiler macro definitions. To provide your build
configuration information, you can:

* Configure Polyspace as You Code to extract the build configuration information from your Eclipse
project, build command, or JSON compilation database. Note that running polyspace-
configure on a build command involves first executing the command and gathering information
from the processes executed. On the other hand, polyspace-configure can simply read all
required information from an Eclipse project or JSON compilation database.

* Manually specify analysis options that emulate your build configuration in an options file. See
“Options Files for Polyspace Analysis” on page 12-5.

* Import the analysis options from a Polyspace desktop product project file.

Configure Polyspace as You Code to Extract Build Configuration

To extract your build configuration information from the Eclipse project, build command, or JSON
compilation database:

1 Goto Window > Preferences and select the Polyspace as You Code node.

2 Select the appropriate Build option on the Analysis node. See “Configure Polyspace as You Code
Plugin in Eclipse” on page 11-19.

Get Build Configuration from Eclipse Project
To extract your build configuration information from your Eclipse project:

1 Goto Window > Preferences and select the Polyspace as You Code node.

2 On the Analysis node and select Get from Eclipse C/C++ project from the Build
dropdown menu. See “Configure Polyspace as You Code Plugin in Eclipse” on page 11-19.

Click €7 in the Configuration view of the Polyspace as You Code perspective to extract the build
options from your project toolchain. The Polyspace analysis engine uses those options in the
subsequent analysis.

To view the details of the toolchain configuration:

1 Select a project in the Project Explorer and go to Project > Properties.

2 Under the C/C++ General node, select Paths and symbols and Preprocessor Include Paths,
Macros, etc.

Get Build Configuration from Build Command

To extract your build configuration information from your build command:

11-37

11 Configure Polyspace as You Code

11-38

1 Goto Window > Preferences and select the Polyspace as You Code node.

2 On the Analysis node select Get from build command from the Build dropdown menu. See
“Configure Polyspace as You Code Plugin in Eclipse” on page 11-19.

The build command that you specify must perform a full build. For instance:

gcc -g -o helloworl hello.c main.c

Click £ in the Configuration view of the Polyspace as You Code perspective.

Polyspace runs your build command, traces the build to extract the configuration information, and
generates an options file. The Polyspace as You Code analysis engine uses the generated options file
in subsequent analyses.

The generated options file is stored in the .polyspace-configure folder under the
workingDirectory/projectName folder or one of its subfolders.

Here, workingDirectory is the Working directory path that you specify on the Polyspace as You
Code node and projectName is the name of the project that contains the files you are currently
analyzing.

Get Build Configuration from JSON Compilation Database

If your build system supports the generation of a JSON compilation database file, use this setting. The
file contains compiler calls for all the translation units in your project. See JSON compilation
database.

To extract your build configuration information from the JSON compilation database:

1 Generate a JSON compilation database file. For an example of how to generate this file, see
“Create Polyspace Options File from JSON Compilation Database”.

If you use a JSON compilation database that was not generated on your local machine, make sure
that the paths listed in the file are accessible from the location where you run Polyspace as You
Code.

Go to Window > Preferences and select the Polyspace as You Code node.

3 On the Analysis node select Get from JSON Compilation Database file from the Build
dropdown menu and specify the full path to the JSON compilation database file that you
generated in step 1. See “Configure Polyspace as You Code Plugin in Eclipse” on page 11-19.

Click £ in the Configuration view of the Polyspace as You Code perspective.

Polyspace extracts the build configuration information from the compilation database and generates
an options file. The Polyspace as You Code analysis engine uses the generated options file in
subsequent analyses.

The generated options file is stored in the .polyspace-configure folder under the
workingDirectory/projectName folder or one of its subfolders.

Here, workingDirectory is the Working directory path that you specify on the Polyspace as You
Code node and projectName is the name of the project that contains the files you are currently
analyzing.

https://clang.llvm.org/docs/JSONCompilationDatabase.html
https://clang.llvm.org/docs/JSONCompilationDatabase.html

Generate Build Options for Polyspace as You Code Analysis in Eclipse

Update Generated Build Options File

If you make changes to your build configuration, for instance if you add a source file to your project
or workspace or rename an existing file, update the generated options file to reflect those changes.
Before you update the options file, make sure that your build completes successfully with the new
configuration.

To update the options file, click 2 in the Configuration view of the Polyspace as You Code
perspective.

If you extract your build information from a JSON compilation database file, regenerate the
compilation database before you update the build options file.

See also “Troubleshoot Failed Analysis or Unexpected Results in Polyspace as You Code” on page 11-
81.

Specify Analysis Options Manually
Use this setting if:

* You know the details of your build system and you want to specify the Polyspace analysis options
that emulate your build configuration in an options file. See “Options Files for Polyspace Analysis”
on page 12-5.

For a list of available analysis options, see “Complete List of Polyspace Bug Finder Analysis Engine
Options”.

* You reuse a Polyspace options file that you or someone else on your team has configured for your
build system.

If you reuse an options file that was not configured or generated on your local machine, make sure
that the paths listed in the file are accessible from the location where you run Polyspace as You
Code.

To specify an analysis options file:

Go to Window > Preferences and select the Polyspace as You Code node.

On the Analysis node select Get from Polyspace build options file from the Build
dropdown menu and specify the full path to the options file. See “Configure Polyspace as You
Code Plugin in Eclipse” on page 11-19.

The Polyspace as You Code analysis engine uses the options file that you specify in subsequent
analyses.

If you make changes to your build configuration, edit the options file to reflect those changes. See
“Specify Target Environment and Compiler Behavior” on page 13-2.

Import Analysis Options from Polyspace Desktop Project

If you configure an analysis in the Polyspace desktop product, you can use the information from the
resulting Polyspace desktop PSPR] file to configure your Polyspace as You Code analysis.

To import the analysis options from a Polyspace desktop PSPR] file, open a terminal in Eclipse and
enter this command:

11-39

11 Configure Polyspace as You Code

11-40

polyspace-checkers-selection -import-options-from-psprj pathToPsprjFile

The polyspace-checkers-selection binary is available under the polyspace/bin folder in
your Polyspace as You Code installation folder. If you did not add this installation folder to your PATH
environment variable, include the full path of the binary to execute this command.

The pathToPsprjFile path is the full path of the PSPR] file.

Polyspace generates an options file (analysis options.txt) and an XML checkers activation file
on page 11-66 (checkers _activation file.xml). The generated files are stored in the import
folder in the same location as the PSPR] file.

To complete the configuration of the Polyspace as You Code analysis:

Go to Window > Preferences and select the Polyspace as You Code node.

On the Analysis node select Get from Polyspace build options file from the Build
dropdown. See “Configure Polyspace as You Code Plugin in Eclipse” on page 11-19.

3 Specify the path of the generated options file analysis options.txt in the Other Analysis
Options field.

4 Specify the path of the generated checkers activation file checkers activation file.xmlin
the Checkers File field.

The Polyspace as You Code analysis engine uses these files in subsequent analyses.

If you make changes to your build configuration, edit the options file to reflect those changes. See
“Specify Target Environment and Compiler Behavior” on page 13-2.

See Also

Related Examples

. “Configure Polyspace as You Code Plugin in Eclipse” on page 11-19

. “Configure Checkers for Polyspace as You Code in Eclipse” on page 11-60
. “Baseline Polyspace as You Code Results in Eclipse” on page 11-53

Generate Build Options for Polyspace as You Code Analysis at the Command Line

Generate Build Options for Polyspace as You Code Analysis at
the Command Line

Polyspace as You Code checks your code for bugs and coding standards violations while you work in
your IDE or code editor.

So that the analysis runs without errors, provide Polyspace as You Code with the specificities of your
build configuration, such as data type sizes and compiler macro definitions. To provide your build
configuration information, you can:

» Use the polyspace-configure binary to extract the build configuration information from your
build command or JSON compilation database. Note that running polyspace-configure on a
build command involves first executing the command and gathering information from the
processes executed. On the other hand, polyspace-configure can simply read all required
information from a JSON compilation database.

* Manually specify analysis options that emulate your build configuration in an options file. See
“Options Files for Polyspace Analysis” on page 12-5.

* Import the analysis options from a Polyspace desktop product project file.

Use polyspace-configure to Generate Build Options File

The polyspace-configure binary enables you to extract the build configuration information from a
build command or a JSON compilation database file. The binary uses the extracted information to
generate a build options file which contains a set of options that emulate your build configuration.

polyspace-configure is available with your Polyspace as You Code installation, in the
polyspaceAsYouCodeRoot/polyspace/bin folder, where polyspaceAsYouCodeRoot is your
Polyspace as You Code installation folder.

Get Build Configuration from Build Command

To extract the build configuration information from your build command, provide a build command
that performs a full build. For instance, if you use make on Linux to build your project, use this
command:

polyspace-configure \
-no-sources -allow-overwrite \
-output-options-file path/To/buildOptions.txt \
-merge-common-options make -B

Polyspace runs your build command, traces the build to extract the configuration information, and
generates buildOptions.txt inside path/To. For more information about the polyspace-
configure options, see polyspace-configure.

Use the generated options file in subsequent analyses of source files from your project. For instance:

polyspace-bug-finder-access -sources file.c -options-file path/To/buildOptions.txt
Get Build Configuration from JSON Compilation Database
If your build system supports the generation of a JSON compilation database file, use this workflow.

The compilation database file contains compiler calls for all the translation units in your project. See
JSON compilation database.

11-41

https://clang.llvm.org/docs/JSONCompilationDatabase.html

11 Configure Polyspace as You Code

11-42

To extract your build configuration information from the JSON compilation database:

1 Generate a JSON compilation database file. For an example of how to generate this file, see
“Create Polyspace Options File from JSON Compilation Database”. The generated file is typically
named compile commands.json.

If you use a JSON compilation database that was not generated on your local machine, make sure
that the paths listed in the file are accessible from the location where you run Polyspace as You
Code.

2 Pass the compilation database file to polyspace-configure. For instance:

polyspace-configure \

-no-sources -allow-overwrite \

-output-options-file path/To/buildOptions.txt \
-merge-common-options \

-compilation-database otherPath/To/compile commands.json

Polyspace extracts the build configuration information from the compilation database and generates
an options file. For more information about the polyspace-configure options, see polyspace-
configure

Use the generated options file in subsequent analyses of source files from your project. For instance:

polyspace-bug-finder-access -sources file.c -options-file path/To/buildOptions.txt
Update Generated Build Options File

If you make changes to your build configuration, for instance if you add a source file to your project
or workspace or rename an existing file, update the generated options file to reflect those changes.
Before you update the options file, make sure that your build completes successfully with the new
configuration.

To update the options file, rerun the command that you used to generate the file and specify the same
set of options you used.

If you extract your build information from a JSON compilation database file, regenerate the
compilation database before you update the build options file.

Specify Analysis Options Manually

Use this workflow if:

* You know the details of your build system and you want to specify the Polyspace analysis options
that emulate your build configuration in an options file. See “Options Files for Polyspace Analysis”
on page 12-5.

For a list of available analysis options, see “Complete List of Polyspace Bug Finder Analysis Engine
Options”.

* You reuse a Polyspace options file that you or someone else on your team has configured for your
build system.

If you reuse an options file that was not configured or generated on your local machine, make sure
that the paths listed in the file are accessible from the location where you run Polyspace as You
Code.

Generate Build Options for Polyspace as You Code Analysis at the Command Line

If you make changes to your build configuration, edit the options file to reflect those changes. See
“Specify Target Environment and Compiler Behavior” on page 13-2.

Import Analysis Options from Polyspace Desktop Project

If you configure an analysis in the Polyspace desktop product, you can use the information from the
resulting Polyspace desktop PSPR] file to configure your Polyspace as You Code analysis.

To import the analysis options from a Polyspace desktop PSPR] file, use this command:
polyspace-checkers-selection -import-options-from-psprj pathToPsprjFile

The polyspace-checkers-selection binary is available under the polyspace/bin folder in
your Polyspace as You Code installation folder.

The pathToPsprjFile path is the full path of the PSPR] file.

Polyspace generates an options file (analysis options.txt) and an XML checkers activation file
on page 11-70 (checkers_activation file.xml). The generated files are stored in the import
folder in the same location as the PSPR] file.

Use the generated options file and checkers activation file in subsequent analyses of source files from
your project. For instance:
polyspace-bug-finder-access -sources file.c \

-options-file path/To/import/analysis options.txt \
-checkers-activation-file path/To/import/checkers_activation_ file.xml

If you make changes to your build configuration, edit the options file (analysis options.txt) to
reflect those changes. See “Specify Target Environment and Compiler Behavior” on page 13-2.

See Also
polyspace-configure | polyspace-bug-finder-access

Related Examples

. “Options Files for Polyspace Analysis” on page 12-5

. “Configure Checkers for Polyspace as You Code at the Command Line” on page 11-70
. “Baseline Polyspace as You Code Results on Command Line” on page 11-56

11-43

11 Configure Polyspace as You Code

Baseline Polyspace as You Code Results in Visual Studio

For more efficient bug fixing, you can baseline the results of a Polyspace as You Code analysis with
previous results. When you baseline the results, you compare them against the results of a previous
run and focus on new results only or on unreviewed results only. You baseline Polyspace as You Code
results using previous Polyspace Bug Finder Server results that you download from Polyspace Access.

Note To keep using the most up-to-date baseline information, make sure that you periodically run the

command to down